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1. Introduction

Algebraic spaces were first introduced by Mike Artin, see [Art69c], [Art70], [Art73],
[Art71a], [Art71b], [Art69a], [Art69b], and [Art74]. Some of the foundational ma-
terial was developed jointly with Knutson, who produced the book [Knu71]. Artin
defined (see [Art69b, Definition 1.3]) an algebraic space as a sheaf for the etale
topology which is locally in the etale topology representable. In most of Artin’s
work the categories of schemes considered are schemes locally of finite type over a
fixed excellent Noetherian base.

Our definition is slightly different. First of all we consider sheaves for the fppf
topology. This is just a technical point and scarcely makes any difference. Second,
we include the condition that the diagonal is representable.

After defining algebraic spaces we make some foundational observations. The main
result in this chapter is that with our definitions an algebraic space is the same thing
as an etale equivalence relation, see the discussion in Section 8 and Theorem 9.5.
The analogue of this theorem in Artin’s setting is [Art69b, Theorem 1.5], or [Knu71,
Proposition II.1.7]. In other words, the sheaf defined by an etale equivalence relation
has a representable diagonal. It follows that our definition agrees with Artin’s
original definition in a broad sense. It also means that one can give examples of
algebraic spaces by simply writing down an etale equivalence relation.
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2 ALGEBRAIC SPACES

In Section 13 we introduce various separation axioms on algebraic spaces that we
have found in the literatur. Finally in Section 14 we give some weird and not so
weird examples of algebraic spaces.

2. General remarks

We work in a suitable big fppf site Schfppf as in Topologies, Definition 5.6. So, if
not explicitly stated otherwise all schemes will be objects of Schfppf . We will record
elsewhere what changes if you change the big fppf site (insert future reference here).

We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 5.7. The absolute
case can be recovered by taking S = Spec(Z).

If U, T are schemes over S, then we denote U(T ) for the set of T -valued points over
S. In a formula: U(T ) = MorS(T,U).

Note that any fpqc covering is a family of universally effective epimorphisms, see
Descent, Lemma 5.2. Hence the topology on Schfppf is weaker than the canonical
topology and all representable presheaves are sheaves.

3. Representable morphisms of presheaves

Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf → Sets. Let
a : F → G be a representable transformation of functors, see Categories, Definition
7.2. This means that for every U ∈ Ob((Sch/S)fppf ) and any ξ ∈ G(U) the
fiber product hU ×ξ,G F is representable. Choose a representing object Vξ and an
isomorphism hVξ → hU ×G F . By the Yoneda lemma, see Categories, Lemma 3.5,
the projection hVξ → hU ×G F → hU comes from a unique morphism of schemes
aξ : Vξ → U . Suggestively we could represent this by the diagram

Vξ ///o/o/o

aξ

��

hVξ

��

// F

a

��
U ///o/o/o hU

ξ // G

where the squiggly arrows represent the Yoneda embedding. Here are some lemmas
about this notion that work in great generality.

Lemma 3.1. Let S, X, Y be objects of Schfppf . Let f : X → Y be a morphism of
schemes. Then

hf : hX −→ hY

is a representable transformation of functors.

Proof. This is formal and relies only on the fact that the category (Sch/S)fppf
has fibre products. �

Lemma 3.2. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G→ H be representable transformations of functors. Then

b ◦ a : F −→ H

is a representable transformation of functors.

Proof. This is entirely formal and works in any category. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02W9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WA
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Lemma 3.3. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformations of functors. Let b : H → G
be any transformation of functors. Consider the fibre product diagram

H ×b,G,a F
b′

//

a′

��

F

a

��
H

b // G

Then the base change a′ is a representable transformation of functors.

Proof. This is entirely formal and works in any category. �

Lemma 3.4. Let S be a scheme contained in Schfppf . Let Fi, Gi : (Sch/S)oppfppf →
Sets, i = 1, 2. Let ai : Fi → Gi, i = 1, 2 be representable transformations of
functors. Then

a1 × a2 : F1 × F2 −→ G1 ×G2

is a representable transformation of functors.

Proof. Write a1× a2 as the composition F1×F2 → G1×F2 → G1×G2. The first
arrow is the base change of a1 by the map G1 × F2 → G1, and the second arrow is
the base change of a2 by the map G1 × G2 → G2. Hence this lemma is a formal
consequence of Lemmas 3.2 and 3.3. �

Lemma 3.5. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. If G is a sheaf,
then so is F .

Proof. Let {ϕi : Ti → T} be a covering of the site (Sch/S)fppf . Let si ∈ F (Ti)
which satisfy the sheaf condition. Then σi = a(si) ∈ G(Ti) satisfy the sheaf
condition also. Hence there exists a unique σ ∈ G(T ) such that σi = σ|Ti . By
assumption F ′ = hT ×σ,G,a F is a representable presheaf and hence (see remarks
in Section 2) a sheaf. Note that (ϕi, si) ∈ F ′(Ti) satisfy the sheaf condition also,
and hence come from some unique (idT , s) ∈ F ′(T ). Clearly s is the section of F
we are looking for. �

4. Lists of useful properties of morphisms of schemes

For ease of reference we list in the following remarks the properties of morphisms
which possess some of the properties required of them in later results.

Remark 4.1. Here is a list of properties/types of morphisms which are stable under
arbitrary base change:

(1) closed, open, and locally closed immersions, see Schemes, Lemma 18.2,
(2) quasi-compact, see Schemes, Lemma 19.3,
(3) universally closed, see Schemes, Definition 20.1,
(4) (quasi-)separated, see Schemes, Lemma 21.13,
(5) monomorphism, see Schemes, Lemma 23.5
(6) surjective, see Morphisms, Lemma 10.3,
(7) radicial (or universally injective), see Morphisms, Lemma 11.2,
(8) affine, see Morphisms, Lemma 12.8,
(9) quasi-affine, see Morphisms, Lemma 13.5,

(10) (locally) of finite type, see Morphisms, Lemma 15.4,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WB
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WC
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WD
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WF
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(11) (locally) quasi-finite, see Morphisms, Lemma 19.12,
(12) (locally) of finite presentation, see Morphisms, Lemma 20.4,
(13) locally of finite type of relative dimension d, see Morphisms, Lemma 22.2,
(14) universally open, see Morphisms, Definition 24.1,
(15) flat, see Morphisms, Lemma 25.7,
(16) syntomic, see Morphisms, Lemma 26.4,
(17) smooth, see Morphisms, Lemma 28.5,
(18) unramified, see Morphisms, Lemma 29.5,
(19) etale, see Morphisms, Lemma 30.7,
(20) proper, see Morphisms, Lemma 35.5,
(21) H-projective, see Morphisms, Lemma 36.8,
(22) (locally) projective, see Morphisms, Lemma 36.9,
(23) finite or integral, see Morphisms, Lemma 37.6,
(24) finite locally free, see Morphisms, Lemma 38.4.

Add more as needed.

Remark 4.2. Of the properties of morphisms which are stable under base change
(as listed in Remark 4.1) the following are also stable under compositions:

(1) closed, open and locally closed immersions, see Schemes, Lemma 24.3,
(2) quasi-compact, see Schemes, Lemma 19.4,
(3) universally closed, see Schemes, Definition 35.4,
(4) (quasi-)separated, see Schemes, Lemma 21.13,
(5) monomorphism, see Schemes, Lemma 23.4,
(6) surjective, see Morphisms, Lemma 10.2,
(7) radicial (or universally injective), see Morphisms, Lemma 11.3,
(8) affine, see Morphisms, Lemma 12.7,
(9) quasi-affine, see Morphisms, Lemma 13.4,

(10) (locally) of finite type, see Morphisms, Lemma 15.3,
(11) (locally) quasi-finite, see Morphisms, Lemma 19.11,
(12) (locally) of finite presentation, see Morphisms, Lemma 20.3,
(13) universally open, see Morphisms, Definition 24.3,
(14) flat, see Morphisms, Lemma 25.5,
(15) syntomic, see Morphisms, Lemma 26.3,
(16) smooth, see Morphisms, Lemma 28.4,
(17) unramified, see Morphisms, Lemma 29.4,
(18) etale, see Morphisms, Lemma 30.6,
(19) proper, see Morphisms, Lemma 35.4,
(20) H-projective, see Morphisms, Lemma 36.7,
(21) finite or integral, see Morphisms, Lemma 37.5,
(22) finite locally free, see Morphisms, Lemma 38.3.

Add more as needed.

Remark 4.3. Of the properties mentioned which are stable under base change (as
listed in Remark 4.1) the following are also fpqc local on the base (and a fortiori
fppf local on the base):

(1) for immersions we have this for
(a) closed immersions, see Descent, Lemma 12.17,
(b) open immersions see Descent, Lemma 12.14, and
(c) quasi-compact immersions, see Descent, Lemma 12.19,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WG
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WH
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(2) quasi-compact, see Descent, Lemma 12.1,
(3) universally closed, see Descent, Definition 12.3,
(4) (quasi-)separated, see Descent, Lemmas 12.2, and 12.5,
(5) monomorphism, see Descent, Lemma 12.29,
(6) surjective, see Descent, Lemma 12.6,
(7) radicial (or universally injective), see Descent, Lemma 12.7,
(8) affine, see Descent, Lemma 12.16,
(9) quasi-affine, see Descent, Lemma 12.18,

(10) (locally) of finite type, see Descent, Lemmas 12.8, and 12.10,
(11) (locally) quasi-finite, see Descent, Lemma 12.22,
(12) (locally) of finite presentation, see Descent, Lemmas 12.9, and 12.11,
(13) locally of finite type of relative dimension d, see Descent, Lemma 12.23,
(14) universally open, see Descent, Lemma 12.4,
(15) flat, see Descent, Lemma 12.13,
(16) syntomic, see Descent, Lemma 12.24,
(17) smooth, see Descent, Lemma 12.25,
(18) unramified, see Descent, Lemma 12.26,
(19) etale, see Descent, Lemma 12.27,
(20) proper, see Descent, Lemma 12.12,
(21) finite or integral, see Descent, Lemma 12.21,
(22) finite locally free, see Descent, Lemma 12.28.

Note that the property of being an “immersion” may not be fpqc local on the base,
but in Descent, Lemma 13.1 we proved that it is fppf local on the base.

5. Properties of representable morphisms of presheaves

Here is the definition that makes this work.

Definition 5.1. With S, and a : F → G representable as above. Let P be a
property of morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition 18.3, and
(2) is fppf local on the base, see Descent, Definition 11.1.

In this case we say that a has property P if for every U ∈ Ob((Sch/S)fppf ) and any
ξ ∈ G(U) the resulting morphism of schemes Vξ → U has property P .

It is important to note that we will only use this definition for properties of mor-
phisms that are stable under base change, and local in the fppf topology on the
base. This is not because the definition doesn’t make sense otherwise; rather it is
because we may want to give a different definition which is better suited to the
property we have in mind.

Remark 5.2. Consider the property P =“surjective”. In this case there could be
some ambiguity if we say “let F → G be a surjective map”. Namely, we could mean
the notion defined in Definition 5.1 above, or we could mean a surjective map of
presheaves, see Sites, Definition 3.1. If not mentioned otherwise when discussing
morphisms of algebraic spaces we will allways mean the first of the two.

Here is a sanity check.

Lemma 5.3. Let S, X, Y be objects of Schfppf . Let f : X → Y be a morphism
of schemes. Let P be as in Definition 5.1. Then hX −→ hY has propery P if and
only if f has property P.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=025V
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02YN
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WJ
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Proof. Note that the lemma makes sense by Lemma 3.1. Proof omitted. �

Lemma 5.4. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 5.1 which is stable under composition.
Let a : F → G, b : G→ H be representable transformations of functors. If a and b
have property P so does b ◦ a : F −→ H.

Proof. Note that the lemma makes sense by Lemma 3.2. Proof omitted. �

Lemma 5.5. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 5.1. Let a : F → G be a representable
transformations of functors. Let b : H → G be any transformation of functors.
Consider the fibre product diagram

H ×b,G,a F
b′

//

a′

��

F

a

��
H

b // G

If a has property P then also the base change a′ has property P.

Proof. Note that the lemma makes sense by Lemma 3.3. Proof omitted. �

Lemma 5.6. Let S be a scheme contained in Schfppf . Let Fi, Gi : (Sch/S)oppfppf →
Sets, i = 1, 2. Let ai : Fi → Gi, i = 1, 2 be representable transformations of
functors. Let P be a property as in Definition 5.1 which is stable under composition.
If a1 and a2 have property P so does a1 × a2 : F1 × F2 −→ G1 ×G2.

Proof. Note that the lemma makes sense by Lemma 3.4. Proof omitted. �

Lemma 5.7. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets,. Let a : F → G be a representable transformation of functors. Let P, P ′
be properties as in Definition 5.1. Suppose that for any morphism of schemes
f : X → Y we have P(f)⇒ P ′(f). If a has property P then a has property P ′.

Proof. Formal. �

Here is a characterization of those functors for which the diagonal is representable.

Lemma 5.8. Let S be a scheme contained in Schfppf . Let F be a presheaf of sets
on (Sch/S)fppf . The following are equivalent:

(1) The diagonal F → F × F is representable.
(2) For every scheme U over S, U/S ∈ Ob((Sch/S)fppf ) and any ξ ∈ F (U)

the map ξ : hU → F is representable.

Proof. This is completely formal, see Categories, Lemma 7.3. It depends only on
the fact that the category (Sch/S)fppf has products of pairs of objects and fibre
products, see Topologies, Lemma 5.9. �

In the situation of the lemma, for any morphism ξ : hU → F as in the lemma, it
makes sense to say that ξ has property P , for any property as in Definition 5.1. In
particular this holds for P = “surjective” and P = “etale”, see Remark 4.3 above.
We will use these in the definition of algebraic spaces below.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WL
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WM
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02YO
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=025W
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6. Algebraic spaces

Here is the definition.

Definition 6.1. Let S be a scheme contained in Schfppf . An algebraic space over
S is a presheaf

F : (Sch/S)oppfppf −→ Sets
with the following properties

(1) The presheaf F is a sheaf.
(2) The diagonal morphism F → F × F is representable.
(3) There exists a scheme U ∈ Ob(Schfppf ) and a map hU → F which is

surjective, and etale.

There are two differences with the “usual” definition, for example the definition in
Knutson’s book [Knu71].

The first is that we require F to be a sheaf in the fppf topology. One reason for doing
this is that many natural examples of algebraic spaces satisfy the sheaf condition
for the fppf coverings (and even for fpqc coverings). Also, one of the reasons that
algebraic spaces have been so useful is via Mike Artin’s results on algebraic spaces.
Built into his method is a condition which garantees the result is locally of finite
presentation over S. Combined it somehow seems to us that the fppf topology is
the natural topology to work with. In the end the resulting category of algebraic
spaces ends up being “the same”. Namely, allthough the actual sheaves F being
considered may be different, in the end the category of algebraic spaces defined
using sheaves in the etale topology is equivalent the the category we define here.
This will be clear later when we introduce presentations (insert future reference
here).

The second is that we only require the diagonal map for F to be representable,
whereas in [Knu71] it is required that it also be quasi-compact. If F = hU for
some scheme U over S this corresponds to the condition that S be quasi-separated.
Our point of view is to try to prove a certain number of the results that follow
only assuming that the diagonal of F be representable, and simply add an addition
hypothesis wherever this is necessary. In any case it has the pleasing consquence
that the following lemma is true.

Lemma 6.2. A scheme is an algebraic space. More precisely, given a scheme
T ∈ Ob((Sch/S)fppf ) the representable functor hT is an algebraic space.

Proof. The functor hT is a sheaf by our remarks in Section 2. The diagonal
hT → hT × hT = hT×T is representable because (Sch/S)fppf has fibre products.
The identity map hT → hT is surjective etale. �

Definition 6.3. Let F , F ′ be algebraic spaces over S. A morphism f : F → F ′ of
algebraic spaces over S is a transformation of functors from F to F ′.

The category of algebraic spaces over S contains the category (Sch/S)fppf as a full
subcategory via the Yoneda embedding T/S 7→ hT . From now on we no longer
distinghuish between a scheme T/S and the algebraic space it represents. Thus
when we say “Let f : T → F be a morphism from the scheme T to the algebraic
space F”, we mean that T ∈ Ob((Sch/S)fppf ), that F is an algebraic space over
S, and that f : hT → F is a morphism of algebraic spaces over S.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=025Y
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=025Z
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0260
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7. Glueing algebraic spaces

In this section we really start abusing notation and not distinguish between schemes
and the spaces they represent.

Lemma 7.1. Let S ∈ Ob(Schfppf ). Let U ∈ Ob(Sch/S)fppf . Given a set I
and sheaves Fi on Ob(Sch/S)fppf , if U ∼=

∐
i∈I Fi as sheaves, then each Fi is

representable by an open and closed subscheme Ui and U ∼=
∐
Ui as schemes.

Proof. By assumption this means there exists an fppf covering {Uj → U}j∈J such
that each Uj → U factors through Fi(j) for some i(j) ∈ I. Denote Vj = Im(Uj →
U). This is an open of U by Morphisms, Lemma 25.8, and {Uj → Vj} is an
fppf covering. Hence it follows that Vj → U factors through Fi(j) since Fi(j) is a
subsheaf. It follows from Fi ∩ Fi′ =, i 6= i′ that Vj ∩ Vj′ = ∅ unless i(j) = i(j′).
Hence we can take Ui =

⋃
j, i(j)=i Vj and everything is clear. �

Lemma 7.2. Let S ∈ Ob(Schfppf ). Let F be an algebraic space over S. Given a
set I and sheaves Fi on Ob(Sch/S)fppf , if F ∼=

∐
i∈I Fi as sheaves, then each Fi is

an algebraic space over S.

Proof. It follows directly from the representability of F → F×F that each diagonal
morphism Fi → Fi × Fi is representable. Choose a scheme U in (Sch/S)fppf and
a surjective etale morphism U →

∐
Fi (this exist by hypothesis). By considering

the inverse image of Fi we get a decomposition of U (as a sheaf) into a coproduct
of sheaves. By Lemma 7.1 we get correspondingly U ∼=

∐
Ui. Then it follows

easily that Ui → Fi is surjective and etale (from the corresponding property of
U → F ). �

The condition on the size of I in the following lemma may be ignored by those not
worried about set theoretic questions.

Lemma 7.3. Let S ∈ Ob(Schfppf ). Suppose given a set I and algebraic spaces
Fi, i ∈ I. Then F =

∐
i∈I Fi is an algebraic space provided I is not too large: for

example given surjective etale morphisms Ui → Fi such that
∐
Ui is isomorphic to

an object of (Sch/S)fppf , then F is an algebraic space.

Proof. By construction F is a sheaf. We omit the verification that the diagonal
morphism of F is representable. Finally, if U is an object of (Sch/S)fppf isomorphic
to

∐
i∈I Ui then it is straightforward to verify that the resulting map U →

∐
Fi is

surjective and etale. �

Here is the analogue of Schemes, Lemma 15.4.

Lemma 7.4. Let S ∈ Ob(Schfppf ). Let F be a presheaf of sets on (Sch/S)fppf .
Assume

(1) F is a sheaf,
(2) there exists an index set I and subfunctors Fi ⊂ F such that

(a)
∐
Fi is an algebraic space1,

(b) each Fi → F is a representable,
(c) each Fi → F is an open immersion (see Definition 5.1 and Remark

4.3), and
(d) the map of sheaves

∐
Fi → F is surjective.

1 This basically just means each Fi is an algebraic space, see Lemmas 7.2 and 7.3.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WO
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WP
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WQ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WR
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Then F is an algebraic space.

Proof. Let T , T ′ be objects of (Sch/S)fppf . Let T → F , T ′ → F morphisms.
The assumptions imply that there exists an open covering T =

⋃
Vi such that

Vi = T ×F Fi. Note that this in particular implies that
∐
Fi → F is surjective in

the Zariski topology! Also write similarly T ′ =
⋃
V ′i with V ′i = T ′ ×F Fi.

To show that the diagonal F → F × F is representable we have to show that
G = T ×F T ′ is representable. Consider the subfunctors Gi = G×F Fi. Note that
Gi = Vi×Fi V ′i , and hence is representable as Fi is an algebraic space. By the above
the Gi form a Zariski covering of F . Hence by Schemes, Lemma 15.4 we see G is
representable.

Choose a scheme U ∈ Ob(Sch/S)fppf and a surjective etale morphism U →
∐
Fi

(this exist by hypothesis). We may write U =
∐
Ui with Ui the inverse image of Fi,

see Lemma 7.1. We claim that U → F is surjective and etale. Surjectivity follows
as

∐
Fi → F is surjective. Consider the fibre product U ×F T where T → F is as

above. We have to show that U ×F T → T is etale. Since U ×F T =
∐
Ui ×F T

it suffices to show each Ui ×F T → T is etale. Since Ui ×F T = Ui ×Fi Vi this
follows from the fact that Ui → Fi is etale and Vi → T is an open immersion (and
Morphisms, Lemmas 30.8 and 30.6). �

8. Presentations of algebraic spaces

Given an algebraic space we can find a “presentation” of it.

Lemma 8.1. Let F be an algebraic space over S. Let f : U → F be a surjective
etale morphism from a scheme to F . Set R = U ×F U . Then

(1) j : R→ U×SU defines an equivalence relation on U over S (see Groupoids,
Definition 3.1).

(2) the morphisms s, t : R→ U are etale, and
(3) the diagram

R
//
// U // F

is a coequalizer diagram in Sh((Sch/S)fppf ).

Proof. Let T/S be an object of (Sch/S)fppf . Then R(T ) = {(a, b) ∈ U(T )×U(T ) |
f ◦ a = f ◦ b} which is clearly defines an equivalence relation on U(T ). The
morphisms s, t : R→ U are etale because the morphism U → F is etale.

To prove (3) we first show that U → F is a surjection of sheaves, see Sites, Definition
11.1. Let ξ ∈ F (T ) with T as above. Let V = T ×ξ,F,f U . By assumption V is
a scheme and V → T is surjective etale. Hence {V → T} is a covering for the
fppf topology. Since ξ|V factors through U by construction we conclude U → F is
surjective. To conclude we have to show that given any two morphisms a, b : T → U
such that f ◦ a = f ◦ b there is a morphism c : T → R such that a = pr0 ◦ c and
b = pr1 ◦ b. This is clear from the definition of R. �

This lemma suggests the following definitions.

Definition 8.2. Let S be a scheme. Let U be a scheme over S. An etale equivalence
relation on U over S is an equivalence relation j : R→ U×SU such that s, t : R→ U
are etale morphisms of schemes.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0262
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WS
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Definition 8.3. Let F be an algebraic space over S. A presentation of F is given
by a scheme U over S and an etale equivalence relation R on U over S, and a
surjective etale morphism U → F such that R = U ×F U .

Equivalently we could ask for the existence of an isomorphism

U/R ∼= F

where the quotient U/R is as defined in Groupoids, Section 8. To construct al-
gebraic spaces we will study the converse question, namely, for which equivalence
relations the quotient sheaf U/R is an algebraic space. It will finally turn out this
is always the case if R is an etale equivalence relation on U over S, see Theorem
9.5.

9. Algebraic spaces and equivalence relations

Suppose given a scheme U over S and an etale equivalence relation R on U over S.
We would like to show this defines an algebraic space. We will produce a series of
lemmas that prove the quotient sheaf U/R (see Groupoids, Definition 8.1) has all
the properties required of it in Definition 6.1.

Lemma 9.1. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R → U ×S U be an etale equivalence relation on U over S. Let U ′ → U be an
etale morphism. Let R′ be the restriction of R to U ′, see Groupoids, Definition 3.3.
Then j′ : R′ → U ′ ×S U ′ is an etale equivalence relation also.

Proof. It is clear from the description of s′, t′ in Groupoids, Lemma 7.1 that
s′, t′ : R′ → U ′ are etale as compositions of base changes of etale morphisms (see
Morphisms, Lemma 30.7 and 30.6). �

Lemma 9.2. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) : R →
U ×S U be a pre-relation. Let g : U ′ → U be a morphism. Assume

(1) j is an equivalence relation,
(2) s, t : R→ U are surjective, flat and locally of finite presentation,
(3) g is flat and locally of finite presentation.

Let R′ = R|U ′ be the restriction of R to U . Then R′/U ′ → R/U is representable,
and is an open immersion.

Proof. By Groupoids, Lemma 3.2 the morphism j′ = (t′, s′) : R′ → U ′ ×S U ′
defines an equivalence relation. Since g is flat and locally of finite presentation we
see that g is universally open as well (Morphisms, Lemma 25.8). For the same reason
s, t are universally open as well. Let W 1 = g(U ′) ⊂ U , and let W = t(s−1(W 1)).
Then W 1 and W are open in U . Moreover, as j is an equivalence relation we have
t(s−1(W )) = W .

By Groupoids, Lemma 8.4 the map of sheaves F ′ = U ′/R′ → F = U/R is injective.
Let a : T → F be a morphism from a scheme into U/R. We have to show that
T ×F F ′ is representable by an open subscheme of T .

The morphism a is given by the following data: an fppf covering {ϕj : Tj → T}j∈J
of T and morphsms aj : Tj → U such that the maps

aj × aj′ : Tj ×T Tj′ −→ U ×S U

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0263
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WT
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WU
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factor through j : R→ U ×S U via some (unique) maps rjj′ : Tj ×T Tj′ → R. The
system (aj) corresponds to a in the sense that the diagrams

Tj aj
//

��

U

��
T

a // F

commute.

Consider the open subsets Wj = a−1
j (W ) ⊂ Tj . Since t(s−1(W )) = W we see that

Wj ×T Tj′ = r−1
jj′ (t

−1(W )) = r−1
jj′ (s

−1(W )) = Tj ×T Wj′ .

By Morphisms, Lemma 25.9 and Descent, Lemma 5.1 applied to
∐
Tj → T this

means there exists an open WT ⊂ T such that ϕ−1
j (WT ) = Wj for all j ∈ J . We

claim that WT → T represents T ×F F ′ → T .

First, let us show that WT → T → F is an element of F ′(WT ). Since {Wj →
WT }j∈J is an fppf covering of WT , it is enough to show that each Wj → U → F
is an element of F ′(Wj) (as F ′ is a sheaf for the fppf topology). Consider the
commutative diagram

W ′j //

��

##HHHHHHHHH U ′

g

��
s−1(W 1) s

//

t

��

W 1

��
Wj

aj |Wj // W // F

where W ′j = Wj ×W s−1(W 1) ×W 1 U ′. Since t and g are surjective, flat and
locally of finite presentation, so is W ′j → Wj . Hence the restriction of the element
Wj → U → F to W ′j is an element of F ′ as desired.

Suppose that f : T ′ → T is a morphism of schemes such that a|T ′ ∈ F ′(T ′). We
have to show that f factors through the open WT . Since {T ′ ×T Tj → T} is
an fppf covering of T ′ it is enough to show each T ′ ×T Tj → T factors through
WT . Hence we may assume f factors as ϕj ◦ fj : T ′ → Tj → T for some j. In
this case the condition a|T ′ ∈ F ′(T ′) means that there exists some fppf covering
{ψi : T ′i → T ′}i∈I and some morphisms bi : T ′i → U ′ such that

T ′i bi

//

fj◦ψi
��

U ′ g
// U

��
Tj

aj // U // F

is commutative. This commutativity means that there exists a morphism r′i : T ′i →
R such that t◦r′i = aj ◦fj ◦ψi, and s◦r′i = g◦bi. This implies that Im(fj ◦ψi) ⊂Wj

and we win. �

The following lemma is not completely trivial although it looks like it should be
trivial.
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Lemma 9.3. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) : R →
U ×S U be an etale equivalence relation on U over S. If the quotient U/R is an
algebraic space, then U → U/R is etale and surjective. Hence (U,R,U → U/R) is
a presentation of the algebraic space U/R.

Proof. Denote c : U → U/R the morphism in question. Let T be a scheme
and let a : T → U/R be a morphism. We have to show that the morphism
(of schemes) π : T ×a,R/U,c U → T is etale and surjective. The morphism a
corresponds to an fppf covering {ϕi : Ti → T} and morphisms ai : Ti → U such
that ai× ai′ : Ti×T Ti′ → U ×S U factors through R, and such that c ◦ ai = ϕi ◦ a.
Hence

Ti ×ϕi,T T ×a,R/U,c U = Ti ×c◦ai,R/U,c U = Ti ×ai,U U ×c,R/U,c U = Ti ×ai,U,t R.

Since t is etale and surjective we conclude that the base change of π to Ti is surjective
and etale. Since the property of being surjective and etale is local on the base in
the fpqc topology (see Remark 4.3) we win. �

Lemma 9.4. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) : R →
U×SU be an etale equivalence relation on U over S. Assume that U is affine. Then
the quotient F = U/R is an algebraic space, and U → F is etale and surjective.

Proof. Since j : R → U ×S U is a monomorphism we see that j is separated (see
Schemes, Lemma 23.3). Since U is affine we see that U×SU (which comes equipped
with a monomorphism into the affine scheme U × U) is separated. Hence we see
that R is separated. In particular the morphisms s, t are separated as well as etale.

Since the compostition R→ U×SU → U is locally of finite type we conclude that j
is locally of finite type (see Morphisms, Lemma 15.8). As j is also a monomorphism
it has finite fibres and we see that j is locally quasi-finite by Morphisms, Lemma
19.6. Alltogether we see that j is separated and locally quasi-finite.

Our first step is to show that the quotient map c : U → F is representable. Consider
a scheme T and a morphism a : T → F . We have to show that the sheaf G =
T ×a,F,c U is representable. As seen in the proofs of Lemmas 9.2 and 9.3 there
exists an fppf covering {ϕi : Ti → T}i∈I and morphisms ai : Ti → U such that
ai × ai′ : Ti ×T Ti′ → U ×S U factors through R, and such that c ◦ ai = ϕi ◦ a. As
in the proof of Lemma 9.3 we see that

Ti ×ϕi,T G = Ti ×ϕi,T T ×a,R/U,c U
= Ti ×c◦ai,R/U,c U
= Ti ×ai,U U ×c,R/U,c U
= Ti ×ai,U,t R

Since t is separated and etale, and in particular separated and locally quasi-finite
(by Morphisms, Lemmas 29.9 and 30.14) we see that the restriction of G to each
Ti is representable by a morphism of schemes Xi → Ti which is separated and
locally quasi-finite. By Descent, Lemma 26.1 we obtain a descent datum (Xi, ϕii′)
relative to the fppf-covering {Ti → T}. Since each Xi → Ti is separated and locally
quasi-finite we see by More on Morphisms, Lemma 11.1 that this descent datum is
effective. Hence by Descent, Lemma 26.1 (2) we conclude that G is representable
as desired.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WV
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0265


ALGEBRAIC SPACES 13

The second step of the proof is to show that U → F is surjective and etale. This
is clear from the above since in the first step above we saw that G = T ×a,F,c U is
a scheme over T which base changes to schemes Xi → Ti which are surjective and
etale. Thus G→ T is surjective and etale (see Remark 4.3). Alternatively one can
reread the proof of Lemma 9.3 in the current situation.

The third and final step is to show that the diagonal map F → F × F is repre-
sentable. We first observe that the diagram

R //

j

��

F

∆

��
U ×S U // F × F

is a fibre product square. By Lemma 3.4 the morphism U ×S U → F × F is
representable (note that hU×hU = hU×SU ). Moreover, by Lemma 5.6 the morphism
U ×S U → F × F is surjective and etale (note also that etale and surjective occur
in the lists of Remarks 4.3 and 4.2). It follows either from Lemma 3.3 and the
diagram above, or by writing R→ F as R→ U → F and Lemmas 3.1 and 3.2 that
R → F is representable as well. Let T be a scheme and let a : T → F × F be a
morphism. We have to show that G = T ×a,F×F,∆ F is representable. By what
was said above the morphism (of schemes)

T ′ = (U ×S U)×F×F,a T −→ T

is surjective and etale. Hence {T ′ → T} is an etale covering of T . Note also that

T ′ ×T G = T ′ ×U×SU,j R
as can be seen contemplating the following cube

R //

��

F

��

T ′ ×T G //

��

88rrrrrrrrrrr
G

��

<<xxxxxxxxx

U ×S U // F × F

T ′ //

88rrrrrrrrrrr
T

<<xxxxxxxxx

Hence we see that the restriction of G to T ′ is representable by a scheme X, and
moreover that the morphism X → T ′ is a base change of the morphism j. Hence
X → T ′ is separated and locally quasi-finite (see second paragraph of the proof).
By Descent, Lemma 26.1 we obtain a descent datum (X,ϕ) relative to the fppf-
covering {T ′ → T}. Since X → T is separated and locally quasi-finite we see by
More on Morphisms, Lemma 11.1 that this descent datum is effective. Hence by
Descent, Lemma 26.1 (2) we conclude that G is representable as desired. �

Theorem 9.5. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R → U ×S U be an etale equivalence relation on U over S. Then the quotient
U/R is an algebraic space, and U → U/R is etale and surjective, in other words
(U,R,U → U/R) is a presentation of U/R.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WW
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Proof. By Lemma 9.3 it suffice to just prove that U/R is an algebraic space. Let
U ′ → U be a surjective, etale morphism. Then {U ′ → U} is in particular an
fppf covering. Let R′ be the restriction of R to U ′, see Groupoids, Definition 3.3.
According to Groupoids, Lemma 8.4 we see that U/R ∼= U ′/R′. By Lemma 9.1 R′

is an etale equivalence relation on U ′. Thus we may replace U by U ′.

We apply the previous remark to U ′ =
∐
Ui, where U =

⋃
Ui is an affine open

covering of S. Hence we may and do assume that U =
∐
Ui where each Ui is an

affine scheme.

Consider the restriction Ri of R to Ui. By Lemma 9.1 this is an etale equivalence
relation. Set Fi = Ui/Ri and F = U/R. It is clear that

∐
Fi → F is surjective.

By Lemma 9.2 each Fi → F is representable, and an open immersion. By Lemma
9.4 applied to (Ui, Ri) we see that Fi is an algebraic space. Then by Lemma 9.3
we see that Ui → Fi is etale and surjective. From Lemma 7.3 it follows that

∐
Fi

is an algebraic space. Finally, we have verified all hypotheses of Lemma 7.4 and it
follows that F = U/R is an algebraic space. �

10. Algebraic spaces, retrofitted

We start building our arsenal of lemmas dealing with algebraic spaces.

Lemma 10.1. Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let G→ F be a representable transformation of functors. Then G is
an algebraic space.

Proof. By Lemma 3.5 we see that G is a sheaf. The diagram

G //

∆G

��

F

∆F

��
G×G // F × F

is cartesian. Hence we see that ∆G is representable by Lemma 3.3. Finally, let U
be an object of (Sch/S)fppf and let U → F be surjective and etale. By assumption
U ×F G is representable by a scheme U ′. By Lemma 5.5 the morphism U ′ → G
is surjective and etale. This verifies the final condition of Definition 6.1 and we
win. �

Lemma 10.2. Let S be a scheme contained in Schfppf . Let F , G be algebraic
spaces over S. Let G→ F be a representable morphism. Let U ∈ Ob((Sch/S)fppf ),
and q : U → F surjective and etale. Set V = G×F U . Finally, let P be a property
of morphisms of schemes as in Definition 5.1. Then G→ F has property P if and
only if V → U has property P.

Proof. It is clear from the definitions that if G→ F has property P, then V → U
has property P. Conversely, assume V → U has property P. Let T → F be a
morphism from a scheme to F . Let T ′ = T ×F G which is a scheme since G → F
is representable. We have to show that T ′ → T has property T . Consider the
commutative diagram of schemes

V

��

T ×F V

��

oo // T ×F G

��

T ′

U T ×F Uoo // T

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WY
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WZ
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where both squares are fibre product squares. Hence we conclude the middle arrow
has property P as a base change of V → U . Finally, {T ×F U → T} is a fppf
covering as it is surjective etale, and hence we conclude that T ′ → T has property
P as it is local on the base in the fppf topology. �

Lemma 10.3. Let S be a scheme contained in Schfppf . Let F,G be algebraic
spaces over S. Then F ×G is an algebraic space, and is a product in the category
of algebraic spaces over S.

Proof. It is clear that H = F ×G is a sheaf. The diagonal of H is simply the prod-
uct of the diagonals of F and G. Hence it is representable by Lemma 3.4. Finally, if
U → F and V → G are surjective etale morphisms, with U, V ∈ Ob((Sch/S)fppf ),
then U × V → F ×G is surjective etale by Lemma 5.6. �

Lemma 10.4. Let S be a scheme contained in Schfppf . Let F,G be algebraic spaces
over S. Let a : F → G be a morphism. Given any V ∈ Ob((Sch/S)fppf ) and a
surjective etale morphism q : V → G there exists a U ∈ Ob((Sch/S)fppf ) and a
commutative diagram

U

p

��

α
// V

q

��
F

a // G

with p surjective and etale.

Proof. First choose W ∈ Ob((Sch/S)fppf ) with surjective etale morphism W →
F . Next, put U = W ×G V . Since G is an algebraic space we see that U is
isomorphic to an object of (Sch/S)fppf . As q is surjective etale, we see that U →W
is surjective etale (see Lemma 5.5). Thus U → F is surjective etale as a composition
of surjective etale morphisms (see Lemma 5.4). �

Lemma 10.5. Let S be a scheme contained in Schfppf . Let F,G,H be algebraic
spaces over S. Let a : F → H, b : G→ H be morphisms of algebraic spaces. Then
F ×H G is an algebraic space, and is a fibre product in the category of algebraic
spaces over S.

Proof. It is clear that E = F ×HG is a sheaf. The diagonal of E is the left vertical
arrow in

F ×H G //

∆

��

F ×G

∆

��
(F × F )×(H×H) (G×G) // (F × F )× (G×G)

which is cartesian. Hence the diagonal ∆E is representable as the base change of the
morphism on the right which is representable (use Lemmas 3.4 and 3.3). Finally,
let W ∈ Ob((Sch/S)fppf ) and q : W → H be surjective and etale. By Lemma 10.4
there exist U, V ∈ Ob((Sch/S)fppf ), morphisms α : U → W and β : V → W and
surjective etale morphisms p : U → F and r : V → G such that q ◦ α = a ◦ p, and
q ◦ β = b ◦ r. We claim that the morphism U ×α,W,β V → F ×a,H,b G is surjective

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02X0
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02X1
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02X2
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and etale. OK, and now we see that the diagrams

U ×H V //

��

U × V

��
F ×H G // F ×G

U ×W V //

��

W

��
U ×H V // W ×H W

are cartesian. Hence it suffices (by Lemmas 5.5 and Lemmas 5.4) to show that
U × V → F ×G and W → W ×H W are surjective and etale. For the first we use
Lemma 5.6. Denote R = W ×H W . Then R is an etale equivalence relation on
W over S, see Lemma 8.1. Each of the morphisms s, t : R → W is etale and the
composition W → R → W is the identity. Hence W → R is etale by Morphisms,
Lemma 30.15. This proves that E is an algebraic space. It is clear that E is a fibre
product in the category of algebraic spaces over S since that is a full subcategory
of the category of (pre)sheaves of sets on (Sch/S)fppf . �

11. Morphisms representable by algebraic spaces

Here we define the notion of one presheaf being relatively representabe by algebraic
spaces over another, and we prove some properties of this notion.

Definition 11.1. Let S be a scheme contained in Schfppf . Let F , G be presheaves
on Schfppf/S. We say a morphism a : F → G is representable by algebraic spaces
if for every U ∈ Ob((Sch/S)fppf ) and any ξ ∈ G(U) the fiber product hU ×ξ,G F is
an algebraic space.

Here is a sanity check.

Lemma 11.2. Let S be a scheme in Schfppf . Let f : X → Y be a morphism of
algebraic spaces over S. Then f is representable by algebraic spaces.

Proof. This is formal and relies only on the fact that the category of algebraic
spaces over S has fibre products, see Lemma 10.5. �

Lemma 11.3. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be representable by algebraic spaces. If G is a sheaf, then so
is F .

Proof. (Same as the proof of Lemma 3.5.) Let {ϕi : Ti → T} be a covering
of the site (Sch/S)fppf . Let si ∈ F (Ti) which satisfy the sheaf condition. Then
σi = a(si) ∈ G(Ti) satisfy the sheaf condition also. Hence there exists a unique
σ ∈ G(T ) such that σi = σ|Ti . By assumption F ′ = hT ×σ,G,a F is a sheaf. Note
that (ϕi, si) ∈ F ′(Ti) satisfy the sheaf condition also, and hence come from some
unique (idT , s) ∈ F ′(T ). Clearly s is the section of F we are looking for. �

The following lemma is actually slightly tricky.

Lemma 11.4. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be representable by algebraic spaces. If G is an algebraic space,
then so is F .

Proof. We have seen in Lemma 11.3 that F is a sheaf.

Let U be a scheme and let U → G be a surjective etale morphism. In this case
U ×G F is an algebraic space. Let W be a scheme and let W → U ×G F be a
surjective etale morphism.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02YQ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03BN
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02YR
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02YS
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First we claim that W → G is representable. To see this let X be a scheme and let
X → F be a morphism. Then

W ×F X = W ×U×GF U ×G F ×F X = W ×U×GF (U ×G X)

Since both U ×G F and G are algebraic spaces we see that this is a scheme.

Next, we claim that W → G is surjective and etale (this makes sense now that we
know it is representable). This follows from the formula above since both W →
U ×GF and U → G are etale and surjective, hence W ×U×GF (U ×GX)→ U ×GX
and U ×G X → X are surjective and etale, and the composition of surjective etale
morphisms is surjective and etale.

Set R = W ×F W . By the above the projections t, s : R→W are etale. It is clear
that R is an equivalence relation, and W → F is a surjection of sheaves. Hence R
is an etale equivalence relation and F = W/R. Hence F is an algebraic space by
Theorem 9.5. �

12. Immersions and Zariski coverings of algebraic spaces

At this point an intersting phenomenon occurs. We have already defined the notion
of an open immersion of algebraic spaces (through Definition 5.1) but we have yet
to define the notion of a point2. Thus the Zariski topology of an algebraic space has
already been defined, but there is no space yet!

Perhaps superfluously we formally introduce immersions as follows.

Definition 12.1. Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S.

(1) A morphism of algebraic spaces over S is called an open immersion if it is
an open immersion in the sense of Definition 5.1.

(2) An open subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an algebraic
space and F ′ → F is an open immersion.

(3) A morphism of algebraic spaces over S is called a closed immersion if it is
a closed immersion in the sense of Definition 5.1.

(4) A closed subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an algebraic
space and F ′ → F is a closed immersion.

(5) A morphism of algebraic spaces over S is called an immersion if it is an
immersion in the sense of Definition 5.1.

(6) A locally closed subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an
algebraic space and F ′ → F is an immersion.

We note that these definitions make sense since an immersion is in particular a
monomorphism (see Schemes, Lemma 23.7 and Lemma 5.7), and hence the image
of an immersion G → F of algebraic spaces is a subfunctor F ′ ⊂ F which is
(canonically) isomorphic to G. Thus some of the discussion of Schemes, Section 10
carries over to the setting of algebraic spaces.

Lemma 12.2. Let S ∈ Ob(Schfppf ) be a scheme. A composition of (closed, resp.
open) immersions of algebraic spaces over S is a (closed, resp. open) immersion of
algebraic spaces over S.

2We will associate a topological space to an algebraic space in Properties of Algebraic Spaces,
Section 4, and its opens will correspond exactly to the open subspaces defined below.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02YU
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Proof. See Lemma 5.4 and Remarks 4.3 (see very last line of that remark) and
4.2. �

Lemma 12.3. Let S ∈ Ob(Schfppf ) be a scheme. A base change of a (closed, resp.
open) immersion of algebraic spaces over S is a (closed, resp. open) immersion of
algebraic spaces over S.

Proof. See Lemma 5.5 and Remark 4.3 (see very last line of that remark). �

Lemma 12.4. Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space over
S. Let F1, F2 be locally closed subspaces of F . If F1 ⊂ F2 as subfunctors of F ,
then F1 is a locally closed subspace of F2. Similarly for closed and open subspaces.

Proof. Let T → F2 be a morphism with T a scheme. Since F2 → F is a monomor-
phism, we see that T ×F2 F1 = T ×F F1. The lemma follows formally from this. �

Let us formally define the notion of a Zariski open covering of algebraic spaces.
Note that in Lemma 7.4 we have already encountered such open coverings as a
method for constructing algebraic spaces.

Definition 12.5. Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S. A Zariski covering {Fi ⊂ F}i∈I of F is given by a set I, a collection of
open subspaces Fi ⊂ F such that

∐
Fi → F is a surjective map of sheaves.

Note that if T is a schemes, and a : T → F is a morphism, then each of the fibre
products T ×F Fi is identified with an open subscheme Ti ⊂ T . The final condition
of the definition signifies exactly that T =

⋃
i∈I Ti.

It is clear that the collection T of open subspaces of F is a set (as (Sch/S)fppf
is a site, hence a set). Moreover, we can turn T into a category by letting the
morphisms be inclusions of subfunctors (which are automatically open immersions
by Lemma 12.4). Finally, Definition 12.5 provides the notion of a Zariski covering
{Fi → F ′}i∈I in the category T . Hence, just as in the case of a topological space
(see Sites, Example 6.4) by suitably choosing a set of coverings we may obtain a
Zariski site of the algebraic space F .

Definition 12.6. Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S. A small Zariski site FZar of an algebraic space F is one of the sites T
described above.

Hence this gives a notion of what it means for something to be true Zariski locally
on an algebraic space, which is how we will use this notion. In general the Zariski
topology is not fine enough for our purposes. For example we can consider the
category of Zariski sheaves on an algebraic space. It will turn out that this is not
the correct thing to consider, even for quasi-coherent sheaves. One only gets the
desired result when using the etale or fppf site of F to define quasi-coherent sheaves.

13. Separation conditions on algebraic spaces

A separation condition on an algebraic space F is a condition on the diagonal
morphism F → F×F . Let us first list the properties the diagonal has automatically.
Since the diagonal is representable by definition the following lemma makes sense
(through Definition 5.1).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02YW
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http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02YZ
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Lemma 13.1. Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let ∆ : F → F × F be the diagonal morphism. Then

(1) ∆ is locally of finite type,
(2) ∆ is a monomorphism,
(3) ∆ is separated, and
(4) ∆ is locally quasi-finite.

Proof. Let F = U/R be a presentation of F . As in the proof of Lemma 9.4 the
diagram

R //

j

��

F

∆

��
U ×S U // F × F

is cartesian. Hence according to Lemma 10.2 it suffices to show that j has the
properties listed in the lemma. (Note that each of the properties (1) – (4) occur
in the lists of Remarks 4.1 and 4.3.) Since j is an equivalence relation it is a
monomorphism. Hence it is separated by Schemes, Lemma 23.3. As R is an etale
equivalence relation we see that s, t : R → U are etale. Hence s, t are locally of
finite type. Then it follows from Morphisms, Lemma 15.8 that j is locally of finite
type. Finally, as it is a monomorphism its fibres are finite. Thus we conclude that
it is locally quasi-finite by Morphisms, Lemma 19.6. �

Here are some common types of separation conditions. We will later discuss the
relative version (insert future reference here).

Definition 13.2. Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let ∆ : F → F × F be the diagonal morphism.

(1) We say F is separated if ∆ is a closed immersion.
(2) We say F is weakly locally separated3 if ∆ is an immersion.
(3) We say F is locally separated if ∆ is a quasi-compact immersion.
(4) We say F is quasi-separated if ∆ is quasi-compact.
(5) We say F is Zariski locally quasi-separated4 if there exists a Zariski covering

F =
⋃
i∈I Fi such that each Fi is quasi-separated.

Note that if the diagonal is quasi-compact (when F is separated, locally separated
or quasi-separated) then the diagonal is actually quasi-finite and separated, hence
quasi-affine (by More on Morphisms, Lemma 10.1).

14. Examples of algebraic spaces

In this section we construct some examples of algebraic spaces. Some of these were
suggested by B. Conrad. Since we do not yet have a lot of theory at our disposal
the discussion is a bit awkward in some places.

Example 14.1. Let k be a field. Let U = A1
k. Set

j : R = ∆
∐

Γ −→ U ×k U

where ∆ = {(x, x) | x ∈ A1
k} and Γ = {(x,−x) | x ∈ A1

k, x 6= 0}. It is clear that
s, t : R → U are etale, and hence j is an etale equivalence relation. The quotient

3This is probably nonstandard notation.
4This definition was suggested by B. Conrad.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02X4
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X = U/R is an algebraic space by Theorem 9.5. Since R is quasi-compact we see
that X is quasi-separated. On the other hand, X is not locally separated because
the morphism j is not an immersion.

We will use the following lemma as a convenient way to construct algebraic spaces
as quotients of schemes by free group actions.

Lemma 14.2. Let U → S be a morphism of Schfppf . Let G be an abstract group.
Let G→ AutS(U) be a group homomorphism. Assume

(1) if u ∈ U is a point, and g(u) = u for some non-identity element g ∈ G,
then g induces a nontrivial automorphism of κ(u).

Then
j : R =

∐
g∈G

U −→ U ×S U, (g, x) 7−→ (g(x), x)

is an etale equivalence relation and hence

F = U/R

is an algebraic space by Theorem 9.5.

Proof. In the statement of the lemma the symbol AutS(U) denotes the group of
automorphisms of U over S. Assume (1) holds. Let us show that

j : R =
∐

g∈G
U −→ U ×S U, (g, x) 7−→ (g(x), x)

is a monomorphism. This signifies that if T is a nonempty scheme, and h : T → U is
a T -valued point such that g◦h = g′◦h then g = g′. Suppose T 6= ∅, h : T → U and
g◦h = g′◦h. Let t ∈ T . Consider the composition Spec(κ(t))→ Spec(κ(h(t)))→ U .
Then we conclude that g′ ◦g−1 fixes u = h(t) and acts as the identity on its residue
field. Hence g = g′ by (1).

Thus if (1) holds we see that j is a relation (see Groupoids, Definition 3.1). More-
over, it is an equivalence relation since on T -valued points for a connected scheme
T we see that R(T ) = G× U(T )→ U(T )× U(T ) (recall that we always work over
S). Moreover, the morphisms s, t : R→ U are etale since R is a disjoint product of
copies of U . This proves that j : R→ U ×S U is an etale equivalence relation. �

Given a scheme U and an action of a group G on U we say the action of G on U is
free if condition (1) of Lemma 14.2 holds. Thus the lemma says that quotients of
schemes by free actions of groups exist in the category of algebraic spaces.

Definition 14.3. Notation U → S, G, R and assumptions as in Lemma 14.2. The
algebraic space U/R is denoted [U/G] and is called the quotient of U by G.

We will later make sense of the quotient [U/G] as an algebraic stack without any
assumptions on the action whatsoever (insert future reference here). Before we
discuss the examples we prove some more lemmas to facilitate the discussion. Here
is a lemma discussing the various separation conditions for this quotient when G is
finite.

Lemma 14.4. Notation and assumptions as in Lemma 14.2. Assume G is finite.
Then

(1) if U → S is quasi-separated, then [U/G] is quasi-separated, and
(2) if U → S is separated, then [U/G] is separated.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02Z2
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Proof. In the proof of Lemma 13.1 we saw that it suffices to prove the correspond-
ing properties for the morphism j : R → U ×S U . If U → S is quasi-separated,
then for every affine open V ⊂ U the opens g(V )∩ V are quasi-compact. It follows
that j is quasi-compact. If U → S is separated, the the diagonal ∆U/S is a closed
immersion. Hence j : R→ U ×S U is a finite coproduct of closed immersions with
disjoint images. Hence j is a closed immersion. �

Lemma 14.5. Notation and assumptions as in Lemma 14.2. If Spec(k) → [U/G]
is a morphism, then there exist

(1) a finite Galois extension k ⊂ k′,
(2) a finite subgroup H ⊂ G,
(3) an isomorphism H → Gal(k′/k), and
(4) an H-equivariant morphism Spec(k′)→ U .

Conversely, such data determine a morphism Spec(k)→ [U/G].

Proof. Consider the fibre product V = Spec(k)×[U/G] U . Here is a diagram

V //

��

U

��
Spec(k) // [U/G]

This is a nonempty scheme etale over Spec(k) and hence is a disjoint union of
spectra of fields finite separable over k (Morphisms, Lemma 30.4). So write V =∐
i∈I Spec(ki). The action of G on U induces an action of G on V =

∐
Spec(ki).

Pick an i, and let H ⊂ G be the stabilizer of i. Since

V ×Spec(k) V = Spec(k)×[U/G] U ×[U/G] U = Spec(k)×[U/G] U ×G = V ×G

we see that (a) the orbit of Spec(ki) is V and (b) Spec(ki⊗kki) = Spec(ki)×H. Thus
H is finite and is the Galois group of ki/k. We omit the converse construction. �

It follows from this lemma for example that if k′/k is a finite Galois extension, then
[Spec(k′)/Gal(k′/k)] ∼= Spec(k). What happens if the extension is infinite? Here is
an example.

Example 14.6. Let S = Spec(Q). Let U = Spec(Q). Let G = Gal(Q/Q) with
obvious action on U . Then by construction property (1) of Lemma 14.2 holds and
we obtain an algebraic space

X = [Spec(Q)/Gal(Q/Q)] −→ S = Spec(Q).

Of course this is totally ridiculus as an approximation of S! Namely, by the Artin-
Schreier theorem, see [Jac64, Theorem 17, page 316], the only finite subgroups of
Gal(Q/Q) are {1} and the conjugates of the order two group Gal(Q/Q∩R). Hence,
if Spec(k)→ X is a morphism with k algebraic over Q, then it follows from Lemma
14.5 and the theorem just mentioned that either k is Q or isomorphic to Q ∩R.

What is wrong with the example above is that the Galois group comes equipped
with a topology, and this should somehow be part of any construction of a quotient
of Spec(Q). The following example is much more reasonable in my opinion and
may actually occur in “nature”.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02Z5
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Example 14.7. Let k be a field of characteristic zero. Let U = A1
k and let G = Z.

As action we take n(x) = x+n, i.e., the action of Z on the affine line by translation.
The only fixed point is the generic point and it is clearly the case that Z injects into
the automorphism group of the field k(x). (This is where we use the characteristic
zero assumption.) Consider the morphism

γ : Spec(k(x)) −→ X = [A1
k/Z]

of the generic point of the affine line into the quotient. We claim that this morphism
does not factor through any monomorphism Spec(L)→ X of the spectrum of a field
to X. (Contrary to what happens for schemes, see Schemes, Section 13.) In fact,
since Z does not have any finite subgroups we see from Lemma 14.5 that for any
such factorization k(x) = L. Finally, γ is not a monomorphism since

Spec(k(x))×γ,X,γ Spec(k(x)) ∼= Spec(k(x))× Z.

This example suggests that in order to define points of an algebraic space X we
should consider equivalence classes of morphisms from spectra of fields into X and
not the set of monomorphisms from spectra of fields.

We finish with a truly awful example.

Example 14.8. Let k be a field. Let A =
∏
n∈N k be the infinite product. Set

U = Spec(A) seen as a scheme over S = Spec(k). Note that the projection maps
prn : A→ k define open and closed immersions fn : S → U . Set

R = U
∐ ∐

(n,m)∈N2, n 6=m
S

with morphism j equal to ∆U/S on the component U and j = (fn, fm) on the
component S corresponding to (m,m). It is clear from the remark above that s, t
are etale. It is also clear that j is an equivalence relation. Hence we obtain an
algebraic space

X = U/R.

To see what this means we specialize to the case where the field k is finite with q
elements. Let us first discuss the topological space |U | associated to the scheme
U a little bit. All elements of A satisfy xq = x. Hence every residue field of A is
isomorphic to k, and all points of U are closed. But the topology on U isn’t the
discrete topology. Let un ∈ |U | be the point corresponding to fn. As mentioned
above the points un are the open points (and hence isolated). This implies there
have to be other points since we know U is quasi-compact, see Algebra, Lemma
8.10 (hence not equal to an infinite discrete set). Another way to see this is because
the (proper) ideal

I = {x = (xn) ∈ A | all but a finite number of xn are zero}
is contained in a maximal ideal. Note also that every element x of A is of the form
x = ue where u is a unit and e is an idempotent. Hence a basis for the topology of
A consists of open and closed subsets (see Algebra, Lemma 9.1.) So the topology
on |U | is totally disconnected, but nontrivial. Finally, note that {un} is dense in
|U |.
We will later define a topological space |X| associated toX, see Properties of Spaces,
Section 4. What can we say about |X|? It turns out that the map |U | → |X| is
surjective and continuous. All the points un map to the same point x0 of |X|, and
none of the other points get identified. Since {un} is dense in |U | we conclude that

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02Z7
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the closure of x0 in |X| is |X|. In other words |X| is irreducible and x0 is a generic
point of |X|. This seems bizarre since also x0 is the image of a section S → X of
the structure morphism X → S (and in the case of schemes this would imply it was
a closed point, see Morphisms, Lemma 19.2).

Whatever you think is actually going on in this example, it certainly shows that
some care has to be exercised when defining irreducible components, connectedness,
etc of algebraic spaces.
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