Analytic Geometry and Calculus 2 MATH 2300 Wednesday April 11, 2012 Sample Midterm 3

THIS IS ONLY FOR REVIEW – THERE IS NO THIRD MIDTERM

On my honor as a University of Colorado at Boulder student I have neither given nor received unauthorized assistance on this exam.
Name:

Do not open this exam until instructed to do so!

\bigcirc 001 Martinez	\bigcirc 005 Casalaina-Martin (11am)
002 Spina	\bigcirc 006 Scherer
\bigcirc 003 Rosenbaum	007 Davison(1PM)
004 Shannon	008 Wayne(1PM)

You may NOT use: books, notes, or calculators.

You SHOULD use: complete sentences and clear handwriting.

In order to receive full credit your answer must be **complete**, **legible** and **correct**. Show all of your work, and give clear explanations.

DO NOT WRITE IN THIS BOX!					
Problem	Points	Score			
1	20 pts				
2	20 pts				
3	20 pts				
4	20 pts				
5	20 pts				
TOTAL	100 pts				

1	
20	points

1. Determine whether the following series are absolutely convergent, conditionally convergent, or divergent.

1.(a).
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

1.(b).
$$\sum_{n=0}^{\infty} \frac{1}{3^n}$$

1.(c).
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{2^n}{n^2+1}$$

1.(d).
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

2	
20	points

2. Find the radius of convergence and the interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n}.$$

[Hint: remember to check the endpoints.]

3	
20	points

3. Consider the function $f(x) = \frac{2}{(1-x)^3}$.

3.(a). Find the degree 2 Taylor polynomial for f(x) centered at 0. [Hint: $f(x) = 2(1-x)^{-3}$.]

3.(b). Find the Taylor series for f(x) centered at 0.

4	
20 points	

- 4. Consider the function $f(x) = e^{2x}$.
- **4.(a).** [10 points] Find the degree 3 Taylor polynomial for $f(x) = e^{2x}$ centered at 0.

4.(b). [2 points] Use the fact that $e^{1/5} < 3/2$ to show that

$$\frac{\left(2^4 e^{1/5}\right) \left(\frac{1}{10}\right)^4}{4!} < 10^{-4}.$$

[This will be useful in (c).]

4.(c). [8 points] Let $P_3(x)$ be the degree 3 Taylor polynomial for $f(x) = e^{2x}$ centered at 0. Use (b) to show that for all $-\frac{1}{10} \le x \le \frac{1}{10}$,

$$|f(x) - P_3(x)| < 10^{-4}.$$

[Hint: the left hand side of the inequality in (b) may show up in a standard error estimation.]

5. Answer the following problems on differential equations.

5.(a). Is $y = \sin 2x$ a solution to the differential equation y'' - 4y = 0? Explain your answer.

5.(b). Find a solution to the differential equation $\frac{dy}{dx} = \frac{x^2 + 1}{y}$, with y(0) = 1.