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Abstract. This paper lays a foundation for log smooth deformation theory. We
study the infinitesimal liftings of log smooth morphisms and show that the log smooth
deformation functor has a representable hull. This deformation theory gives, for example,
the following two types of deformations: (1) relative deformations of a certain kind of
a pair of an algebraic variety and a divisor on it, and (2) global smoothings of normal
crossing varieties. The former is a generalization of the relative deformation theory
introduced by Makio and others, and the latter coincides with the logarithmic
deformation theory introduced by Kawamata and Namikawa.

1. Introduction. In this article, we formulate and develop the theory of log smooth
deformations. Here, log smoothness (more precisely, logarithmic smoothness) is a con-
cept in log geometry which is a generalization of "usual" smoothness of morphisms
of algebraic varieties. Log geometry is a beautiful geometric theory which successfully
generalizes and unifies the scheme theory and the theory of toric varieties. This theory
was initiated by Fontaine and Illusie, based on their idea of log structures on schemes,
and further developed by Kazuya Kato [5]. Recently, the importance of log geometry
has come to be recognized by many geometers and applied to various fields of algebraic
and arithmetic geometry. One of such applications can be seen in the recent work of
Steenbrink [12]. In the present paper, we attempt to apply log geometry to extend the
usual smooth deformation theory by using the concept of log smoothness.

Log smoothness is one of the most important concepts in log geometry, and is a
log geometric generalization of usual smoothness. For example, varieties with toric
singularities or normal crossing varieties may become log smooth over certain
logarithmic points. Kazuya Kato [5] showed that any log smooth morphism is written
etale locally as the composite of a usual smooth morphism and a morphism induced by
a homomorphism of monoids which essentially determines the log structures (Theorem
4.1). On the other hand, log smoothness is described in terms of log differentials and log
derivations similarly to usual smoothness in terms of differentials and derivations.
Hence if we consider log smooth deformations by analogy with usual smooth
deformations, it is expected that the first order deformations are controlled by the sheaf
of log derivations. This intuition motivated this work and we shall see later that this
is, in fact, the case.

In the present paper, we construct log smooth deformation functor by the concept
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of infinitesimal log smooth lifting. The goal of this paper is to show that this functor

has a representable hull in the sense of Schlessinger [11], under certain conditions

(Theorem 8.7). At the end of this paper, we give two examples of our log smooth

deformation theory, which are summarized as follows:

1. Deformations with divisors (§10): Let X be a variety over a field k. Assume

that the variety X has an etale covering [Ui}isl and a divisor D such that

(a) there exists a smooth morphism hi: Ui -• V-x where Vt is an affine toric variety

over k for each is I,

(b) the divisor UiXxD on Ut is the pull-back of the union of the closure of

codimension one torus orbits of V{ by ht for each is I.

Then, there exists a log structure J o n I such that the log scheme (X, Jί) is log smooth

over k with trivial log structure. (The converse is also true in a certain excellent category

of log schemes.) In this case, a log smooth deformation in our sense is a deformation

of the piar (X, D). If X itself is smooth and D is a smooth divisor on X, our deformations

coincides with the relative deformations studied by Makio [9] and others.

2. Smoothings of normal crossing varieties (§11): If a scheme of finite type

X over a field k is, etale locally, isomorphic to an affine normal crossing variety

Spec&[z1? . . . , zj/(zx Zj), then we call X a normal crossing variety over k. If X is

d-semistable (cf. [1]), then there exists a log structure Jί on X of semistable type

(Definition 11.6) and (X,Jί) is log smooth over a standard log point (Spec fc, N)

(Theorem 11.7). Then, a log smooth deformation in our sense is nothing but a smooth-

ing of X. If the singular locus of X is connected, our deformation theory coincides with

the one introduced by Kawamata and Namikawa [6].

The organization of this paper is as follows. We recall some basic notions in log

geometry in the next section, and review the definition and basic properties of log

smoothness in Section 3. In Section 4, we study the characterization of log smoothness

by means of the theory of toric varieties according to Illusie [3] and Kato [5]. In

Section 5, we recall the definitions and basic properties of log derivations and log

differentials. In Sections 6 and 7, we give the proofs of the theorems stated in Section

4. Section 8 is devoted to the formulation of log smooth deformation theory, and is

the main section of this present paper. We prove the existence of a representable hull

of the log smooth deformation functor in Section 9. In Sections 10 and 11, we give two

examples of log smooth deformations. In Section 12, we give the proof of the theorem

stated in Section 11, which generalizes the result of Kawamata and Namikawa [6, (1.1)].

The author would like to express his thanks to Professors Kazuya Kato and

Yoshinori Namikawa for valuable suggestions and advice. The author is also very

grateful to Professors Luc Illusie and Kenji Ueno for valuable advice on this paper.

Thanks are also due to the referee for valuable comments; he pointed out some errors

in the first draft of this paper. Section 11 and Section 12 resulted from discussions with

Professors Sanpei Usui and Takeshi Usa and Dr. Taro Fujisawa; the author is very

grateful to them for discussions and encouragements.
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CONVENTION. We assume that all monoids are commutative and have neutral
elements. A homomorphism of monoids is assumed to preserve neutral elements. We
write the binary operations of all monoids multiplicatively except in the cases of N (the
monoid of non-negative integers), Z, etc., when we write them additively. All sheaves
on schemes are considered with respect to the etale topology.

2. Fine saturated log schemes. In this and subsequent sections, we use the
terminology of log geometry basically as in [5]. Let Xbe a scheme. We view the struc-
ture sheaf (9X of X as a sheaf of monoids under multiplication.

DEFINITION 2.1 (cf. [5, § 1]). Apre-log structure on Xis a homomorphism Jί -> Θx

of sheaves of monoids where M is a sheaf of monoids on X. A pre-log structure
α: Jί -> Θx is said to be a log structure on X if α induces an isomorphism

where Θx is the subsheaf of invertible elements on Θx.

Given a pre-log structure α: Jί' -> Θx, we can construct the associated log structure
α a: Jί*-*ΘX functorially by

(1) Jί*

and

αa(x, u) = u oφc)

for (x, u) G Jί*, where ^ is the submonoid defined by

Here, in general, the quotient M/P of a monoid M with respect to a submonoid P is
the coset space M/ ~ with induced monoid structure, where the equivalence relation ~
is defined by

x~yoxp=yq for some p,qeP.

Jί* has a universal mapping property: if β: Jf ^>(9X is a log structure on X and
φ: Ji-*JΓ is a homomorphism of sheaves of monoids such that oc = βoφ, then there
exists a unique lifting φ a : .Jfa-> JΛ Note that the monoid M* defined by (1) is the
push-out of the diagram

in the category of monoids, and the homomorphism αa is induced by α and the inclusion
Θx CL+ Θx. We sometimes denote the monoid Jί* by Jί®α- i^^x. Note that we have
a natural isomorphism
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(2) Jt/a

DEFINITION 2.2. By a log scheme, we mean a pair (X, Jί) with a scheme X and
a log structure J on I A morphism of log schemes / : (X, ^#) -* (Y, Jί) is a pair
/=(/>φ) where f:X->Y is a morphism of schemes and φ: f~ίJί^>Jί is a
homomorphism of sheaves of monoids such that the diagram

I i
commutes.

DEFINITION 2.3. Let α: Jί ^>ΘX and α': ^#' -> 0X be log structures on a scheme
X. These log structures are said to be equivalent if there exists an isomorphism
φ\ Jί z> M[ such that α = α'°φ, i.e., there exists an isomorphism of log schemes
(X, Jί) ^> (X, Jί') whose underlying morphism of schemes is the identity iάx. Let
β: Jί -* Θγ and β': Jί' -• Θγ be log structures on a scheme 7. Let / : (X, Jί)^(Y, Jί)
and / ' : (X, ^')->(y, Λ") be morphisms of log schemes. Then / and / ' are said to be
equivalent if there exist isomorphisms φ: Jί >̂ Jί' and φ Jί ^ Jί' such that α = αΌ<p,
β = βΌψ and the diagram

rv
commutes.

We denote the category of log schemes by LSch. For (5, J£?)eObj(LSch), we denote
the category of log schemes over (S, $£) by LSch(S ^y The following examples play
important roles in the sequel.

EXAMPLE 2.4. On any scheme X, we can define a log structure by the inclusion
(9χ CL+ (9X, called the trivial log structure. Thus, we have an inclusion functor from the
category of schemes to that of log schemes sending X to (X, (9X c_> (9X), which we often
denote simply by X.

EXAMPLE 2.5. Let A be a commutative ring. For a monoid P, we can define a
log structure canonically on the scheme Spec A[P], where A[F] denotes the monoid
ring of P over A, as the log structure associated to the natural homomorphism,
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This log structure is called the canonical log structure on Spec A[P]. Thus we obtain a
log scheme which we denote simply by (Spec ;4[P], P). A monoid homomorphism P-*Q
induces a morphism (SpecAfβ], <2)->(Spec A[P\ P) of log schemes. Thus, we have a
contra variant functor from the category of monoids to LSchSpecyl.

EXAMPLE 2.6. Let Σ be a fan in NR = Rd, N=Zd, and XΣ the toric variety
determined by the fan Σ over a commutative ring A. Then, we get an induced log
structure on the scheme XΣ by gluing the log structures associated to the homomorphism

Mnσ v —

for each cone σ in I", where M=Homz(JV, Z). Thus, the toric variety XΣ is naturally
viewed as a log scheme over Spec ,4, which we denote by (XΣ, Σ).

Next, we define important subcategories of LSch.

DEFINITION 2.7. A monoid M is said to be finitely generated if there exists a
surjective homomorphism Nn —• M for some n. A monoid M is said to be integral if the
natural homomorphism M-+Mgp is injective, where M g p denotes the Grothendieck
group associated with M. If M is finitely generated and integral, it is said to bεfine.

DEFINITION 2.8. Let (X, ^)Gθbj(LSch). A chart of Jί is a homomorphism P->
Jί from the constant sheaf of a fine monoid P which induces an isomorphism from
the associated log structure P a to Jί.

DEFINITION 2.9. Let / : (X, Ji)^{Y, Jί) be a morphism in LSch. A chart of /
is a triple (P -> Jί, Q -• Jί, β -> P), where P -> ΛT and Q -> ̂  are charts of Jί and J^,
respectively, and Q -• P is a homomorphism for which the diagram

β — P

1 i
is commutative.

DEFINITION 2.10 (cf. [5, §2]). A log structure J - > ί P x o n a scheme X is said to
be fine if Ji has etale locally a chart P-^Jt.K log scheme (X, Jί) with a fine log
structure Jί ->ΘX is called â zm* log scheme.

We denote the category of fine log schemes by LSchf. Similarly, we denote the
category of fine log schemes over (S, if)eObj(LSchf) by LSch[s ^ }. The category LSchf

(resp. LSch[s ^}) is a full subcategory of LSch (resp. LSch(S>j5f)). Both LSch and LSchf

have fiber products (cf. [5, (1.6), (2.8)]). But the inclusion functor LSchf c^LSch does
not preserve fiber products (cf. Lemma 3.4). The inclusion functor LSchf c^LSch has
a right adjoint LSch->LSchf (cf. [5, (2.7)]). Then, the fiber product of a diagram
(X, Jί) -»(Z, 0>)«- (Y, Jί) in LSchf is the image of that in LSch by this adjoint functor.
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Note that the underlying scheme of the fiber product of (X, Jί)-*(Z, &)<-(Y, Jί) in

LSch is Xxz Y> but this is not always the case in LSchf.

Next, we introduce a more excellent subcategory of LSch.

DEFINITION 2.11. Let M be a monoid and P a submonoid of M. The monoid P

is said to be saturated in M if xeM and xneP for some positive integer n imply xeP.

An integral monoid N is said to be saturated if TV is saturated in Ngp.

EXAMPLE 2.12. Put M=7Vand /> = /• M for an integer /> 1. Then P is saturated

but is not saturated in M.

DEFINITION 2.13. A fine log scheme (X, ΛJ0eObj(LSchf) is said to be saturatedif

the log structure Jί is a sheaf of saturated monoids.

We denote the category of fine saturated log schemes by LSchfs. Similarly, we

denote the category of fine saturated log schemes over (S, J^)eObj(LSch fs) by LSchJl^.

The category LSchfs (resp. LSch[|>J?)) is a full subcategory of LSchf (resp. LSch[s ̂ } ) .

The following lemma is an easy consequence of [5, Lemma (2.10)].

LEMMA 2.14. Let f:(X,J()-+(Y, Jί) be a morphism in LSchfs, andQ-+Jf a chart

of Jί, where Q is a fine saturated monoid. Then there exists έtale locally a chart

(P -> Jί, Q -• Jf, Q^P) of f extending Q-+Jf such that the monoid P is also fine and

saturated.

LEMMA 2.15. The inclusion functor LSchfs ci^LSch f has a right adjoint.

PROOF. Let M be an integral monoid. Define

Msat = {xeMgp\xneM for some positive integer n) .

Then M s a t is an integral saturated monoid. For any integral saturated monoid N and

homomorphism M->N, there exists a unique lifting M s a t -*> N. In this sense, M s a t is the

universal saturated monoid associated with M. Let (X, Jί) be a fine log scheme. Then

we have etale locally a chart, P-+Jί. This cahrt defines a morphism A r->SpecZ[i )]

etale locally. Let X'= XxSpQcZ{PλSv>ecZ\_P™i']. Then X'-+ SpecZ[i> s a t] induces a log

structure JC by the associated log structure of Psat -* Z[P*ai~\ -• Θx>. It is easy to show

that we can glue those log schemes (X\ Jί') and get a fine saturated log scheme. This

procedure defines a functor LSchf -> LSchfs. It is easy to see that this functor is the

right adjoint of the inclusion functor LSchfs c_>LSchf. Π

COROLLARY 2.16. LSchfs has fiber products. More precisely, the fiber product of

morphisms (X, Jί)^>{Z, 0>)<r-(Y, Jί) in LSchfs is the image of that in LSchf by the right

adjoint functor of LSchfs c_> LSchf.

3. Log smooth morphisms. In this section, we review the definition and basic

properties of log smoothness (cf. [5]).
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DEFINITION 3.1. Let / : X-+ Fbe a morphism of schemes, and Jί a log structure

on Y. Then the pull-back of Jί, denoted by f*Jr, is the log structure on X associated

with the pre-log structure f~1Jr^f~1Oγ^(9x. A morphism of log schemes

/ : (X, Jί)^(Y, Jί) is said to be strict if the induced homomorphism f*Jί-*Jί is

an isomorphism. A morphism of log schemes / : (X, Jί)-±(Y, Jί) is said to be an exact

closed immersion if it is strict and/ : X-> Y is a closed immersion in the usual sense.

Exact closed immersions are stable under base change in LSchf (cf. [5, (4.6)]).

LEMMA 3.2. Let α: Jί' -+ΘX and ct'': Jί' ->ΘX be fine log structures on a scheme

X with a homomorphism φ: Ji-^Ji' of monoids such that α = αΌ<p. Then, φ is an

isomorphism if and only if(φmoάΘx): Jί\(9x -+ Jί' \(9X is an isomorphism.

The proof is straightforward.

LEMMA 3.3. Let / : (X, Jί)^(X, Jr) be a morphism of fine log schemes. Then, we

have a natural isomorphism

In particular, f is strict if and only if the induced morphism is an isomorphism

PROOF. The first part is easy to see. As for the second part, apply (2) and Lemma

3.2. •

LEMMA 3.4 (cf. [4,(1.7)]). Let

(3) (X,Jί)^(Z,&)^(Y,^)

be morphίsms in LSchfs. If {Y, Jί)^(Z, 0>) is strict, then the fiber product of (3) in LSchfs

is isomorphic to that in LSch. In particular, the underlying scheme of the fiber product

of (3) in LSchfs is isomorphic to XxzY.

PROOF. We may work etale locally. Let T 5 ^ ^ be a chart of <P, where P is a

fine saturated monoid. Since (Y, Jί)^(Z, 0>) is strict, P-^0>->Jf is a chart of Jί by

Lemmas 3.2 and 3.3, and (2). Take a chart

P —> M

i J
of (X, Jί) -*(Z, 0>) extending P - > ^ . Set W=XxzY. There exists an induced

homomorphism M->ΘW. Define a log structure on W by this homomorphism. Then

this log scheme {W, M^ΘW) is the fiber product of (3) in LSch (cf. [5, (1.6)]). Since

the associated log structure Jίw of M^ΘW is fine and saturated, (W, Jίw) is indeed
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the fiber product of (3) in LSchfs. D

DEFINITION 3.5. The exact closed immersion t: (T\ £P)-+(T9 !£) is said to be a

thickening of order <n, if J = Ker(Θτ^>ΘΓ) is a nilpotent ideal such that Jn + 1=0.

LEMMA 3.6 (cf. [3]). Let (Γ, if) and(T\ <£') be fine log schemes. If(t9 θ): ( Γ , <£') ->

(Γ, if) w tf thickening of order <n, then there exists a commutative diagram

i I //• ,— f—\ c/? apt . i
ψ 1 T t / v >• I cZ > oίs ψ 1

II n n

0 g p

with exact rows and </ = Ker(0T—•0 : r)? such that the square on the right hand side is

Cartesian.

The proof is straightforward. Note that the multiplicative monoid \+J> can be

identified with the additive monoid «/ by 1 -\-x\-^x if e / 2 = 0.

DEFINITION 3.7 (cf. [5, (3.3)]). Let / : {X, Jl)-+(Y, Jί) be a morphism in LSchf.

/ is said to be log smooth if the following conditions are satisfied:

1. The underlying morphism / of schemes is locally of finite presentation.

2. For any commutative diagram

ίT" CP'\ S (V MΛ

Ί I'
(T,S£) —> (Y,Jί)

in LSchf, where / is a thickening of order one, there exists etable locally a

morphism g: (Γ, S£)^>(X, Jί) such that s'r = g°t and s = f°g.

The proofs of the following two propositions are straightforward and are left to

the reader.

PROPOSITION 3.8. Let / : (X, Jί)->(Y, Jί) be a morphism in LSchf. If f is strict,

then f is log smooth if and only if the underlying morphism f of schemes is smooth in

the usual sense.

PROPOSITION 3.9. For (S, if)eObj(LSch f) and (X, Jί\ (Y, J ^

let f: (X, Jί)-*(Y, Jί) be a morphism in LSchfs ^y Assume that f is log smooth. If

(S\ <£') is a log scheme over (S, <£), then the induced morphism

is also log smooth.
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We conclude this section by introducing integral morphisms of fine log schemes.

DEFINITION 3.10 (cf. [5, (4.1), (4.3)]. Let / : (X,Jί)^(Y,Jί) be a morphism

in LSchf. We say / to be integral if for any xeX, setting Q = f~\Jf\Qγ)^ and P =

(J^/0χ)x, the ring homomorphism Z\Q\-*Z\F\ induced by / is flat, where x de-

notes the separable closure of x.

PROPOSITION 3.11 (cf. [5, (4.4)]). Let f:(X,Jί)^( Y, Jί) be a morphism in LSchf.

Then, f is integral in each of the following cases:

1. f is strict.

2. For any ysY, the monoid (J^/Θγ)y is generated by one element, where y de-

notes the separable closure of y.

4. Toroidal characterization of log smoothness. The following theorem is due to

Kazuya Kato [5], and we prove it in §6 for the reader's convenience.

THEOREM 4.1 ([5, (3.5), (4.5)]). Let f: {X, Jί)^(Y, Jί) be a morphism in LSchf

(resp. LSchfs) and Q—> Jί a chart of Jί (resp. with Q saturated). Then the following

conditions are equivalent:

1. f is log smooth.

2. There existsetale locally a chart (P-> Jί, Q^> Jr, Q-+P) of f extending Q —• Jί

(resp. with P saturated), such that

(a) Ker(β g p -> P g p ) and the torsion part of Coker(β g p -* iPgp) are finite groups

of orders invertible on X,

(b) X-+ Y x S p e c Z[Q] Spec Z\P~\ is smooth (in the usual sense).

Moreover, if f is a log smooth and integral morphism in LSchf (resp. LSchfs) and Q-+ Jί

is a chart of Jί (resp. with Q saturated), then there exists a chart (P -• Jt, Q -* Jί, Q^>P)

of fas above such that the ring homomorphism Z[_Q~\->Z[P] induced by Q^P is flat.

REMARK 4.2. The proof of Theorem 4.1 in §6 shows that we can require in the

condition (a) that Qgp->Pgp is injective without changing the conclusion. Moreover,

we can replace the smoothness in the condition (b) by the etaleness without changing

the conclusion (cf. [5, (3.6)]).

COROLLARY 4.3 (cf. [5, (4.5)]). Letf: (X, Ji)-+(Y, Jί) be a log smooth and inte-

gral morphism in LSchf. Then the underlying morphism X^Y of schemes is flat.

We give some important examples of log smooth morphisms in the following. Let

A: be a field.

DEFINITION 4.4. A log structure on Spec k is called a log structure of a logarithmic

point if it is equivalent (cf. Definition 2.3) to the associated log structure of α: Q-+k,

where Q is a monoid having no invertible element other than 1 and α is a homomorphism

defined by
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1 if x=l,

0 otherwise.

Note that this log structure is equivalent to Q © kx -• k. We denote the log scheme

obtained in this way by (Spec k, Q). The log scheme (Spec k, Q) is called a logarithmic

point. Especially, if Q = N, the logarithmic point (Spec k, N) is said to be the standard

point.

If k is algebraically closed, any log structure on Spec k is equivalent to the log

structure of a logarithmic point (cf. [3] and [5, (2.5), (2)]). Note that if we set β = {l},

then the log structure of the logarithmic point induced by Q is the trivial log structure

(cf. Example 2.4).

EXAMPLE 4.5. Let P be a submonoid of a group M=Zd such that Pgp = M and

that P is saturated. Let Q be a submonoid of P, which is saturated but is not necessarily

saturated in P. We assume the following:

1. The monoid Q has no invertible element other than 1.

2. The order of the torsion part of M/Qgp is invertible in k.

Let R = Z\\jN~\ where TV is the order of the torsion part of M/Qgp. The latter assumption

implies by Theorem 4.1 that (Spec/?[/>], P)->(SpecΛ[β], Q) (see Example 2.5) is log

smooth. Define Spec k -> Spec R[_Q] by α: Q -* k as in Definition 4.4. Let X be a scheme

over k which is smooth over SpecfcXspe^QjSpeci^P]. Then we have a diagram

Spec k x S p e c R[Q] Spec Λ[P] — Spec RIP]

Spec A: — > S p e c Λ [ β ] .

Define a log structure </# on X by the pull-back of the canonical log structure on

Spec/?[/*]. Then we have a morphism

of fine saturated log schemes. This morphism / is log smooth by Proposition 3.8 and

Proposition 3.9. We denote this log scheme (X, Jί) simply by (X, P).

EXAMPLE 4.6. (Toric varieties.) In this and the following examples, we use the

notation appearing in Example 4.5. Let σ be a cone in NR = Rd and σ v its dual cone in

MR = Rd. Set P = Mnσw and β = {0}cP. Then, SpecfcxS p e c Z [ Q ]SpecZ[/>] is k-

isomorphic to Spec k[P~] which is nothing but an affine toric variety. Let X-> Spec £[/*]

be a smooth morphism. Then (X, P)-> Spec A: is log smooth. Note that this morphism

is integral by Proposition 3.11.
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EXAMPLE 4.7. (Variety with normal crossings.) Let σ be the cone in MR = Rd

generated by eί9..., ed, where ^ = ( 0 , . . . , 0, 1, 0 , . . . , 0) (1 at the i-th entry), 1 <i<d.

Let τ be the subcone generated by axe^-\- +adeά with positive integers a-} for

7 = 1 , . . . , d. We assume that GCΌ(au ...,ad) ( = N) is invertible in k. Set R = Z[MN\

Then, by setting P = Mnσ and Q = Mnτ, we see that Spec A: x S p e c K [ Q ] Spec/?[/*] is

A -isomorphic to Specfc[z1 ?..., ̂ / ( z " 1 zd

d) and / is induced by

Nd —.fc[z 1 , . . . ,z j/(zy z5-)

•1 I
TV — > f c ,

where the morphism in the first row is defined by efι—>zi5 (1 <i<d), and φ is defined by

φ(\) = a1e1 + • +tfded. Let X-^SpecfclX,..., zd~\l(z\ι zjd) be a smooth morphism.

Then, (X, Nd) -• (Spec A:, TV) is log smooth. Note that this morphism is integral by

Proposition 3.11.

The following theorem is an application of Theorem 4.1 and will be proved in §7.

THEOREM 4.8. Let X be an algebraic scheme over a field k, and Jί -^>ΘX a fine

saturated log structure on X. Then the log scheme (X, M) is log smooth over Spec k with

trivial log structure if and only if there exist an open etale covering °U = {Uι}ieI of X and

a divisor D on X such that

1. there exists a smooth morphism ht: ί/f -> Vi where Vt is an affine torίc variety

over k for each is I,

2. the divisor UiXxD on JJi is the pull-back of the union of the closure of codimension

one torus orbits of Vi by h(for each iel,

3. the log structure Jί -*ΘX is equivalent to the log structure (^χ^j^χ\D<=-^^x

where j : X\D cz-^X is the inclusion.

COROLLARY 4.9. Let X be a smooth algebraic variety over afield k, and Jt -> Θx

a fine saturated log structure on X. Then, the log scheme {X, Ji) is log smooth over

Spec k with trivial log structure if and only if there exists a reduced normal crossing

divisor D on X such that the log structure Jί -»Gx is equivalent to the log structure

>(9χ where j : X\DCL+X is the inclusion.

5. Log differentials and log derivations. In this section, we are going to discuss

the log differentials and log derivations, which are closely related with log smoothness,

and play important roles in the sequel. To begin with, let us introduce some abbreviated

notation in order to avoid complications. Let (X, Ji) be a log scheme. If we like to

omit writing the log structure Jί, we write this log scheme by X^ to distinguish it from

the underlying scheme X.

DEFINITION 5.1 (cf. [5], in different notation). Let X* = (X, Jt) and F f = ( F , Jί)
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be fine log schemes, and (/, φ)\ X*-*Y* a morphism, where φ\ f~ιJf -*M is a

homomorphism of sheaves of monoids.

1. Let g be an ^-module. τ h e s h e a f o f log derivations Q)e^(X\ S) of X* to g

over 7 1 is the sheaf of germs of pairs (D, Dlog) with De@Mγ(X, S) and

D log: Jt -• g such that the following conditions are satisfied:

(a) D \og{ab) = D log(α) + D log(ί>), for a.beJί,

(b) oc(a)D log(α) = D{a{a)\ for aeJί,

(c) Z>log(φ(c)) = 0 for csf-^Jί.

2. The sheaf of log differentials of A^ over Y^ is the ^x-module defined by

where JΓ is the tf^-submodule generated by

(dφ), 0) - (0, φ) ® a) and (0, 1

for all aeJί, bef~ιJf.

These are coherent 0x-modules if Γ is locally Noetherian and X locally of finite

type over Y (cf. [3]).

PROPOSITION 5.2 (cf. [5, §1]). Given a Cartesian diagram of fine log schemes

i i
we have an isomorphism

The proofs of the following three propositions are found in [5, §3].

PROPOSITION 5.3. Let X\ Y\ /, and S be the same as in Definition 5.1. Then there

is a natural isomorphism

by u\-^>(uod,uod log), where d and d log are defined by

rf:0x — β j

and

dlog: Jί—>Θx<g

f Q

PROPOSITION 5.4. Let X^ — • Y^ —+ Z ! be morphisms of fine log schemes.

1. There exists an exact sequence
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ώώyt/zt * *&xyzt ψ "χ t/yt v/ .

2. If f is log smooth, then

is exact.

3. If go f is log smooth and (4) is exact and splits locally, then f is log smooth.

PROPOSITION 5.5. If f\X*-> Y* is log smooth, then Ωxyγt is a locally free Θx-

module of finite rank.

EXAMPLE 5.6 (cf. [10, Chap. 3, §(3.1)]). Let XΣ be a toric variety over a field k

determined by a fan Σ on NR with N= Zd. Consider the log scheme (XΣ, Σ) (cf. Example

2.6) over Spec A:. Then we have isomorphisms of 0x-modules

X\ (9X)^(9X®ZN and ΩxVk^+ ΘX®ZM,

where M=HomzC/V, Z).

EXAMPLE 5.7. For j r=Specfc[z l 9 . . . , z j / ^ z,), let / : {X, ^#)->(Spec#, Λ -̂̂

k) be the log smooth morphism defined in Example 4.7. Then QJM^X^, Θx) is a free

(Px-module generated by

-,..., zt dzι + 1 ' ' dzn

with a relation

-hz, = 0 .
dzx

Then sheaf Ωxy# is a free (^-module generated by the logarithmic differentials

dz1 dzι, . . . , , d z ι + 1 , . . . , d z n

with a relation

dzx
zi

- = 0.

In the complex analytic case, the sheaf Ωxyki is nothing but the sheaf of relative logarithmic

differentials introduced, for example, in [1, §3] and [6, §2].

6. The proof of Theorem 4.1. In this section, we give a proof of Theorem 4.1

due to Kazuya Kato [5]. Before proving the general case, we prove the following

proposition.
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PROPOSITION 6.1. Let A be a commutative ring andh: Q^P a homomorphism of

fine monoids. The homomorphism h induces a morphism of log schemes

], Q).

We set K=Ker(hgp: QW->Pgp) and C=Coker(/*8P: <2 g p->P g p), and denote the torsion

part of C by C t o r. If both K and C t o r are finite groups of order invertible in A, then f is

log smooth.

PROOF. Suppose we have a commutative diagram

(Γ',JSf') ^ t f = (Spec A\_P\P)

], β)
Ί

s

in LSchf, where the morphism / is a thickening of order one. Since we may work etale

locally, we may assume that T is affine. Set J = KQT(ΘT^ΘΓ). Since the morphism t

is a thickening of order one, by Lemma 3.6, we have the following commutative diagram

with exact rows:

1

Note that the square on the right hand side is Cartesian.

First, consider the following commutative diagram with exact rows:

1—> K —> β g p - ^ P g p — > C — > \

\u \υ

The multiplicative monoid 1 +«/ is isomorphic to the additive monoid ./ by

since J2 = 0. If the order of K is invertible in A, then we have w= 1, and hence there

exists a morphism a': R-+ <£gp with i? = Image(/*gp: Qgp-• P g p ) such that aΌhgp = v and
(ί*)*Poβ ' = H\

Next, we consider the following commutative diagram with exact rows:

1 —> R - U P g p —>C—»• 1

o —• j — > <£gp —
(, )g
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We show that there exists a homomorphism a" \ />8P->J^8P such that a"°t = a' and
(t*)gpoa" = w. The obstruction for the existence of a" lies in Ext^C, J>). In general, if
a positive integer n is invertible in A then we have Ext1(Z/nZ, J) = 0. Combining this
with Ext*(Z, </) = 0, we have Ext^C, </) = () since the order of the torsion part of C is
invertible in A. Hence a homomorphism a" exists. Since the diagram

JS? - ^ - 3"

n n

is Cartesian, there exists a homomorphism a: P->J? such that ί*o<z = (s')* and a°h = s*.
Using this α, we can construct a morphism of log schemes Q\(J,S£)-* Xλ = (Spec A{P\ P)
such that got = s' and s°g = f. •

Now, let us prove Theorem 4.1. First, we prove the implication 2=>1. Let
R = Z[l/(N1'N2j] where Λ^ is the order of Ker(Q8P->Pgp) and N2 the order of the
torsion part of Coker(Qgp->JP

gp). By the assumption (a), we have

Y x spec z[Q] Spec Z{_F] - ^ Y x spec R[Q] Spec i?[P] .

Since X-+ ^xSpecR[Q]SpecK[P] is smooth by (b), / is log smooth by Propositions 3.8,
3.9 and 6.1.

Next, let us prove the converse. Assume that the morphism / is log smooth. Then,
the sheaf Ω t̂/yt is a locally free 0x-module of finite rank (cf. Proposition 5.5). Take
any point xeX. We denote by x the separable closure of x.

Step 1. Consider the morphism of (^-modules

1 (x) d log: Θx ®zJί^ —> Ωit/yt,

which is surjective by the definition of Ωχt/γt. Then we can take elements tu . . . , treJί^
in such a way that the system {dlogί j^^,. is an 0X^-base of Ω t̂/yt,*• Consider the
homomorphism ψ : Nr-+ Jί^ defined by

Nr3{nu . . . , nr) K^ tγ - ί

Combining this φ with the homomorphism Q-*/'1^)^-*^, we have a homo-
morphism φ : H=Nr

Step 2. Let A:(jc) denote the residue field at x. We have a homomorphism

(5) k{x) ®z Z
r —* Kx) ®z Coker(/" \

by k(x)®z\\ι%v\ k(x)®zZ
r'^k{x)®zJiψ and the canonical projections Mψ

\Jrw/Θϊ)Ξ^J(£PIΘΪj). We claim that this morphism (5) is surjec-
tive. Indeed, this morphism coincides with the composite morphism

k(x)®zZ
r —• k(x)®cx,x-Ω1

xyγ^-^k(x)®zCoker(/" i(Λ
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where the first morphism is induced by d l o g ° ^ and the second one by the canonical

projection, and these morphisms are clearly surjective. Hence the morphism (5) is

surjective. On the other hand, the homomorphism β g p -> f~ι(^IOγ)χ is surjective

since Q -• Jί is a chart of Jί. Hence, the homomorphism

k(x) ® z β g p — k(x) ®zΓ

is surjective, and then, the homomorphism

1 ®z φ8P k(x) ®z HgP —> k(x)

is surjective. This shows that the cokernel C = Coker(φ g p: Hgp->J(*p/ΘχtX-) is annihilat-

ed by an integer N invertible in Θx *.

Step 3. Take elements aί9..., aάtJ(ψ which generate C. Then we can write

a? = uiφ(bi) for UIGΘX ^ and ^ G / / g p , for /= 1,. . . , d. Since Θx^ is TV-divisible, we can

write w—i f f o r t ^ e f i ^ , for z = l , . . . , d, and hence we may suppose a? = φ{bi), replacing

at by ajvi for /= 1,. . . , d. Let G be the push-out of the diagram

//gp«— z d — • Zd ,

where Z d -• / ί g p is defined by e{ \-+ bh and Zd -+ Zd is defined by έ?f h-> J\fef for / = 1, . . . , ί/.

Then φ^'.H^^Mψ and Zά-+J(f, defined by ^ h - ^ for ι'=l,...,rf, induce a

homomorphism

which maps G surjectively onto <Mψ\®x^. Then P : = φ~ί(J/5^) defines a chart of Λf on

some neighborhood of x (cf. [5, Lemma 2.10]). If Jί is saturated, then so is P. There

exists an induced map Q^P which defines a chart of / in some neighborhood of x.

Since Hgp -• P g p is injective, so is β g p -• ,Pg p. The cokernel Coker(//gp -» Pgp) is annihilated

by N, hence Coker(β g p -^P g p ) t o r is finite and annihilated by N.

Step 4. Set JΓ = Y x S p e c Z [ Q ] Spec Z[P] and gf: X -> X'. We need to show that the

morphism g is smooth in the usual sense. Since X^ has the log structure induced by g

from Λr't = (Ar/, P), it suffices to show that g is log smooth (cf. Proposition 3.8). Since

k(x)®z(P*p/Qgp) -^ k(x)®zZ
d ^ k{x)®Θχ5_ΩxηYϊϊ and Ω^ t /y t is locally free, we have

Ω t̂/yt -^ ^Λ:®z(^g P/βg p) i n some neighborhood of x. On the other hand, by direct

calculation, one sees that Ωx,yγ^Θx, ®Z[P]^z[pyz[Q] ^ ®xr ®z(Pgp/Qgp)- Hence we have

0*^i't/yt -^ βjrt/yt. This implies that g is log smooth by Proposition 5.4 (in fact, g is log

etale (cf. [5])).

Step 5. Finally, we need to show that the ring homomorphism Z\Q\-+Z\F\

induced by h: Q -• P is flat in case / is integral. By [5, (4.1)], the ring homomorphism

Z[Q]-^Z[P] is flat if and only if for any al9 a2eQ, bl9 b2eP with h(aί)b1=h{a2)b2,

there exist a3, a4eQ and beP such that b1=h(a3)b, b2 = h(a4)b, and a1a3 = a2a4. Set

M=(Jί/Θx)ϊ and A ^ ^ / ^ ) ^ . Let A: 7V->M be the homomorphism induced by /.
Then, we have a commutative diagram
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Since / is integral, the ring homomorphism Z[N] -> Z[M~\ induced by h is flat, and
hence K: N->M satisfies the above condition. Recall that the morphism φ maps P
surjectively onto M, and P/R >̂ M by φ where R is a subgroup in P. Similarly, φ maps
Q surjectively onto N, and Q/S ^ N by φ where S is a submonoid in g, since Q^Jί
is a chart of Jί. For any α1? a2eQ,b1,b2eP with h(a1)bi=h(a2)b2, there exist a^a^eN
and SeM such that φ(61) = A(̂ 3)ft, φ(b2) = h(θ4)b, and φ{a1)a3 = φ(a2)aAr. Take α3, α 4 € β
and 6'eP such that φ(a3) = a3, ^(«4) = 3 ,̂ and φ(bf) = b. We may assume ^^3 = ̂ 2^4.
Then we have b1=h(a3)b'c1, b2 = h(aA)b'c2 for some cuc2eR. Since h(a1)bί=h(a2)b2,
a1a3 = a2a4, and P is fine, we have cx = c2- Then, by setting b = b'c1=b'c2, we have the
desired result. •

7. The proof of Theorem 4.8. In this section, we give a proof of Theorem 4.8.
If F=Spec/r[P] is an affine toric variety, then it is easy to see that the log structure
associated to P-*k[F] is equivalent to the log structure ^ n j / ^ ^ c ^ ^ where D
is the union of the closure of codimension one torus orbits of V and j : V\D CL_> V is
the inclusion. Hence, the "if" part of Theorem 4.8 is easy to see. Let us prove the
converse. Let (X, Jt) be as in the assumption of Theorem 4.8 and / : (X, J()-> Spec k
the structure morphism. The key lemma is the following.

LEMMA 7.1. We can take etale locally a chart P^Jί of Jί such that
1. the chart (P-+Jt, l-+kx, 1-+P) of f satisfies the conditions (a) and (b) in

Theorem 4.1,
2. P is a fine saturated monoid, and has no torsion element.

Here, by a torsion element, we mean an element xφ\ such that xn=\ for some positive
integer n.

First, we are going to show that the theorem follows from the above lemma. Since
the monoid P has no torsion element, P is the saturated submonoid of a finitely generated
free abelian group Pgp. Hence, X is etale locally smooth over an affine toric variety,
and the log structure Jί on X is etale locally equivalent to the pull-back of the log
structure induced by the union of the closure of codimension one torus orbits. Since
these log structures glue to the log structure M on X, the pull-back of the union of the
closure of codimension one torus orbits glue to a divisor on X. In fact, this divisor is
the complement of the largest open subset U such that Jί\v\& trivial, with the reduced
scheme structure. Hence our assertion is proved.

Now, we are going to prove Lemma 7.1. We may work etale locally. Take a chart
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(P^Jί, 1 -> kx, 1 -• P) of / as in Theorem 4.1. We may assume that P is saturated. Then

Ptoτ: = {xGP\xn=l for some n}

is a subgroup in P. Take a decomposition ,Pg p = Gf © G tor of the finitely generated abelian

goup Pgp, where Gf (resp. Gtor) is a free (resp. torsion) subgroup of Pgp. Then we have

pioτ = PnGioτ = G tor since P is saturated. Define a submonoid by P f = PnGf.

CLAIM 1. P = P{®Ptoτ.

PROOF. Take xeP. Decompose x=yz in Pgp so that j e G f and zeGtor = P t o r . Since

_y" = (xz~1)11 = xn e P for n large, we have jμ e P. Hence y e P{. Π

CLAIM 2. ΓΛe homomorphism α f : P{c=-+P ^+ΘX defines a log structure equivalent

to Jί.

PROOF. If x6P t0Γ, then α(x)e0j since α(x)"=l for n large. Hence α(Ptor)c:ί?J,

which implies that the associated log structure of Pf is equivalent to that of P. •

Hence, the morphism / is equivalent to the morphism induced by the diagram

A ί
1 — * k .

λ

Then we have to check the conditions (a) and (b) in Theorem 4.1. The condition (a) is

easy to verify. Let us check the condition (b). We need to show that the morphism

X—

induced by X^> Spec Z[P]-> Spec Z[P f ] is smooth.

CLAIM 3. The morphism

(6) Spec k[F] —> Spec jfc[/>f ]

induced by P{CL+P is έtale.

PROOF. Since P = Pf@Ptoτ, we have k[F]=k[Pi~\®kk\_Pior~\. Since every element

in P t o r is a root of unity, and since the order of P t o r is invertible in k, the morphism

k a.* k\_Pi0T~] is a finite separable extension of the field k. This shows that the morphism

(6) is etale. •

Now we have proved Lemma 7.1, and hence, Theorem 4.8.

8. Formulation of log smooth deformations. From now on, we fix the following
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notation. Let A: be a filed and Q a fine saturated monoid having no invertible element
other than 1. Then we have a logarithmic point (cf. Definition 4.4) k f = (Spec k, Q). Let
(/, φ): X*=(X, Jί)^>tf = (Spec k, Q) be a log smooth morphism in LSchfs. We often
denote this morphism of log schemes simply by /.

Let A be a complete Noetherian local ring with residue field k. For example, A is
k or the ring of Witt vectors with entries in k when k is perfect. We denote by A[Q\
the completion of the monoid ring A[Q] along the maximal ideal μ + Λ[β\{l}] where
μ denotes the maximal ideal of A. The completion A\Q\ is a complete local Λ-algebra
and is Noetherian since Q is finitely generated. If the monoid Q is isomorphic to TV,
then the ring A[Q\ is isomorphic to A\t\ as a local Λ-algebra. Let ^ I Q ] be the category
of Artinian local A\Q\ -algebras with residue field k, and ^ i [ Q ] the category of pro-objects
of %>Λm (cf. [11]). For ^eObj(^ [ Q ] ]), we define a log structure on the scheme Spec ,4
by the log structure

associated to the homomorphism Q^AfQj-^A. We denote by (Spec A, Q) the log
scheme obtained in this way.

DEFINITION 8.1. For A e Obj (%Λm\ a log smooth lifting off: (X, Jί) -> (Spec k, Q)
on A is a log smooth morphism/: (X, Jί) -• (Spec A, Q) in LSchfs together with a
Cartesian diagram

{X, Jί) —• (X, M)

Λ V
(Spec/c,β) —>(Spec>l,Q)

in LSchfs. Two log smooth liftings are said to be isomorphic if they are isomorphic in

Note that (Speck fc, Q) -• (Spec A, Q) is an exact closed immersion, and hence the
above diagram is Cartesian in LSchfs if and only if so is it in LSch (cf. Lemma 3.4). In
particular, the underlying morphisms of log smooth liftings are (not necessarily flat)
liftings in the usual sense. Moreover, since exact closed immersions are stable under base
change, (X, Jί)^>(X, Jί) is also an exact closed immersion. If either Q = {1} or Q = N,
the underlying morphisms of any log smooth liftings of / are flat since these morphisms
of log schemes are integral (cf. Proposition 3.11). Hence in this case the underlying
morphisms of log smooth liftings of / are flat liftings of/.

REMARK 8.2. In Definition 8.1, we assume that any log smooth lifting is log
smooth. This assumption is crucial since any lifting of a log smooth morphism is not
necessarily log smooth. Here is an example due to the referee. Set Q = N and
Λr=Specfc[x]. The morphism X^> Speck k of schemes induces a log structure J o n I
such that the morphism / : (X, Jί) -> (Spec k9 N) is strict, and hence log smooth (cf.
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Proposition 3.8). The strict morphism

/ : (Spec Jt[x, ε]/(xε, ε2), Jί) —> (Spec &[ε]/(ε2), N)

induced by the morphism Speck k[x, ε]/(xε, ε2)-> Spec fc[ε]/(ε2) of schemes gives a
lifting of/ to (Speck /c[ε]/(ε2), N), where iV->fc[ε]/(ε2) is defined by lι-*ε. Then/is
not log smooth since/is strict but the underlying morphism Spek/c[x, ε]/(xε, ε2)-»
Speck &[ε]/(ε2) of schemes is not flat (cf. Proposition 3.11, Corollary 4.3).

Take a local chart (P^Jί, Q-*Q®kx, β->P) of / extending the given Q->k
as in Theorem 4.1 such that Q g p ->P g p is injective and the induced morphism
X-+ Spec k x spec z[Q] Spec Z[P] is etale (cf. Remark 4.2). Then / factors through
Spec k x S p e c Z[Q] Spec Z\F\ by the etale morphism Jf-> Spec A; xS p e c Z [ Q ] Spec Z[P] and
the natural projection etale locally. For AeOh\^€AlQ^, an etale lifting

(7) X —> Spec A x Spec z[Q] Spec Z[P]

of X-> Spec A:xSpecZ[Q] Spec Z[P], with the naturally induced log structure, gives a
local log smooth lifting of/. Conversely, suppose / : (X, J4)^> (Spec A, Q) is a local log
smooth lifting of / on A.

LEMMA 8.3. The local chart (P-+Jΐ,Q->Q®kx,Q^>P) off lifts to a local chart

PROOF. The proof is done by induction on the length of A. Take
with a surjective morphism A-±A such that /=Ker(^->^ /)^0 and /2 = 0. Let
/ ' : (X\ ,#')-» (Spec Λ', Q) be a pull-back of/ Then / ' is a log smooth lifting of / to
A'. By induction, we have a lifted local chart (P -> «#, β -> Q © (Λ')x, 0 -> P) of /'. The
morphism (Xr, Jί')-^(X, Jί) is a thickening of order one. Let R = Z\\\N\ where N is
the order of the torsion part of Pgp/Qgp. Consider the commutative diagram

(X',J')—> (Spec/?[/>],/>)

i I
(i", Jί) —> (SρecΛ[β], Q) .

Since (Spec Λ[P], P)-^ (Spec £[Q], β) is log smooth, (X, ^)->(SpecK[β], β) factors
through (SpecΛ[P],P) by a morphism g: (X, Jί) -• (SpecK[P], P). This morphism f̂
defines a homomorphism P^Jίoϊ sheaves of monoids on X such that the diagram

I I
Q — β φ / ί x

is commutative. Since JΪIΘ\ ^ Jt'\Θ\., we can easily show that the morphism P
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defines a chart (cf. Lemma 3.3). •

Then /factors through Spec A x S p e c Z[Q] Spec Z\P~\ by the induced morphism

X^>SpecA x spec z[Q] Spec Z [ P ] and the natural projection, and we have the following

commutative diagram

X —> X

I 1
Spec k x spec z[Q] Spec Z\_F\ — • Spec A x S p e c Z[Q] Spec Z [ P ]

Spec A: — • Spec A ,

such t h a t each s q u a r e is Car tes ian . W e need t o show t h a t X-> Spec A x S p e c Z [ Q ] Spec Z[P~\

is etale. Set ? = S o e c ^ 4 x S p e c Z[Q] Spec Z\P\ Since X - > S p e c , 4 is log s m o o t h , Ω^ t / i 4 t is

a locally free 0^-module. By Proposition 5.2, we have £ 4 ^ ® ^ ^ ^ ^ W

( ^ ^ x ® z ( P g p / β g p ) ) , and hence we have ΩχyAi ~> Θχ®z(Pgp/Qgp) etale locally. On

the other hand, by direct calculation, we have Ω^/At -P* Of ® {Pgp/Qgp). Hence, we have

ΩftMt|jr ^ ^ft/^t By [5, (3.8), (3.12)], .?-• Ϋ is etale. Therefore, we have proved the

following proposition.

PROPOSITION 8.4 (cf. [5, (3.14)]). For Ae<gΛi(n, a log smooth lifting of / :

(X, Jί) -> (Spec k, Q) on A exists etale locally\ and is unique up to isomorphism. In

particular, log smooth liftings of an integral and log smooth morphism are integral.

REMARK 8.5. In Definition 8.1, we assume that any log smooth lifting is log

smooth. Without this assumption, Proposition 8.4 is false. For example, the log smooth

morphism / : (X, Jί) -> (Speck, N) in Remark 8.2 has at least two different liftings to

(SpecA:[ε]/(ε2), N), one of which is log smooth while the other is not log smooth.

Let / : (X, */#)-• (Spec.4, Q) be a log smooth lifting of / to A, and u: A' -+A a

surjective homomorphism in ^AlQj such that I2 = 0 where /=Ker(w). Suppose

/ ' : (X\ Jί') -• (Spec A\ Q) is a log smooth lifting of / to A' which is also a lifting of /.

Let (P-+Jl\ Q^QΘ(AT,Q^P) be a local chart of / ' which is a lifting of

(P^M, Q^Qφk\Q^P). Define a local chart (P^JΪ, Q->Q@AX, Q->P) of

/by P^M'-^Jί and Q^Q®{A'Y -+Q®AX. An automorphism Θ: (X\ Jί1) ~>

(X\ Jί') over (Spec,4', 0 , which is the identity on (X, Jί\ induces an automorphism

0: ( .#) g p ^ P Π 8 P Consider the diagram

λ V
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For aePgp, the element a'(a) \_θoar(a)~]~1 is in \+J. Then we have a morphism

Δ : Pgp -> J = I - 0χ. z> I®A Θ% by Δ(a) = a'(a) [0 oα'(α)] " x - 1. The morphism A lifts to

a morphism A : Pgp/Qgp^>I®A®% and defines a morphism of 0^-modules

Since ΩχyΛt -3. ̂ j r®z(^ 8 P /δ β P ) έtale locally, this defines a local section of

Conversely, for a local section (D, D log)e Sΰeϊffi, (9χ) ®AL D induces an automorphism

of Θ%, and D log induces an automorphism of Jίι', and then, induces an automorphism

of (A ,̂ ^#'). By this, applying the argument in SGA I [2, Expose 3], we get the following

proposition.

PROPOSITION 8.6 (cf. [5, (3.14)]). Let f: (X, Jl) -• (Spec A, Q) be a log smooth

lifting of f to A, and u: A-*A a surjective homomorphίsm in ^IEQ] such that / 2 = 0,

where /=Ker(w) (i.e., (Spec A, Q)-> (Spec A', Q) is a thickening of order < 1).

1. The sheaf of germs of lifting automorphisms of J to A' is

2. Any log smooth lifting off to A' which lifts f canonically induces an isomorphism

from the set of all isomorphism classes of such liftings to

as pointed sets.

3. The obstructions for lifting J to A are in

Define the log smooth deformation functor LD = LDχt/fct by letting LiDxyk^(A) to be

the set of isomorphism classes of log smooth liftings of/: X* -+k*toA for A e Obj^cQ])-

This is a covariant functor from ^ΛIQI t° t n e category Ens of sets such that LDxt/fct(&)

consists of one point. We shall prove the following theorem in the next section.

THEOREM 8.7. The log smooth deformation functor LDχΐ/kt has a representable hull

(cf. [11]) if f is integral and X is proper over k.

9. The proof of Theorem 8.7. In this section, we prove Theorem 8.7 by checking

Schlessinger's criterion ([11, Theorem 2.11]) for LD. Let ux: Aί -^Ao and u2 : A2^A0

be morphisms in ^ [ Q D Consider the map

(8) o

Then we need to check the following conditions.
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(HI) The map (8) is surjective whenever u2: A2-+Ao is surjective.

(H2) The map (8) is bijective when A0 = k and A2=k[έ], where k[ε] = k[E]l(E2).

(H3) dimfc(ίLD) < oo, where ίLΌ = LD(&[ε]).

Suppose (HI) and (H2) are valid. Then by Proposition 8.6, we have an isomorphism

of λ -linear spaces. Our assumption implies that /LD is a finite dimensional vector space,

since ^Mk^X\ Θx) is a coherent 0x-module. Thus, (H3) follows. Hence, we need to check

(HI) and (H2). Set B = Aγ xAoA2. Let ^ : B-^At be the natural map for ι = l , 2. We

denote the morphisms of schemes associated to wf and v( also by wf: Spec Ao -• SpecΛ;

and vt: SpecA,-^SpecB for z = l , 2, respectively.

PROOF OF (HI). Suppose the homomorphism u2: A2^A0 is surjective. Take an

element (ηι, η2)e1LΌ(Aί) xLD(i4o)LD(y42) where ηt is an isomorphism class of a log smooth

lifting />. (Xh ^ ^ ^ ( S p e c ^ i , Q) for each /= 1, 2. Note that the underlying morphism

of /f's are flat since /f's are integral (cf. Proposition 8.4). The equality L D ( M 1 ) ( ^ 1 ) =

LD(w2)(̂ ?2) ( = rίo) implies that there exists an isomorphism {u2)*(X2, Jί2) ^ (u^)*(Xu Jl^

over (Spec Ao, Q). Here, (Ui)*(Xi9 Jtt) is the pull-back of (Xh Jίt) by u{: Spec Ao -• Spec A{

for /= 1, 2. Set (Xo, Jίo) = (u1)*(X1, Jtx). We denote the induced morphism of log schemes

{Xo, Jί0) -• (Xh J?i) by u\ for /= 1, 2. Then we have the following commutative diagram:

• v^2? =^2/

A * I μ
ί1? β) <^- (Spec^ 0, Q) -^>(Specv42, Q) .

We have to find an element ξ e LD(2?), which represents a lifting of / to B, such that

LD(ϋ ίχ^) = ίyi for /= 1, 2. Consider the scheme Z = (\ X\, ΘXι x ^ X o ^ 2 ) over Spec B. Define

a log structure on Z by the natural homomorphism

It is easy to verify that this homomorphism is a log structure. Since the diagram

Jr — (9Z

I I
is commutative, we have a morphism g: (Z, ̂ Γ) -• (Spec B, Q) of log schemes. By

construction, we have a morphism vt: (A ,̂ Jit) -• (Z, ̂ Γ) for / = 1, 2 such that the diagram
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\,Jί^ —^ (Z,JT)

"I ! !

is commutative. Since u2 : Λ2 ~* ^o is surjective, the underlying morphism ^ -• Z of i?ί
is a closed immersion in the classical sense. We have to show that the morphism υ\ is
an exact closed immersion. Take a local chart (P-+Ji,Q^>Q@k*,Q^>P)oϊfas'm
Theorem 4.1 such that g8 P-*/ ) g p is injective and the induced homomorphism
Z\_Q\^>Z\P~\ is flat. By Lemma 8.3, this local chart lifts to a local chart of / for each
/=0, 1, 2. Since u2: A2-^A0 is surjective, we have an isomorphism

By this, one sees that P ^ P xPP^Jί is a local chart of JΛ This shows that (Z, ̂ Γ)
is a fine saturated log scheme, and v\ is an exact closed immersion. Hence,
(Z, JO -• (Spec B, Q) is a lifting of / to (Spec B, Q). Since the underlying morphism of
fι of schemes is a flat lifting of that of / for each /=0, 1, 2, Z-> Spec B is also a flat
lifting of/. On the other hand, since the local lifting Z-»Speci? x S p e c Z [ Q ] Spec Z[P] -•
Spec 5, where Z^SpecjB x S p e c Z[Q] Spec Z[P] is smooth, is also a flat lifting of/, these
two liftings coincide. This shows that g: (Z, ̂ Γ) -»(Spec B, Q) is log smooth. Hence g
represents an element ξGLD(B). It is easy to verify that LΌ(vi)(ξ) = ηi for /= 1, 2 since
the morphisms / l 5 / 2 and gf have a common local chart. •

REMARK 9.1. In the above proof, the flatness of the underlying morphisms is
important. It is used to prove that the lifting (Z, Jί)^ (Spec B, Q) of / to (Spec£, Q)
is log smooth. Without assuming that / is integral, this is false in general. Here is an
example due to the referee. Let / : (Xo, Jΐo) = (Spec£[x], N2)-+ (Spec fe, N2) be a log
smooth morphism defined by

Jfc[x] JL N2

i
k *—Λ^2,

β

where λ(l,0)=(l, 0), h(0, 1) = (1, 1), α(l, 0) = 0, α(0, \) = x, and β{\, 0) = j3(0, l) = 0. Set
(SpecΛi, 7V2) = (Spec^2, N

2):=(Speck[ε]/(ε2), N2), where N2->k[_έ]/(ε2) is defined by
(l,0)ι-> ε, (0, 1)H-> 0. Let /•: (Z;, ̂ - . . ( S p e c ^ , A;[ε]) be log smooth liftings of / for
ί = l , 2 . Then, we have Xi z* Specfc[>, ε]/(ε2, εx), and hence Z:={\X\,&Xιxeχo&X2)
•3. SpecA:[x, ε, <5]/(ε2, δ2, εδ, εx, δx). But a log smooth lifting to (Specfi, ,/V2) is iso-
morphic to Specfc[x, ε, ̂ ]/(ε2, <52, ε«5), and is not isomorphic to Z.
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PROOF OF (H2). We continue to use the same notation as above. We need the

following lemma:

LEMMA 9.2. Let g'': (Z', Jί') -• (SpecB, Q) be a log smooth lifting of f with a

commutative diagram

•Ί
u\

(z\ JT )

\
\X29 Jt2)

of liftings such that fe)*(Z', Jί') £- (Xh Jit) over (Spec4 f, Q)for i= 1, 2. Then the natural

morphism (Z, Jr)^»(Z', Jί') is an isomorphism.

PROOF. We may work etale locally. By Lemma 8.3, the local chart (P-+JI,

Q^>P) of / lifts to a local chart of g'. Take a local chart (P-+JΓ9

Q-+P) of g by P^Jί'-^Jί. Then, the schemes Z and Z ' are smooth

liftings of X -» Spec k x S p e c Z [ Q ] Spec Z [ P ] to Spec B x S p e c Z[Q] Spec Z\F\. Hence we have

only to show that the natural morphism Z-*Z' of underlying schemes is an iso-

morphism. This follows from classical theory [11, Corollary 3.6] since each Xt is a

smooth lifting of X-^Speck x S p e c Z [ Q ] S p e c Z [ P ] to Spec^£ x S p e c Z [ Q ] S p e c Z [ P ] for

i = 0, l ,2 . •

Let g': (Z', Jί') -> (Spec B, Q) be a log smooth lifting of / which represents a class

ξ'eLiD(B). Suppose that the class ξ' is mapped to (ηu η2) by (8). Then,

(Xo, JίQ)^(VloMl)*(Z', Jί1)^(v2ou2)*(Z', JV) +^(X09 Jί0)

defines an automorphism θ of the lifting (Xo, Jί0). If this automorphism θ lifts to

an automorphism θf of the lifting (Xί9 Jί^ such that ΘΌu\=u\°θ, then replacing

{XuJ(ι)-+(Z\Jίr) by (X^Jί^ SU(Xί9Jί1)^(Zr

9J
rf)9 we have a commutative

diagram as in Lemma 9.2, and then we have ξ = ξ'. Now if A0 = k (so that (Xo, Jto) =

(X, Jί\ 0 = id), then Θ' exists. •

10. Example 1: Log smooth deformations over a trivial base. As we have seen in

Theorem 4.8, any log scheme (X, Jί) which is log smooth over Spec A: with the trivial

log structure is smooth over an affine toric variety etale locally.

EXAMPLE 10.1. (Usual smooth deformations.) Let I be a smooth algebraic

variety over a field k. Then X with the trivial log structure is log smooth over Spec k (this is

the case D = 0 in Corollary 4.9), and a log smooth deformation of X in our sense is

nothing but a usual smooth deformation of X.

EXAMPLE 10.2. (Generalized relative deformations.) Let Xbe an algebraic variety
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over a field k. Assume that there exists a fine saturated log structure Jt on X such that
/ : (X, Jt)^> Spec k is log smooth. Then by Theorem 4.8, X is covered by etale open
sets which are smooth over affine toric varieties, and the log structure Jί-+Θx is
equivalent to the log structure defined by

(9) Jΐ=J*&x\Dn(9x

for some divisor D on X, where j is the inclusion X\D CL+X. In this situation, our log
smooth deformation of / is a deformation of the pair (X, D). If X is smooth over k,
then D is a reduced normal crossing divisor (cf. Corollary 4.9). Assume that Xis smooth
over k. Then we have an exact sequence

0 —*®eH{X\ 0x) —>®*άX9 Θx)( = Θx)^^—+0,

where Jί is an fi^-module written locally as

where Du . . . , Dd are local components of D, and Λ^.jx is the normal bundle of Dt in
Xfoτi=l,...,d. Then, we have an exact sequence

H°(®, ΛO — /LD — HX(X, Θx) — H^A ΛO

In this sequence, H°(D, ,/Γ) is viewed as the set of isomorphism classes of locally trivial
deformations of D in X, and H^D, Jί) is viewed as the set of obstructions for
deformations of D in X. Hence this sequence explains the relation between the notion
of log smooth deformations and that of usual smooth deformations. Note that, if D is
a smooth divisor on X, the log smooth deformation is nothing but the relative deforma-
tion of the pair (X, D) studied by Makio [9] and others.

EXAMPLE 10.3. (Toric varieties.) Let XΣ be a complete toric variety over a field k
defined by a fan Σ in NR, and consider the log scheme X* = (XΣ, Σ) (cf. Example 2.6)
over Spec A:. We have seen in Example 5.6 that

and hence is a globally free 0^-module. Since H^Z, 2ebk(X^, Θx)) = 0, any toric variety
is infinitesimally rigid with respect to log smooth deformations. Note that toric varieties
without log structures need not be rigid with respect to usual smooth deformations.

11. Example 2: Smoothings of normal crossing varieties. Let n>0 be an integer.

Let us write the ̂ -dimensional affine space over a field F by ^£ = SpecF[7\,..., ΓJ.
For \<i<n, the hyperplane in An

F defined by the ideal (Tt) is denoted by HiF. We
denote by 0 the origin of An

F.
Let A: be a field. In this and the next sections, we mean, by a normal crossing variety

over k of dimension n— 1, a scheme X of finite type over k enjoying the following
condition: For any closed point xeX, there exist a scheme U and a point y E U together
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with etale morphisms

ιx

φ: U^X and φ: U-+ \J Hik,

such that φ{y) = x and φ{y) = 0, where k' is a finite extension of k, depending on x, and
\<lx<n. Clearly, the integer lx depends only on the closed point x. We call it the
multiplicity of Xat x. A normal crossing variety Zis said to be simple if every irreducible
component of X is regular. It is easy to see that any scheme etale over a normal crossing
variety is again a normal crossing variety. In this section, we consider a certain type
of log structures on a normal crossing variety X, and discuss the deformations of the
resulting log schemes.

Before discussing log structures on normal crossing varieties, we should consider
their etale local structure in more detail.

LEMMA 11.1. Let S and Sr be Noetherian schemes and φ: S' ->San etale morphism.
Assume that every irreducible component of S is regular, and any union of irreducible
components of S' is connected. Then, the morphism φ is injective in codίmension zero,
i.e., for any irreducible component T of S, there exists at most one irreducible component
T of S' such that φ(T')^T. Moreover, in this case, we have T'^T xsS', and hence,
every irreducible component of S' is regular.

PROOF. Let T be an irreducible component of S and η the generic point of T. If
there exists a point η' eS' such that φ(η') = η, then η' must be the generic point of an
irreducible component of S'. Hence, one finds that TxsS' is isomorphic to a finite
union of irreducible components of S'. Since TxsS

r is regular and connected, it is
irreducible. Therefore, whenever there exists η'eS' as above, we have {η'}^TxsS

f.
D

DEFINITION 11.2. Let X be a normal crossing variety and xeX a closed point.
An etale morphism φ: U-+X, with a point yeU such that φ(y) = x, is called a local
chart around x if there exists a diagram

•i I*
V

sending

with the square Cartesian, where k' is a finite extension of k and the lower horizontal
arrow is the canonical closed immersion, such that

(a) V= Spec R is an affine scheme,
(b) Φ is an etale morphism,
(c) y is the unique point which is mapped to x by φ.
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Note that, in the above definition, if we set zi=ι*Φ*Ti for 1 <i<lx, then each ideal
(z£) is prime and the irreducible components of U are precisely the closed subsets of U
corresponding to the ideals (z j , . . . , (zlχ); these are easy consequences of Lemma 11.1.

PROPOSITION 11.3. Let X be a normal crossing variety and xeX a closed point.

Then there exists a local chart φ: ί/-> X around x.

Since any etale open set of X is again a normal crossing variety, the local charts
form an open basis with respect to the etale topology.

PROOF OF PROPOSITION 11.3. Let us write S=\J\x

=1HiW. By definition, one can
take a scheme U and a point yeU with etale morphism φ: U^>X and φ: U^S.
Replacing U by a Zariski open subset, we may assume that (1) the scheme U is affine
and connected, (2) y is the unique point of U which is mapped to x by φ, and (3)
all the irreducible components of U contain y. Then, by Lemma 11.1, every irreduci-
ble component of U is regular, i.e., U is a simple normal crossing variety. Let
[/= ux u u Uι be the decomposition of U into the union of irreducible components.

Again by Lemma 11.1, we have l<lx; however, the multiplicity ly of U at y clearly
satisfies ly<l, and since the multiplicities do not change under etale morphisms, we
have ly=lx. Hence, we have l=ly=lx. Therefore, changing indices if necessary, we may
assume that φ maps the generic point of {/,. to that of the irreducible component HiW

of S for \<i<lx.
The normal crossing variety S is a normal crossing divisor in the ^-dimensional

affine space y4̂  = Spec/c/[Γ1,..., ΓJ over k'. Then, by [2, Expose 1, Proposition 8.1],
replacing U by a Zariski open subset, we may assume that there exists a Cartesian
diagram

φ\ JΦ

O c z — • Λk> ,

where the horizontal arrows are closed immersions and the vertical arrows are etale.
Since we may assume V is affine, we are done. •

Next, let us discuss log structures on normal crossing varieties. Let A" be a normal
crossing variety over a field k. Suppose that X has a closed embedding i: X cz.» V into
a smooth variety F a s a normal crossing divisor. We denote the open immersion
V\Xc-+ V by j . In this situation, one can define a log structure on X as in Corollary
4.9, i.e., by

where i * denotes the pull-back of a log structure. Let us call this the log structure
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associated to the embedding i: Xa+V. For a general normal crossing variety X, we

cannot define such a log structure on X, because X may not have such an embedding.

But, as we have seen in Proposition 11.3, X etale locally has such an embedding. Then,

we can consider the log structure of this type for a general X defined as follows:

DEFINITION 11.4 (cf. [12]). A log structure Ji^>ΘX is said to be of embedding

type, if the following condition is satisfied: There exists an etale covering {φλ: Uλ -*> X}λeΛ

by local charts, with the embeddings ιλ: Uλ CL» Vλ as in Definition 11.2, such that, for

each λ e A, the restriction φ \Jί -»ΘUλ is equivalent (cf. Definition 2.3) to the log structure

associated to the embedding ιλ. If Ji -• Θx is a log structure of embedding type of X,

we call the log scheme (X, Ji) a, logarithmic embedding.

A log structure of embedding type has etale locally a chart described explicitly as

follows: Let φ: U-+X be a local chart, and

U d!_. V

φ\ \Φ

the Cartesian diagram as in Definition 11.2. The scheme S=\Jι

i = 1Hik, has the log

structure Jί$ associated to the embedding S<=-*An

k,. This log structure has a chart de-

fined by

Nι — • Jίs with ei I—> ti

for 1 </</, where tt is the image of Tt under

(9Kι rv flϊ-, χ s ) — * Γ(S9 Ms)

with j : Λj[, \S c=-^Al' the open immersion. Then, the log structure Jίυ on U associated

to the embedding i is equivalent to the pull-back of Jfs by φ. Hence, the log structure

Mυ is equivalent to the log structure associated to the pre-log structure (cf. §2) defined by

(10) Nι—>Oυ w i t h et\—>zi9

where zί = z*Φ*Γ ί for \<i<L

The proof of the following proposition is straightforward and left to the reader:

PROPOSITION 11.5. For any logarithmic embedding (X,Jί\ there exists an exact

sequence of abelίan sheaves

(li) i_ (p ϊ_^r«p_v#z J P—> o,

where v: X-*X is the normalization of X.

DEFINITION 11.6 (cf. [4], [6]). A log structure of embedding type Jί -• Θx is said
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to be of semistable type, if there exists a homomorphism Z x - > . # e p of abelian sheaves
on X such that the diagram

Jί™ —• \%Zt

\ A
zx

commutes, where b: Zx-+v^Z% is the diagonal homomorphism.

If Jt is a log structure of semistable type and Zx^Jίgv is the the homomorphism
as above, then one sees that Zx x^ g P ^# is isomorphic to Nx, and thus, one gets a
morphism Nx^>Jί of sheaves of monoids. This morphism defines a morphism of log
schemes

/ : {X,Jί)—-(Speck, N).

Here, (Spec A:, N) is the standard point (cf. Definition 4.4). Note that this morphism is
similar to that discussed in Example 4.7, i.e., writing it in terms of the local chart
φ: U->X as above, one sees that this morphism is induced by the diagram

Nι—+Γ(U9GΌ)

i i
yv — > k,

where the upper horizontal arrow is induced by (10) and the right vertical arrow is the
diagonal homomorphism. Hence, / has etale locally a chart {Nι-*Jί,N-+N®k*,
N-+N1) with N^N1 the diagonal homomorphism. We call this morphism / of log
schemes the logarithmic semistable reduction. By Theorem 4.1, logarithmic semistable
reductions are log smooth.

The criteria for the existence of these log structures are stated as follows: Let X
be a normal crossing variety. Let us consider the Gx-moάvλt ?ΓX = $ccJ1(Ωx, Θx), which
is called the infinitesimal normal bundle of X. It is well-known and easily verified that
9~x is, in fact, an invertible 0D-module, where D denotes the singular locus of X
considered as a scheme with the reduced structure (cf. [1]). We will prove the following
theorem in the next section:

THEOREM 11.7. Let X be a normal crossing variety with D the singular locus.

1. There exists a log structure of embedding type on X if and only if there exists a

line bundle & on Xsuch that <£® vx&D = ̂ ~X'

2. (cf. [6, (1.1)]) There exists a log structure of semistable type on X if and only if

X is d-semistable, i.e., 3~X=ΘD.

Let I be a d-semistable normal crossing variety and Ji a log structure of
semistable type. Let / : (X, Jΐ)->(Speck, N) be the log smooth morphism constructed
as above. Since / is log smooth and integral (by Proposition 3.11), the log smooth
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deformation functor of/ has a hull (cf. Theorem 8.7). Let us consider the infinitesimal

deformations of/ on an Artinian local /I [TV]-algebra A. Let τ be the image of 1 under

the morphism JV-> Λ{NJ -^Aoΐ monoids. Take a suitable local chart φ : U-+ X which

induces a chart (Nι^>M,N-± N@k*,N-*Nι) of/ as above, where N->Nι is the

diagonal homomorphism. Let / : (X, Jί)^>(Specif, Q) be a local log smooth lifting of

/ on A and (Nι ->Jί9 N-^N®AX, N->Nι) a lifting local chart (cf. Lemma 8.3). If

we denote by zt the image of ei under Nι^>Jί-^Θχ for l</</, then each zt is

mapped to zf by A ->k and we have zt 'zt = τ. Hence, if τ = 0, the deformation J is

locally trivial, and if τ^O, it is an infinitesimal smoothing.

In the complex analytic situation, a log smooth deformation of this type is nothing

but a log deformation discussed by Kawamata and Namikawa in [6].

12. The proof of Theorem 11.7. In this final section, we prove Theorem 11.7.

First, we should fix ideas and notation about the infinitesimal normal bundle introduced

in the previous section.

Let Xbe a normal crossing variety over a field k. For a local chart φ: U= Spec A -> X

of X around some closed point x, we use the following notation: Let V= Specif and,

using the notation as in Definition 11.2, set Zi = Φ*Ti for l</</, where l=lx. We set

IJ = (ZJ) and Jji-iZ^ 'Zj'-Zt)

for 1 <j<l (if /= 1, we set / ^ Λ a s a convention), and set

/=/!•••/, and J=J1+'"+Jι.

Then, we have A = R/I, and the ideal Ij/IaA, which is prime of high zero, is generated

by Zj .=(Zjmod/). The singular locus

DV = D xxU

of U is the closed subscheme defined by J. We set

Q = R/J.

Note that, for l</</, /////} is a free ^-module of rank one and is generated

by ζJ :=(Z 7 mod/// ). There exists a natural isomorphism Ij/IIj®AQ ^> IJ/JIJ of Q-

modules which maps C/(x)l to ξj:={ZjvaoάJIj). Moreover, there exists a natural

isomorphism

(12) III2-^I1III1®A---®AIιIIIι

of ,4-modules, and hence, the ^[-module ///2 is free of rank one and is generated by

Ci (S) ®Cz We denote by π7- the natural projection Ij/IIj-^

The cotangent complex of the morphism k -> ̂  is given by

Z/ : 0—>R® R A >Ω1

R/k®RA—•(),
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where δ is defined by R-+F-R 4 ΩR/k with F=Zγ Zx (cf. [8]). Then the tangent

complex of U is the complex

δ*

HomA(L\ A): 0 — > Θ R / k ® R A >HomA(R®RA, A)—•O ,

where Θ R/k = HomR(ΩR/k, R).

We define

(13) T\ = HomA(R®RA, A)/δ*(ΘR/k®RA).

LEMMA 12.1. We have a natural isomorphism

(14) T\ -^ Hom^///2, A) ®A Q .

PROOF. Consider the exact sequence

0 —> I/I2 — . β£ / k ®ΛΛ — . Ωj/fc — 0 .

Taking Hom^-, A), we get the following exact sequence:

0 — * H o m ^ Q ^ , A)— ΘR/k®RA —Uom A (I/l\ Λ) -^-* Γ} — 0 .

The ,4-module HomA(///2, A) is isomorphic to Λ by

Hom^///2, A)su I > u{ζ1® ' ®ζι)eA.

With this identification, one finds easily that the image of v in A is /. This implies that

TΛ is, in fact, a Q-module. Hence, we have a morphism

μ ®A Q: Hom^///2, A) ®A Q — ^ Γj

of β-modules which is, in fact, an isomorphism. Π

Considering all the local charts U on X, these modules T\ glue to an invertible

0D-module isomorphic to Sa>έlx{Ωχjk, Θx), which is denoted by ZΓχ\ for later purposes,

we describe its gluing data explicitly in the following.

Suppose we have two local charts φ: U-+X and φ': U' -> X and an etale morphism

φ: U-+U' such that φ = φΌφ. Since we are interested in the singular locus, we may

assume /> 1 and Γ> 1. For these local charts, we use all the notation as above. (For

U\ we denote them by /', A', Γ, J\ z'h ζ'j9 etc.) Let / : A -• A be the ring homomorphism

corresponding to φ. We need to show that the morphism φ naturally induces an

isomorphism TA. ®Q> Q ^ TA of β-modules. Let Uj (resp. U)) be the irreducible

component of U (resp. U') corresponding to the ideal Ij/1 (resp. Γj/Γ) for \<j<l (resp.

1 </</')• Since φ is etale and injective in codimension zero (cf. Lemma 11.1), we may

assume that the generic point of Uj is mapped to that of U) by φ for \<j<l. In

particular, we have /</'.
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CLAIM. In the situation as above, we have the following:

(a) For 1 <j<l, there exists an isomorphism, naturally induced by f of Q-modules

(15) τ,: rjlΓΓJ®A.Q^IJ/IIj®ΛQ .

(b) For />/, the natural projection π\\ ΓJI'I'i^ ΓJΓ<^A' and f induce an

isomorphism of A-modules

(16) ~Pi:I\\TI\®A,A^A.

PROOF, (a) By the proof of Lemma 11.1, one sees that U x υ, U], s Uj for 1 <j < I.

This implies that A/(IJ/I)^(A'/(ΓJIΓ)®A,A) (^A/{{ΓjlΓ)®Λ.A)), and hence,

(17) ΊJ/I^(ΓJIΓ)®A,A, (1 </</).

For 1 </</, we can set f(z'j) = UjZj for some UJGA. Here, each Uj is determined modulo

Jj/I. Because of (17), UjZj generates the ideal /,-//, and hence, Uj is a unit in A/(Jj/I) (and,

needless to say, in A/(J/I)). (Note that u3 is not necessarily a unit in A, since A is not

an integral domain for />1.) Then, by ξ'j\->(UjmodJ/I)ξj9 we get the desired

isomorphism.

(b) Since φ is injective in codimension zero, the point ΓJΓ does not belong to

φ(U). Then, φ maps U= Spec 4̂ to Spec A^yj^, and this implies that the image of elements

of/;//' under / is invertible. Hence, p,(Ci® l) = /(z9 is an invertible element of ,4, and

Pj is an isomorphism. Π

Set Pi'. = Pi®AQ' Then, these isomorphisms τ/s and p/s induce

(18) τ: = τ!(8)Q ®Qτι®Qpι + 1 ®Q ® Q p Γ : T\T2®A,Q^^I\I2®AQ .

The β-dual of τ is the desired isomorphism (cf. Lemma 12.1). One can easily check

that this isomorphism τ does not depend on the parameters Zj, zy, it is canonically

induced by f:A'->A. Hence, for any sequence of etale morphisms of local charts

U-^Uf^U", we obviously have τ " = τ o (τ ' ®Q, Q\ where τ: I'll'2 ®A, Q ̂  I/I2 ®A Q,

τ'\I"\I"2®A,,Q' ^I'\T2®A,Q' and τ": I"/I"2 ®A,Q ^> I/I2 ®AQ are the isomor-

phisms denned as above with respect to ψ, φ' and ψ'°ψ, respectively.

In the rest of this section, once we introduce the local chart φ: U^>X, we will

tacitly make use of the notation as above.

CONSTRUCTION 12.2. Here, we describe the log structure of embedding type by

another etale local expression. Let φ\ U=SpecA^>X be a local chart. For m =

(mί, ...,mt)EN\ define an ̂ 4-module Pm by

Pm: = (/1///1)®mi ®A'" ®A(Iι/Πιf
mι.

Each Pm is a free yl-module of rank one and Piίr..Λ) = I/I2. The natural projections

I^A induce a natural ^ί-homomorphism
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Define a monoid

M: = {(m, a) | m e Nι, a: a generator of Pm} ,

and a homomorphism σ: M^A of monoids by (m, a)\-+σm(a). Then, one finds that the

associated log structure ocv: Jίυ^(9υ of the pre-log structure M-+A is that associated

to the embedding i: (/ c_> F.

CONSTRUCTION 12.3. Let ̂  be a log structure of embedding type on X. Then,

the exact sequence (11) induces the following commutative diagram of natural

morphisms:

HomZχ(Zx, v,Zg) A Έ.x\\x{Zx, Gx)

" I - I
H°(Λ-, v.Zg) —+ H^

0

Let b : Zx -> v^Z^ be the diagonal homomorphism. Then, <3(b) defines a linear equiva-

lence class of line bundles on X. We denote this class by cl^. Let ResD: Pic X^> Pic D

be the restriction morphism.

CLAIM A. For any log structure Ji of embedding type on X, we have ResD(cl^) =

PROOF. We will prove this claim by writing out the class {\M explicitly. For any

local chart φ: U-+X, we define the constant monoid M as in Construction 12.2; then,

we have a homomorphism of monoids σ: M^Jίυ. Let hv be the restriction of b to U.

One can lift hv to a homomorphism b^: Zυ -> M g p by 1 H-> ( ( 1 , . . . , 1), Ci ®''' ® C/)

Suppose we have two local charts φ : U-> Xand φ' \ Ur -• Xand an etale morphism

^ : U-*Ur such that φ = φΌψ. As in the beginning of this section, let t/y (resp. t/}) be

the irreducible component of C/(resp. (7') corresponding to ^//(resp. /}//') for l<j<l

(resp. 1 <j<Γ), and assume that the generic point of £/,- is mapped to that of U) by ψ

for \<j<l. Consider the gluing morphism γ: ψ*Jίυ. -3- ̂  Let σ r : M'^»\jj*Jtυ, be

similar to σ. Then, for l<y</, the global section y(σ'(ep ζ))) of ^ is a multiple of

σ(έ>, , Cj.) by a section of 0£; i.e., there exists UjGAx such that y(σ'(ep ζ'j)) = ujσ(ep £,).

Note that, since y is an equivalence of log structures, we have f(z'j) = UjZj. As for />/,

7(σ'(^ , ζ'i)) = σ(0, vt) for some vteAx. Note that this ι;f is nothing but pf(C (χ) 1), where

Pi is as defined in (16).

Define a cocycle {zl̂ } by

This cocycle gives a class \_A^~] in H^Jί, d? )̂, which, by the definition of the connecting
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homomorphism d, is nothing but the class cl^. Set δψ = (Aίί/moάJ/I), i.e.,

[δφ] = ResD([Aψ]). Then, since ξ\® '' ® ζΊ*->δψζι ® ''' ® ζι defines an isomorphism

which is nothing but τ defined in (15), the class [δψ] is the class of {β~χY. D

Then, the first part of Theorem 11.7 follows from the following claim:

CLAIM B. Let X be a normal crossing variety. Then, the map

(equivalence classes of log *ruc-l „

I tures of embedding type on J J

defined by JίΊ—• c l ^ is surjective.

In order to prove this claim, we need the following lemmas: Let φ :U=SpecA ->X

be a local chart on X.

LEMMA 12.4. The natural morphism

0/y/—>///
J = l

of A-modules, induced by J j CL+J, is an isomorphism.

PROOF. The surjectivity is clear. Let us show the injectivity. Take aiZ1 Zy •

ZteJj for \<j<l with Z l 5 . . . , Zx as above such that

i

l—i j 1 j I 1 I '

where 0,-, fee/?. Since /? is an integral domain, a} is divisible by Zp and hence, we have

a-jZx - - Zj- Zt = 0 (mod /). •

Let π7 : Ij/IIj^Ij/I and #,- :Ij/I-*Ij/JIj ( = Ij/Hj®AQ) be the natural projections,

and set/?,- \ = q.ony Let #: ///2-+I/JI( = I/I2®AQ) be the natural projection.

LEMMA 12.5. Let M1,...,Mι be free A-modules of rank one and set M: =

Mx ®A - - ®AMi. Suppose we are given an A-module isomorphism g\ M ^ I/I2 and

A-module homomorphisms gj: Mj^Ij/Ifor \<j<l such that

1. for each j , there exists a free generator δj of Mj satisfying gj(δj) = Zj,

Then, there exists a unique collection {cjj: Mj ^ Ij/IIj}
lj=1 of A-isomorphisms such that

πj°9j = ajf°r each j and gi®A- ®Agt = g.

PROOF. We fix the free generators δj of Mj as above. Then M is generated by

δx® - - - ®δt. Set g(δx ® ®δι) = vζ1 ® ®d where veAx (see the beginning of

this section as for the notation). By the second condition, we have v=\ (mod///),
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i.e.,

i

Σ afi'
I

Σ
for cijGA. We set Uj = 1 + ajzί f7 zx and define #,- by §j(δj): = M/ζj for 1 <j<l. Then,
since v = uί ut, each w,- is a unit in A and #,• is an isomorphism. Moreover, we have
cji ® ' ® cjι = g as desired. The uniqueness follows from Lemma 12.4. Π

The proof of Claim B is done step by step as follows:
Step 1. Suppose that we are given a line bundle j£? on X satisfying !£ ®(Pχ ΘD ̂

{β~χY. Suppose we have two local charts φ: (/-• X and φ': U' ->X and an etale mor-
phism ψ: U^U' such that φ = φΌψ. Recall that (Γj/Γ)®A,A = Ij/I for \<j<l (cf.
(17)), and if f(z'j) = UjZp each Uj is determined modulo /y/. Giving the line bundle if
as above is equivalent to giving a compatible system of isomorphisms

for all such U-+ Uf, with τ®AQ = τ, where τ is defined as in (18). Then, we show that
τ induces canonically an isomorphism of log structures ^*Jίv> ^> Mυ, and prove that
the log structures Mυ glue to a log structure of embedding type on X. Moreover, since
local charts form an etale open basis, we can pass through this procedure replacing U
by a Zariski open subset if necessary. In particular, we may assume that each Uj as
above is a unit in A, because (ujmoάJ/I) is a unit in A/(J/I) (in case /> 1).

Step 2. We construct isomorphisms

(20) Tj-.Tj/ΓΓ^A^Ij/IIj

of ^-modules for 1 <j<l; this is done by considering the following three possible cases
separately.

( i ) If / = /'= 1, i.e., IX=I and ΓX=Γ, then we set τ1: l\\TI\ ®AΆ z> IJI^ by
fx: = f.

(ii) If /= 1 and Γ> 1, we define τ1: l\\Tl\ ®AΆ ^ hUh a s follows: Suppose τ
maps ζ\® - - ®ζ'ι>®\ to υζl9 where υeAx. Let p}: I\\TI\®A,A-+A be as (16), for
1 <ί<l'. Suppose, moreover, each p{ for i> 1 maps ζ\® 1 to ι^ev4x. Then, define τί by
τΓi(CΊ(8>l): = vt7ί1 i7,τ 1 ζ 1 .

(iii) Suppose /> 1 and /'> 1. We claim that, under the conditions

and

(22) τx ®A ® f̂z

the ̂ -isomorphisms in (20) exist uniquely for 1 </</. SetM^ : = Γj/ΓΓj®AΛ and^ : = p 7

for 1 <7</. Define g by g®Api+1 ®A ®^pΓ = f (this is possible since p^Cί® 1) is a
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unit element in A for />/), which is obviously an isomorphism. Then, since we as-
sumed each Uj to be a unit in A, Mj : = Γj/ΓjΓ ®AΆ, g, and g^ satisfy the conditions in
Lemma 12.5. Hence, by Lemma 12.5, the isomorphisms in (20) exist uniquely.

Note that, in all cases, we have a commutative diagram

Γj/ΓΓj — • Ij/IIj(23) 4 .|«,
A —> A,

f
for 1 </</; this follows from (21) in case /, Γ> 1, and is obvious in the other cases.

Step 3. Let us use notation as in Construction 12.2. These morphisms τ ; induce
morphisms

fm A m A m '

where m = (m1, . . . , m^ for m' = (mu . . . , mv)eNv. Then these ym. induce naturally a
morphism of monoids Mf-*M compatible with M'^>A\ M-^A and /. By the
construction of these morphisms, the induced morphism of sheaves of monoids
y: \jj*JiUf >̂ Jίυ is an isomorphism. By the commutative diagram (23), this isomor-
phism makes the following diagram commutative:

, I \av

hence γ gives an equivalence of log structures. Our construction of the isomorphism γ
is canonical in the following sense: Suppose we are given a sequence of etale morphisms

U J U U'^-+U" of local charts (with U and U' sufficiently small). We have y" = yo(ψ*y%
where y: φ*JίV' >̂ Jίυ, y' \ y\ι'*Mυ . ^ Jίυ> and y" \ \\ι*\\ι'*Jlυ,, ^ Mυ are the

isomorphisms of log structures defined as above corresponding to φ, φr and ψ'°ψ,
respectively. This follows from the naturality of πj and p,, and the compatibility of τ's.
Thus, we get a log structure Ji of embedding type on X. It is straightforward to check
cl^ = [J£?]. Thus, we complete the proof of Claim B, and hence, the proof of the first
part of Theorem 11.7. •

Note that if X is a normal crossing divisor of a smooth variety V, and Jί is the
log structure associated to the embedding X ci+ F, then the class cl^ is nothing but the
class of conormal bundle of X in V.

Next, let us prove the second part of Theorem 11.7. Suppose Jί is a log structure
of semistable type. Consider the exact sequence

(24) HomZ χ(Zx, M*>) - ^ HomZ χ(Zx, v*Zχ) Λ ExtZ χ(Zx, β*x)
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induced by the exact sequence (11). The morphism Zx-+Jίgv is mapped to b by π. This
implies that cl^ = 0. Hence, [β~xY is a trivial line bundle on D.

Conversely, if X is d-semistable, there exists at least one log structure of embedding
type on X by the first part of Theorem 11.7 proved above. Since (β~χY is trivial, we
can take a log structure Jt of embedding type such that cl^ = 1 by the natural surjection
(19). Since the obstruction for the existence of a morphism Zx-*Jl*v which is mapped
to b, is nothing but the class cl^, we deduce that Jί is of semistable type. Thus, the
proof of Theorem 11.7 is now completed. •
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