SAMPLE FINAL ANALYSIS 1

MATH 3100

Saturday, December 14, 2013

Name

Please answer all of the questions, and show your work. All solutions must be explained clearly to receive credit.

1	2	3	4	5	6	7	
30	30	30	30	30	30	20	Total

Date: December 10, 2013.

- **1.** For this problem let $D \subseteq \mathbb{R}$.
- **1.(a).** State the definition of continuity for a function $f: D \to \mathbb{R}$.

1.(b). State the definition of uniform continuity for a function $f: D \to \mathbb{R}$.

1.(c). Prove that the product of any two uniformly continuous functions on a bounded interval is uniformly continuous. (You may use standard theorems to prove this.)

2.(a). State the Intermediate Value Theorem.

2 30 points

2.(b). Prove that the equation $x^2 = \cos x$ has at least one solution on the interval $[0, \pi/2]$.

 $\mathbf{3.(a).}$ State the definition of differentiability.

3 30 points

3.(b). Show that

$$f(x) = \begin{cases} x^2 \sin(1/x^2) & x \neq 0\\ 0 & x = 0 \end{cases}$$

is differentiable at x = 0.

4.(a). State the Mean Value Theorem.

4 30 points

4.(b). Suppose that $f : [a, b] \to \mathbb{R}$ is continuous on [a, b], and differentiable on (a, b). Assume that f' is increasing on (a, b). Show that for all $x \in [a, b]$

$$f(x) \le \left(\frac{f(b) - f(a)}{b - a}\right)(x - a) + f(a).$$

In other words, show that the graph of f lies (at or) below the secant line through (a, f(a)) and (b, f(b)).

5.(a). State the definition of a Riemann integrable function.

5 30 points 5.(b). Show that the function

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

is not Riemann integrable on [0, 1].

6. For this problem let f,g be functions that are Riemann integrable over [a,b]. **6. 6.**

$$\left| \int_{a}^{b} fg \right| \leq \frac{1}{2} \left(t^{2} \int_{a}^{b} f^{2} + \frac{1}{t^{2}} \int_{a}^{b} g^{2} \right)$$

[Hint: consider the integral $\int_a^b (tf \pm \frac{1}{t}g)^2$].

6.(b). Use the previous problem to show that if $\int_a^b f^2 = 0$, then

$$\int_{a}^{b} fg = 0.$$

7. True or False. You do NOT need to justify your answer.

7.(h) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. If $U \subseteq \mathbb{R}$ is open, then f(U) is open.

7.(i) Let U be an open subset of \mathbb{R} . If $f: U \to \mathbb{R}$ is differentiable at $c \in U$, then f is continuous at c.

7.(j) If $f:(a,b) \to \mathbb{R}$ is bounded and continuous, then it is uniformly continuous.

7.(k) The product of any two uniformly continuous functions is uniformly continuous.

7.(1) If $f : (a, b) \to \mathbb{R}$ is differentiable and strictly increasing on the interval (a, b)(i.e. x < y implies that f(x) < f(y)), then f'(x) > 0 for all $x \in (a, b)$.

7.(m) If $f : [a, b] \to \mathbb{R}$ is differentiable on (a, b), and also satisfies f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

7.(n) If $f : [a, b] \to \mathbb{R}$ is differentiable, and $f'(a) \le k \le f'(b)$ for some $k \in \mathbb{R}$, then there exists $c \in (a, b)$ such that f'(c) = k.

7.(o) Let $f : [a, b] \to \mathbb{R}$. If |f| is Riemann integrable then, f is Riemann integrable.

7.(p) Let $f:[a,b] \to \mathbb{R}$. If f is Riemann integrable then, f^2 is Riemann integrable.

7.(q) If f^2 and g^2 are Riemann integrable on [a, b], then fg is Riemann integrable on [a, b].

7.(r) If f is Riemann integrable on [a, b], and $\int_a^b f^2 = 0$, then f = 0.

7.(s) If f is Riemann integrable on [a, b], then the function $F(x) := \int_a^x f$ defined on [a, b] is differentiable and F'(x) = f(x) for all $x \in [a, b]$.

7.(t) If f is defined on [a, b] and has an anti-derivative F on [a, b], then f is Riemann integrable and $F(x) = \int_a^x f$ for all $x \in [a, b]$.