HOMEWORK EXAMPLE

JANE DOE

1. Exercises 11

Exercise 1 (# 11.47). Let G be an abelian group. Let H be the subset of G consisting of the identity e together with all elements of order 2. Show that H is a subgroup of G.

Proof. Let G be an abelian group. Let H be the subset of G consisting of the identity e together with all elements of order 2.

To show that H is a subgroup, it suffices to show that for all $a, b \in H$, one has $ab^{-1} \in H$. So let $a, b \in H$. Then

$$(ab^{-1})(ab^{-1}) = ab^{-1}ab^{-1} = aab^{-1}b^{-1} = aa(bb)^{-1} = ee = e.$$
 Thus $ab^{-1} \in H.$ $\hfill \square$

2. Exercises 13

Exercise 2 (# 13.47). Show that any group homomorphism $\phi : G \to G'$ where |G| is a prime must either be the trivial homomorphism or a one-to-one map.

Proof. Let $\phi : G \to G'$ be a group homomorphism where |G| is a prime. Let $e' \in G'$ be the identity element. The problem asks us to show that either $\phi(g) = e'$ for all $g \in G$, or, ϕ is injective.

To prove this, let us consider ker ϕ . The kernel of a homomorphism is a subgroup of G, and, since |G| is finite, $|\ker \phi|$ divides |G| (Theorem of Lagrange). By virtue of the fact that |G| is prime, it follows that either $|\ker \phi| = 1$ or $|\ker \phi| = |G|$. That is, either ker $\phi = \{e\}$, where eis the identity element of G, or ker $\phi = G$.

In the former case, ϕ is injective (a homomorphism is injective if and only if the kernel is trivial). In the latter case, $\phi(g) = e'$ for all $g \in G$, from the definition of the kernel.

University of Colorado at Boulder, Department of Mathematics, Campus Box 395, Boulder, CO 80309-0395, USA

E-mail address: doe@math.colorado.edu

Date: March 4, 2011.