The purpose of this review sheet is to better your understanding of series. I suggest writing on a seperate sheet of paper. For many of the terms, you may need to use the index in the textbook.

- 1. For each of the terms below, write the book's definition and the definition in your own words and any formulas or facts associated with it.
 - (a) Sequence
 - (b) Series
 - (c) Geometric Series
 - (d) Alternating Series
 - (e) Power Series
 - (f) Taylor Series
 - (g) General term
 - (h) Index
 - (i) $P_n(x)$
 - (j) $E_n(x)$
 - (k) Radius of convergence
 - (l) Interval of convergence
- 2. If you have a sequence, a_n , how can you form a series out of it?
- 3. If you have a series $S = \sum_{k=1}^{\infty} b_k$, what are two different sequences you can get from it?
- 4. Give the book's definition and explain in your own words what it means for a sequence to converge?
- 5. Give the book's definition and explain in your own words what it means for a series to converge?
- 6. If the series $\sum_{n=1}^{\infty} a_n$ converges, what must be true of $\lim_{n\to\infty} a_n$?
- 7. State all of the convergence tests for series (there are 6 of them). For each test,
 - (a) Find examples of series that converges by the test.
 - (b) Find examples of series that diverges by the test.
 - (c) Each test has conditions that a series must meet in order to use that test. For each condition of each test, find a series that does not fulfill that condition so that the test gives an incorrect result. (For example: you could find an alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ for which $\lim_{n\to\infty} a_n \neq 0$)
- 8. What does it mean for a series to be absolutely convergent?
- 9. What does it mean for a series to be conditionally convergent?

- 10. If it is possible, give an example of a series which is absolutely convergent but not conditionally convergent.
- 11. If it is possible, give an example of a series which is conditionally convergent but not absolutely convergent.
- 12. What is the formula for the sum of a geometric series?
- 13. Let $f(x) = x^6 + 4x^4 x^3 + x 5$. Find the following:
 - (a) $P_4(x)$ centered at x = 0.
 - (b) $P_4(x)$ centered at x = 1.
 - (c) $P_5(x)$ centered at x = 0.
 - (d) $P = \lim_{n \to \infty} P_n(x)$ centered at x = 0.
- 14. Write the formula for the Taylor series of a function f(x).
- 15. For each of the following functions, write the Taylor series centered at the given value of x, determing the interval of convergence, and for a value of x in the interval of convergence, find a bound on $E_n(x)$.
 - (a) e^x about x = 0.
 - (b) $\sin x$ about x = 0.
 - (c) $\cos x$ about x = 0.
 - (d) ln(x) about x = 1.
 - (e) ln(x+1) about x = 0.
 - (f) $(1+x)^p$ about x = 0.
 - (g) $\frac{1}{1+x}$ about x = 0.
- 16. For each of the functions f(x) given above, find the taylor series for $x^2 f(3x)$
- 17. The text (Hughes-Hallet Calculus 5th Edition) a review section for series on pages 497-500
 - (a) For power series practice, do problems 49, 53, 54, 55, 56, 57
 - (b) For absolute convergence practice, do problems 18-21
 - (c) For general convergence practice, do some of problems 28-47 on page 498 of the text. Remember that part of being good at convergence problems is being able to quickly recognize which test is appropriate.