
Sets versus Classes: Why you care.

Bart Kastermans

February 9, 2010

Abstract

Notes for a talk in the Stacks and Groupoids seminar at the Math-

ematics Department at the University of Colorado. Things are kept

relatively informal.

1 Introduction

We want to talk of the categories Top (Topological Spaces), Rings (Rings),
RSpaces (Ringed Spaces), and of Grothendieck Topologies. Depending on
what you want with them some foundations comes into the picture. We give
in this talk a hint of what these foundations are and how they work.

The key idea is the notion of a universe. In Section 3 we give the idea.
Then we show in Section 4 that they don’t really exist. In Section 5 we
show some other important objects that don’t exist. In Section 6 we explain
in which way some of the earlier objects can be used anyway. This use is
somewhat restrictive, so in Section 7 we introduce the assumption that one
or more universes exist. Finally in Section 8 we indicate how it might work
in practice.

2 The First Hint

Sets for a long time were only used intuitively to mean collections of objects.
Working with them as just collections of objects does not mean you don’t
need to come up with proper ways of reasoning about them. A common
construction was to collect elements together:
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{x | ϕ(x)}

The set of all objects satisfying the property ϕ. From this you get the
Russell paradox:

R = {x | x 6∈ x},

with the accompanying question: is R a member of R?

3 What is a Universe?

There are many different solutions to this problem; that is many different
Set Theories that attempt to solve this problem. Here we won’t really be
using any of them, but always have the “usual” one in mind, that is ZFC.

On wikipedia (http://en.wikipedia.org/wiki/ZermeloFraenkel set theory)
you can find all the axioms. The idea is that we do not define what a set is,
but what properties the universe of sets should satisfy.

Then a universe of sets is any collection of objects (V) with a binary
relation (∈) such that the collection satisfies the axioms. This is exactly
analogous to saying that a group is a collection of objects with a binary rule
that satisfies the axioms of group theory.

The axioms are intuitively:

• two sets are equal if they have the same elements,

• if a and b are sets, then so is {a, b},

• if a is a set, then P(a) is a set,

• if a is a set, then so is
⋃

a,

• the image of a set under a function is a set,

• things of the form x ∈ x and more general don’t happen,

• a set containing all natural numbers exists,

• every set can be wellordered,

• (Comprehension) if a is a set, then {x ∈ a | ϕ(x)} is a set.
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When using this as a foundation of mathematics, then everything is a
set. All groups, spaces, manifolds, functions are sets. This means something
exists if it is a set. Our axioms are strong enough to get representatives for
all of the objects you would want in the ordinary working of mathematics,
but it is not boundless (as witnessed by the contradiction obtained from R

in the previous section).
Also a universe is closed under any construction you can do. You can

imagine a construction as a function F : V
n → V taking some inputs and

giving as its output the result of the constrution. Showing that you can
always perform the constrution of an object y from objects x0, . . . , xn exactly
amounts to showing F has the type as indicated.

4 Existence of Universes

We cannot show a universe of sets exists, since this would imply the consis-
tency of ZFC. Since we believe we “live and work” in ZFC this would mean
ZFC proves its own consistency, which since Gödel we know is impossible.

However since we believe we “live and work” in ZFC the collection of all
objects would be a universe if only it existed:

V = {x | x = x}

We can prove it does not exist since if V is a set, then by comprehension
so would be {x ∈ V | x 6∈ x} which is the Russel set.

4.1 Ordinals and Cardinals

For a finite set {a, b, c} we can say it has three elements: three is a mathe-
matical object uniquely denoting the size of this set. We want to do this for
infinite sets too, where two sets are of the same size iff there is a bijection
between them. The smoothest way to do this seems to be through ordinals.

Ordinals are uniquely representing the size of wellordered sets (a wellorder
is a linear order in which every nonempty set has a least element). We can
define Ord = {α | α is an ordinal }. The class of ordinals Ord is itself an
ordinal in every way except that it is not a set (it is a wellordered class).

Then defining a cardinal as an initial ordinal (an ordinal that is not in
bijection with anything smaller) we get a notion of cardinal that satisfies
the requirement stated in the above paragraph: every infinite set is uniquely
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represented. We can define Card = {κ | κ is a cardinal }. Again the class
of cardinals Card is wellordered (which is the property that allows transfinite
induction on the sizes of sets).

4.2 Picture of the Universe

We define the cumulative hierarchy:

V0 = ∅

Vα+1 = P(Vα)

Vλ =
⋃

α<λ

Vα(when λ 6= α + 1)

It can be shown that V =
⋃

α∈Ord
Vα (i.e. every set is in Vα for some α).

From this it follows that Ord is not a set.

5 If Too BIG, then not a Set

The general intuitive rule is that something that is too big is not a set. Check
how the axioms deal with this.

We have seen V and Ord are not sets. The usual way to show that other
things are not sets is to show that if they were then something like V or Ord

is also a set.

5.1 One Point Topological Spaces

Consider the collection of one point topological spaces ONE. Define:

ONEx = ({x}, {{x}, ∅})

This in essence gives a map V → ONE that is a bijection, therefore so is its
inverse. If now ONE were a set, then so would be the image under the map,
but this image is V which is not a set.

5.2 Almost all other Categories

Let C be any category, and z an object in C. For many categories z has
some carier set, where the exact identity of the elements in this set do not
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really matter. Pick one such point to function as x in the story on one point
topological spaces, and a similar argument works.

This certainly works for Top and Rings.

5.3 Grothendieck Topologies

Lets use the definition of Grothendieck Topology applied to the category
Top. Such a Grothendieck Topology assigns to every object X ∈ Top a
collection of sieves J(X). J(X) is always not empty, since it always contains
the maximal sieve. Note that from any sieve S ∈ J(X) we can recover X

(the codomain of any arrow in the sieve).
Now if the topology J were a set, then so would its range R =

⋃
X∈Top{J(X)}.

From this range by the last observation in the last paragraph we can then
recover Top as a set; contradiction.

The conclusion here is that Grothendieck Topologies on such categories
never exist, but there might be classes that are Grothendieck Topologies. In
that case you however certainly cannot effectively work with the collection
of all Grothendieck Topologies.

5.4 SetsCop

If C is any category we would like to consider SetsCop

, the functor category. If
C is not a set, but only a class, we cannot do this. Any function F : C → Sets,
if it exists, then so does its domain, which does not exist. So all such F

would be classes, and thus cannot be a member of anything, in particular
not a collection of all such functors.

6 Classes don’t Exist, but are Useful

We introduced several notations so far for things that don’t exist: V, Top,
Ord, Rings. These are still very useful though, if you are careful you can use
them effectively.

Top is the class of topological spaces with continuous maps. So it really
consists of two formulas ϕO and ϕA such that ϕO is a formula true exactly of
the objects for the category, and ϕA is true exactly of the arrows of the cate-
gory. This is generally the case for classes, they are identified with formulas.
Using Top as an abbreviation makes it very easy to write: for all x ∈ Top
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something happens. This is then an abbreviation of for all x such that ϕO(x)
something happens.

What a class can not do however is be an element of something. And
you can’t take a powerclass and have something that behaves like you might
hope (the powerclass of Top should contain ONE, but ONE is not a set so
can’t be in anything).

6.1 For Categories

We now can also distinguish between different types of categories. There are
the concrete categories, those are categories that exist as sets, i.e. a set of
objects and a set of arrows. And there are class categories, categories where
either the collection of objects, or the collection of arrows do not form a set.
For the class categories you have to be more careful with your constructions,
i.e. see the collection of Grothendieck Topologies.

7 A Solution: Universes

V is where we can imagine all mathematics to take place because it satisfies
the axioms. Suppose we had a U ∈ V such that U also satisfies all the
axioms. Then U could be the universe of ordinary mathematics, and we
could be working in V to study U . To simplify the picture we can assume
U = Vκ for some κ ∈ Card. This also gives us both a nice picture and an easy
way to extend in case we need more universes. We could assume we have
U0 ∈ U1 ∈ U2 ∈ V all universes, and all different levels of the cumulative
hierarchy.

So lets assume we have a universe Vκ. Then we can, in stead of studying
Top, study those topological spaces and maps that are in Vκ

Topκ := {X ∈ Vκ | X ∈ Top}

analogously
Ringsκ := {R ∈ Vκ | R ∈ Rings}

Now because Vκ is a universe whatever constructions you do in Topκ and
Ringsκ you still remain in Vκ (any construction, see the last paragraph of
Section 3, F : Vn → V that can be shown to work in ZFC has the property
that if U is a universe, then F ↾ U : Un → U for the same reason given in
that last paragraph of Section 3).
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A common way of speaking when you have a universe Vκ is to call the
elements of Vκ small sets. This means that Topκ is the collection of small
topological spaces. Note that Topκ ⊂ Vκ, but Topκ 6∈ Vκ since Topκ is too
large (an argument analogous to the one that Top is not a set can be used
here with the fact Vκ 6∈ Vκ).

When you have multiple universes Vκ0
∈ Vκ1

you might call the elements
of Vκ0

the very small sets and the elements of Vκ1
the small sets. Note that

Vκ0
is a small set, but not a very small set. Since Vκ0

is a small set, from it
we can define Ringsκ0

the category of very small rings. This being defined
from Vκ0

the category of very small rings, is represented by a small set (but
not a very small set).

8 In Practice

Lets start by looking at ringed spaces (RSpaces), these are functors with
domain a topological space, and range in Rings.

Then we can define RSpacesκ, the category of all ringed spaces in Vκ. We
can alternatively use elements of Topκ as domain, and Ringsκ as codomain;
i.e. functors F : X → Ringsκ with X ∈ Topκ. Two very different looking
strategies.

Since Vκ is a universe, the axioms hold in it. This means that F [X] ∈ Vκ

(the image of a set is a set). Then F ⊆ X ×F [X] and X ×F [X] ∈ Vκ. Then
also P(X × F [X]) ∈ Vκ, which contains F , and therefore F ∈ Vκ.

On the other hand any ringed space in Vκ certainly is a functor F : X →
Ringsκ. So both approaches coincide after all (which certainly is a comfort).

Now if C ∈ Vκ we can also form (Vκ)
Cop

, which will be a concrete category,
the analogue of the not concrete category SetsCop

.
We can now also form the collection of Grothendieck Topologies on a

category like Topκ, since the collection of all maps in Topκ is a set (although
not a small set), and Grothendieck Topologies are subsets of this collection.
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