MATH 2300: CALCULUS 2
 May 2, 2011
 FINAL EXAM

I have neither given nor received aid on this exam.

Name: \qquad

$\bigcirc 001$ A. Pajer	(8AM)	$\bigcirc 005$ A. Lizzi	M)
$\bigcirc 002$ B. Katz-Moses	(9am)	$\bigcirc 006$ E. Stade	1PM)
$\bigcirc 003 \mathrm{~W}$. Stanton	(10am)	$\bigcirc 007$ C. Scherer	(1Pm)
$\bigcirc 004 \mathrm{~J}$. Wiscons	(11Am)	$\bigcirc 008$ M. Roy	(2PM)

If you have a question raise your hand and remain seated. In order to receive full credit your answer must be complete, legible and correct. Show all of your work, and give adequate explanations. You are allowed and encouraged to use your calculator, except where indicated.

1. Evaluate the integral

$$
\int\left(x^{5}+x^{4}\right)\left(5 x^{4}+4 x^{3}\right) d x
$$

in three different ways:
(a) By multiplying out the integrand, and then integrating term by term.
(b) By substitution: put $u=x^{5}+x^{4}$.
(c) By parts: put $u=x^{5}+x^{4}$ and $d v=\left(5 x^{4}+4 x^{3}\right) d x$. [The integral you end up with on the right hand side should look remarkably similar to the one you started with; you should be able to do some algebra to solve for this integral.]
2. For each part of this problem, state which integration technique you would use to evaluate the integral, but DO NOT evaluate the integral. If your answer is substitution, also list u and $d u$; if your answer is integration by parts, also list $u, d v, d u$ and v; if your answer is partial fractions, set up the partial fraction decomposition, but do not solve for the numerators; if your answer is trigonometric substitution, write which substitution you would use.
(a) $\int \cos 5 x \sin ^{2} 5 x d x$
(b) $\int \frac{x^{3}}{\sqrt{9-x^{2}}} d x$
(c) $\int \frac{d x}{\left(x^{2}+1\right)(x-3)^{2}}$
(d) $\int \sqrt{x} \ln x d x$
(e) $\int \frac{3 e^{x}}{5-e^{x}} d x$
3. Let

$$
f(x, y)=x e^{x} \cos y-y e^{x} \sin y
$$

(a) Find $f_{x}(x, y)$.
(b) Find $f_{y}(x, y)$.
(c) Show that

$$
\frac{\partial}{\partial x} f_{x}(x, y)+\frac{\partial}{\partial y} f_{y}(x, y)=0
$$

4. (a) Find the equation of the sphere that's centered at (6,4,2), and passes through the point $(3,5,7)$.
(b) Circle the correct answer: the intersection of the above sphere with the plane $x=0$ is (i) a point;
(ii) a circle;
(iii) empty; that is, the plane and the sphere do not intersect.

If the answer is (i), give the coordinates of the point; if it's (ii), give the center and radius of the circle; if it's (iii), explain why.
(c) Circle the correct answer: the intersection of the above sphere with the plane $z=0$ is (i) a point;
(ii) a circle;
(iii) empty; that is, the plane and the sphere do not intersect.

If the answer is (i), give the coordinates of the point; if it's (ii), give the center and radius of the circle; if it's (iii), explain why.
5. Consider the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

If

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

must the series converge? If the answer is "Yes," please explain why. If the answer is "No," give a counterexample - that is, give an example of a series

$$
\sum_{n=1}^{\infty} a_{n}
$$

such that

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

but the series diverges.
6. Find

$$
\int_{0}^{1} \int_{0}^{x} e^{x^{2}} d y d x
$$

Please show all work: if you need to use any techniques of integration to do either the integral in x or the integral in y, then specify how you're doing this, as in problem (2) above; also, carry these techniques through to the final answer (that is, don't just plug the integral into your calculator).
7. Consider the region R in the $x y$ plane bounded by the curve $y=\sqrt{x}$, the x axis, and the vertical line $x=4$.

(a) Write down two different iterated integrals - one in which you first integrate in x, and then in y; the other in which you first integrate in y, and then in x - that represent the mass of a plate situated on the above region R, whose density at any point (x, y) on that plate is given by $\delta(x, y)$.
(b) Find the mass of the plate described in part (a) of this problem, if

$$
\delta(x, y)=\frac{\sin x}{\sqrt{x}}
$$

Please show your work (solve any integrals by hand, without using your calculator).
8. (a) Solve the initial value problem

$$
\frac{d y}{d x}=-x^{2} y^{2}, \quad y(1)=1
$$

(b) Sketch the solution you found in part (a) on the slope field below.

9. The power series $\sum_{n=1}^{\infty} C_{n} x^{n}$ diverges at $x=4$ and converges at $x=2$. At $x=-5$, the series
(a) Converges.
(b) Diverges.
(c) Cannot be determined.

Please explain your answer.
10. (a) Find the second degree Taylor polynomial $P_{2}(x)$ about $x=0$ for

$$
f(x)=\frac{1}{e^{x}+e^{-x}}
$$

(b) Use your answer to part (a) above to approximate $\frac{1}{e+e^{-1}}$.
(c) Given that $f^{\prime \prime \prime}(x)$ is positive for $0 \leq x \leq 1$, do you think your estimate from part (b) is an overestimate or an underestimate of $\frac{1}{e+e^{-1}}$? Please explain. (You can check your answer by plugging $\frac{1}{e+e^{-1}}$ into your calculator, but please also explain how you could have predicted this result without a calculator.)

