Homework 6

Due Friday, November 10

Exercises

1. Let X be an analytic space, and \mathcal{F} a coherent sheaf on X. Given two presentations of \mathcal{F} ,

$$\mathcal{O}_X^{n_1} \xrightarrow{\alpha_1} \mathcal{O}_X^{m_1} \to \mathcal{F} \to 0$$

and

$$\mathcal{O}_X^{n_2} \xrightarrow{\alpha_1} \mathcal{O}_X^{m_2} \to \mathcal{F} \to 0,$$

show that the $(m_1 - k)$ -th degeneracy locus of α_1 is the same as the $(m_2 - k)$ -th degeneracy locus of α_2 .

- 2. Let $S \subseteq X$ be a smooth subvariety of an abelian variety, and let $f: S \times S \to X$ be the difference map $(s, s) \mapsto s s$. Show that $f^{-1}(0)$ is smooth as a scheme.
- 3. As in the last homework assignment, let

$$\phi_d: C_d \times C_d \to Pic^0(C)$$

be the difference map, and let V_d be the image. Show that if C is not hyperelliptic, then the projectivized tangent cone cone to V_1 at $\mathcal{O} \in Pic^0(C)$ is the canonical curve.

- 4. More generally, show that if C does not have a g_d^1 , then the projectivized tangent cone cone to V_d at $\mathcal{O} \in Pic^0(C)$ is the *d*-secant variety to the canonical curve.
- 5. Let C be a genus five curve. Show that if C is hyperelliptic, then W_3^1 is isomorphic to C, and W_4^1 is isomorphic to C_2 . If C is not hyperelliptic, and has a g_3^1 , show that W_3^1 is a point. Finally, in the case that C is not hyperelliptic, show that W_4^1 is one dimensional.
- 6. If C is a genus six curve, give a description of W_4^1 .