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Abstract. This paper lays a foundation for log smooth deformation theory. We
study the infinitesimal liftings of log smooth morphisms and show that the log smooth
deformation functor has a representable hull. This deformation theory gives, for example,
the following two types of deformations: (1) relative deformations of a certain kind of
a pair of an algebraic variety and a divisor on it, and (2) global smoothings of normal
crossing varieties. The former is a generalization of the relative deformation theory
introduced by Makio and others, and the latter coincides with the logarithmic
deformation theory introduced by Kawamata and Namikawa.

1. Introduction. In this article, we formulate and develop the theory of log smooth
deformations. Here, log smoothness (more precisely, logarithmic smoothness) is a con-
cept in log geometry which is a generalization of “‘usual” smoothness of morphisms
of algebraic varieties. Log geometry is a beautiful geometric theory which successfully
generalizes and unifies the scheme theory and the theory of toric varieties. This theory
was initiated by Fontaine and Illusie, based on their idea of log structures on schemes,
and further developed by Kazuya Kato [5]. Recently, the importance of log geometry
has come to be recognized by many geometers and applied to various fields of algebraic
and arithmetic geometry. One of such applications can be seen in the recent work of
Steenbrink [12]. In the present paper, we attempt to apply log geometry to extend the
usual smooth deformation theory by using the concept of log smoothness.

Log smoothness is one of the most important concepts in log geometry, and is a
log geometric generalization of usual smoothness. For example, varieties with toric
singularities or normal crossing varieties may become log smooth over certain
logarithmic points. Kazuya Kato [5] showed that any log smooth morphism is written
étale locally as the composite of a usual smooth morphism and a morphism induced by
a homomorphism of monoids which essentially determines the log structures (Theorem
4.1). On the other hand, log smoothness is described in terms of log differentials and log
derivations similarly to usual smoothness in terms of differentials and derivations.
Hence if we consider log smooth deformations by analogy with usual smooth
deformations, it is expected that the first order deformations are controlled by the sheaf
of log derivations. This intuition motivated this work and we shall see later that this
is, in fact, the case.

In the present paper, we construct log smooth deformation functor by the concept
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of infinitesimal log smooth lifting. The goal of this paper is to show that this functor
has a representable hull in the sense of Schlessinger [11], under certain conditions
(Theorem 8.7). At the end of this paper, we give two examples of our log smooth
deformation theory, which are summarized as follows:

1. Deformations with divisors (§10): Let X be a variety over a field k. Assume
that the variety X has an étale covering {U,};., and a divisor D such that

(a) there exists a smooth morphism 4;: U;— V; where V; is an affine toric variety

over k for each iel,

(b) the divisor U;xxD on U, is the pull-back of the union of the closure of

codimension one torus orbits of V; by 4; for each iel.
Then, there exists a log structure .# on X such that the log scheme (X, .#) is log smooth
over k with trivial log structure. (The converse is also true in a certain excellent category
of log schemes.) In this case, a log smooth deformation in our sense is a deformation
of the piar (X, D). If X itself is smooth and D is a smooth divisor on X, our deformations
coincides with the relative deformations studied by Makio [9] and others.

2. Smoothings of normal crossing varieties (§11): If a scheme of finite type
X over a field k is, étale locally, isomorphic to an affine normal crossing variety
Speck[zy, ..., z,]/(z;* - - z;), then we call X a normal crossing variety over k. If X is
d-semistable (cf. [1]), then there exists a log structure .# on X of semistable type
(Definition 11.6) and (X, #) is log smooth over a standard log point (Speck, N)
(Theorem 11.7). Then, a log smooth deformation in our sense is nothing but a smooth-
ing of X. If the singular locus of X is connected, our deformation theory coincides with
the one introduced by Kawamata and Namikawa [6].

The organization of this paper is as follows. We recall some basic notions in log
geometry in the next section, and review the definition and basic properties of log
smoothness in Section 3. In Section 4, we study the characterization of log smoothness
by means of the theory of toric varieties according to Illusie [3] and Kato [5]. In
Section 5, we recall the definitions and basic properties of log derivations and log
differentials. In Sections 6 and 7, we give the proofs of the theorems stated in Section
4. Section 8 is devoted to the formulation of log smooth deformation theory, and is
the main section of this present paper. We prove the existence of a representable hull
of the log smooth deformation functor in Section 9. In Sections 10 and 11, we give two
examples of log smooth deformations. In Section 12, we give the proof of the theorem
stated in Section 11, which generalizes the result of Kawamata and Namikawa [6, (1.1)].

The author would like to express his thanks to Professors Kazuya Kato and
Yoshinori Namikawa for valuable suggestions and advice. The author is also very
grateful to Professors Luc Illusie and Kenji Ueno for valuable advice on this paper.
Thanks are also due to the referee for valuable comments; he pointed out some errors
in the first draft of this paper. Section 11 and Section 12 resulted from discussions with
Professors Sanpei Usui and Takeshi Usa and Dr. Taro Fujisawa; the author is very
grateful to them for discussions and encouragements.
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CONVENTION. We assume that all monoids are commutative and have neutral
elements. A homomorphism of monoids is assumed to preserve neutral elements. We
write the binary operations of all monoids multiplicatively except in the cases of N (the
monoid of non-negative integers), Z, etc., when we write them additively. All sheaves
on schemes are considered with respect to the étale topology.

2. Fine saturated log schemes. In this and subsequent sections, we use the
terminology of log geometry basically as in [5]. Let X be a scheme. We view the struc-
ture sheaf ¢y of X as a sheaf of monoids under multiplication.

DEFINITION 2.1 (cf. [5,81]). A pre-log structure on X is a homomorphism .# — 0
of sheaves of monoids where .# is a sheaf of monoids on X. A pre-log structure
o: M — Oy is said to be a log structure on X if o induces an isomorphism

a: o YO0f) = 05,
where (5 is the subsheaf of invertible elements on Oy.

Given a pre-log structure a: .# — Oy, we can construct the associated log structure
o®: M*— Oy functorially by

(1 MP=(M D Ox)|P
and
o (x, u)y=u* ox)
for (x, u)e #?, where 2 is the submonoid defined by
P={(x,a(x)"") | xea " (0F)} .

Here, in general, the quotient M/P of a monoid M with respect to a submonoid P is

the coset space M/~ with induced monoid structure, where the equivalence relation ~
is defined by

x~y<>xp=yq forsome p,qeP.

#* has a universal mapping property: if f: #"— Oy is a log structure on X and
¢: M — AN is a homomorphism of sheaves of monoids such that a=fo¢, then there
exists a unique lifting ¢*: .#*— A". Note that the monoid .#* defined by (1) is the
push-out of the diagram

M0 05) > 0%
in the category of monoids, and the homomorphism a? is induced by « and the inclusion

Ox = Ox. We sometimes denote the monoid .#* by #/®,_, ©x0x - Note that we have
. . X
a natural isomorphism
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) M [0 N OF) = M*|O .

DEfFINITION 2.2. By a log scheme, we mean a pair (X, .#) with a scheme X and
a log structure .# on X. A morphism of log schemes f: (X, .#)—(Y, /) is a pair
f=(f,p) where f: X—Y is a morphism of schemes and ¢: f AN/ >/ is a
homomorphism of sheaves of monoids such that the diagram

v 2o

|

f_1(9y — Oy
commutes.

DEerFINITION 2.3. Let o: # — Oy and a’: A’ — Oy be log structures on a scheme
X. These log structures are said to be equivalent if there exists an isomorphism
Q. M S M such that a=a'c@, i.e., there exists an isomorphism of log schemes
(X, #) > (X, #') whose underlying morphism of schemes is the identity idy. Let
p: N —0yand ' : &/ — Oy be log structures on a scheme Y. Let f: (X, #)— (Y, A)
and f': (X, M)~ (Y, &) be morphisms of log schemes. Then f and f' are said to be
equivalent if there exist isomorphisms ¢ : # = M' and Yy A > A7 such that a=a'0 ¢,
p=p"-y and the diagram

M 2w

T I

VTS

commutes.

We denote the category of log schemes by LSch. For (S, #) e Obj(LSch), we denote
the category of log schemes over (S, ¥) by LSchg, ). The following examples play
important roles in the sequel.

ExAMPLE 2.4. On any scheme X, we can define a log structure by the inclusion
Oy = Oy, called the trivial log structure. Thus, we have an inclusion functor from the
category of schemes to that of log schemes sending X to (X, 05 < 0), which we often
denote simply by X.

ExaMPLE 2.5. Let 4 be a commutative ring. For a monoid P, we can define a
log structure canonically on the scheme Spec A[ P], where A[ P] denotes the monoid
ring of P over A, as the log structure associated to the natural homomorphism,

P2, A[P].
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This log structure is called the canonical log structure on Spec A[ P]. Thus we obtain a
log scheme which we denote simply by (Spec A[P], P). A monoid homomorphism P — Q
induces a morphism (Spec A[Q], Q) — (Spec A[P], P) of log schemes. Thus, we have a
contravariant functor from the category of monoids to LSchg,, ,.

EXAMPLE 2.6. Let Z~ be a fan in Ny=R% N=2Z% and X; the toric variety
determined by the fan X over a commutative ring 4. Then, we get an induced log
structure on the scheme X by gluing the log structures associated to the homomorphism

Mno¥— A[Mnc"],

for each cone ¢ in X, where M =Hom(N, Z). Thus, the toric variety X; is naturally
viewed as a log scheme over Spec 4, which we denote by (Xj, 2).

Next, we define important subcategories of LSch.

DErFINITION 2.7. A monoid M is said to be finitely generated if there exists a
surjective homomorphism N" — M for some n. A monoid M is said to be integral if the
natural homomorphism M — M®P is injective, where M8 denotes the Grothendieck
group associated with M. If M is finitely generated and integral, it is said to be fine.

DerFINITION 2.8. Let (X, #)eObj(LSch). A chart of .# is a homomorphism P —
A from the constant sheaf of a fine monoid P which induces an isomorphism from
the associated log structure P* to /.

DErFINITION 2.9. Let f: (X, #)—(Y, A") be a morphism in LSch. A chart of f
is a triple (P— A4, Q - N, Q —» P), where P— .# and Q — A" are charts of .# and A",
respectively, and Q —» P is a homomorphism for which the diagram

O — P
|
[N —

1S commutative.

DerINITION 2.10 (cf. [5, §2]). A log structure .# — (O on a scheme X is said to
be fine if M has étale locally a chart P—.#. A log scheme (X, .#) with a fine log
structure .# — Oy is called a fine log scheme.

We denote the category of fine log schemes by LSchf. Similarly, we denote the
category of fine log schemes over (S, #)e Obj(LSch’) by LSchis ,. The category LSchf
(resp. LSchg o)) is a full subcategory of LSch (resp. LSch ). Both LSch and LSch’
have fiber products (cf. [5, (1.6), (2.8)]). But the inclusion functor LSchf =, LSch does
not preserve fiber products (cf. Lemma 3.4). The inclusion functor LSchf =, LSch has
a right adjoint LSch —LSch® (cf. [5, (2.7)]). Then, the fiber product of a diagram
(X, M)—>(Z, P) (Y, &) in LSch' is the image of that in LSch by this adjoint functor.
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Note that the underlying scheme of the fiber product of (X, #)—(Z, #) (Y, A) in
LSch is X x, Y, but this is not always the case in LSch.

Next, we introduce a more excellent subcategory of LSch.

DEeFINITION 2.11. Let M be a monoid and P a submonoid of M. The monoid P
is said to be saturated in M if xe M and x" e P for some positive integer n imply x € P.
An integral monoid N is said to be saturated if N is saturated in N®P.

ExampLE 2.12. Put M=N and P=/- M for an integer /> 1. Then P is saturated
but is not saturated in M.

DEFINITION 2.13. A fine log scheme (X, .#)e Obj(LSch!) is said to be saturated if
the log structure .# is a sheaf of saturated monoids.

We denote the category of fine saturated log schemes by LSch. Similarly, we
denote the category of fine saturated log schemes over (S, %) e Obj(LSch®) by LSchf; .
The category LSch®™ (resp. LSchfs o) is a full subcategory of LSch® (resp. LSchls ).
The following lemma is an easy consequence of [5, Lemma (2.10)].

LemMma 2.14. Let f: (X, M) — (Y, N') be a morphism in LSch®, and Q — N a chart
of N, where Q is a fine saturated monoid. Then there exists étale locally a chart
(P> M, Q—>N,Q— P)of f extending Q- N such that the monoid P is also fine and
saturated.

LEMMA 2.15. The inclusion functor LSch® —, LSch has a right adjoint.
PrOOF. Let M be an integral monoid. Define
M ={xe M*®*|x"e M for some positive integer n} .

Then M** is an integral saturated monoid. For any integral saturated monoid N and
homomorphism M — N, there exists a unique lifting M**' — N. In this sense, M** is the
universal saturated monoid associated with M. Let (X, .#) be a fine log scheme. Then
we have étale locally a chart, P— .. This cahrt defines a morphism X — Spec Z[ P]
étale locally. Let X'=X Xg,.. zipySpec Z[P**']. Then X’ — Spec Z[ P**] induces a log
structure ./’ by the associated log structure of P5'— Z[P%'] - (.. It is easy to show
that we can glue those log schemes (X', .#’) and get a fine saturated log scheme. This
procedure defines a functor LSchf — LSch®. It is easy to see that this functor is the
right adjoint of the inclusion functor LSch —, LSch'. O

COROLLARY 2.16. LSch® has fiber products. More precisely, the fiber product of
morphisms (X, M)—(Z, P) (Y, N) in LSch is the image of that in LSch' by the right
adjoint functor of LSch®™ —, LSch'.

3. Log smooth morphisms. In this section, we review the definition and basic
properties of log smoothness (cf. [5]).
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DerFINITION 3.1. Let f: X' > Y be a morphism of schemes, and A" a log structure
on Y. Then the pull-back of A", denoted by f*.4", is the log structure on X associated
with the pre-log structure f ' A" — f7'0,—0Oy. A morphism of log schemes
f: (X, HM)—>(Y, ) is said to be strict if the induced homomorphism f* A" — /# is
an isomorphism. A morphism of log schemes f: (X, .#)— (Y, A")is said to be an exact
closed immersion if it is strict and f: X — Y is a closed immersion in the usual sense.

Exact closed immersions are stable under base change in LSch' (cf. [5, (4.6)]).

LEMMA 3.2. Let a: M — Oy and o’ : M'— Oy be fine log structures on a scheme
X with a homomorphism @: M — M' of monoids such that a=a'o@. Then, ¢ is an
isomorphism if and only if (o mod Oy): M |0y — M'|Ox is an isomorphism.

The proof is straightforward.

LEMMA 3.3. Let f: (X, M)— (X, N) be a morphism of fine log schemes. Then, we
have a natural isomorphism

SN [OF) = f*N 0% .
In particular, f is strict if and only if the induced morphism is an isomorphism
SN NOF) =~ #]0% .
ProoF. The first part is easy to see. As for the second part, apply (2) and Lemma
3.2 O
LemMma 3.4 (cf. [4, (1.7)]). Let
3) (X, M) — (Z, P)— (Y, N)

be morphisms in LSch®. If (Y, /") —(Z, P) is strict, then the fiber product of (3) in LSchf
is isomorphic to that in LSch. In particular, the underlying scheme of the fiber product
of (3) in LSch® is isomorphic to X x ;Y.

PrROOF. We may work étale locally. Let P—Z be a chart of 2, where P is a
fine saturated monoid. Since (Y, #')—(Z, &) is strict, P—>2P — A" is a chart of A" by
Lemmas 3.2 and 3.3, and (2). Take a chart

P—M

Lo

P — M

of (X, M)—(Z,P) extending P—>P. Set W=Xx,Y. There exists an induced
homomorphism M — Oy,. Define a log structure on W by this homomorphism. Then
this log scheme (W, M — 0y,) is the fiber product of (3) in LSch (cf. [5, (1.6)]). Since
the associated log structure .4y of M — 0y, is fine and saturated, (W, #) is indeed
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the fiber product of (3) in LSchfs. |

DEerFINITION 3.5. The exact closed immersion ¢: (7", &)= (T, &) is said to be a
thickening of order <n, if #=Ker(O;— 0y.) is a nilpotent ideal such that #"*!=0.

LEMMA 3.6 (cf.[3]). Let(T, &) and(T', ¥') be fine log schemes. If (t,0): (T', £")—
(T, &) is a thickening of order <n, then there exists a commutative diagram

6
l—14+SFf o,y 7Y — ¥ —1
I n n

14+ — 7 lg® (L1,
BEP

with exact rows and ¥ =Ker(Op— Or.), such that the square on the right hand side is
Cartesian.

The proof is straightforward. Note that the multiplicative monoid 1+.# can be
identified with the additive monoid .# by 1+ x> x if #2=0.

DerINITION 3.7 (cf. [5, (3.3)]). Let f: (X, #)— (Y, /") be a morphism in LSch'.
f is said to be log smooth if the following conditions are satisfied:

1. The underlying morphism f of schemes is locally of finite presentation.

2. For any commutative diagram

(T, &) s (X, 1)
/| |

in LSchf, where ¢ is a thickening of order one, there exists étable locally a
morphism g: (T, #)— (X, #) such that s'=got and s= fog. ’

The proofs of the following two propositions are straightforward and are left to
the reader.

ProPOSITION 3.8. Let f: (X, #)— (Y, N) be a morphism in LSch. If f is strict,
then f is log smooth if and only if the underlying morphism f of schemes is smooth in
the usual sense. '

PROPOSITION 3.9. For (S, #)eObj(LSch’) and (X, .#),(Y, /)€ Obj(LSchy ),
let [: (X, M)—(Y, N) be a morphism in LSchis o, Assume that f is log smooth. If
(8, &) is a log scheme over (S, &), then the induced morphism

(X, A) X, (S L) = (Y, N) X, (S, &)

is also log smooth.
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We conclude this section by introducing integral morphisms of fine log schemes.

DEerFINITION 3.10 (cf. [5, (4.1), (4.3)]. Let f: (X, .#)—(Y, #) be a morphism
in LSch’. We say f to be integral if for any xe X, setting Q= f~}(A'/0y )z and P=
(A ]0%)z the ring homomorphism Z[Q]— Z[P] induced by f is flat, where x de-
notes the separable closure of x.

ProrosITION 3.11 (cf. [5, (4.4)]). Let f: (X, M)— (Y, A') be a morphism in LScht.
Then, f is integral in each of the following cases:

1. f is strict.
2. For any yeY, the monoid (N |0Oy); is generated by one element, where y de-
notes the separable closure of y.

4. Toroidal characterization of log smoothness. The following theorem is due to
Kazuya Kato [5], and we prove it in §6 for the reader’s convenience.

THEOREM 4.1 ([5, (3.5), (4.5)]). Let f: (X, M)— (Y, &) be a morphism in LSchf
(resp. LSch®) and Q — A" a chart of N (resp. with Q saturated). Then the following
conditions are equivalent:

1. f is log smooth.

2. There exists étale locally a chart (P— M, Q — N, Q = P) of f extending Q - N

(resp. with P saturated), such that
(a) Ker(Q® — P®) and the torsion part of Coker(Q® — P®®) are finite groups
of orders invertible on X,
(b) X = Y Xgpee 2101 SPEC Z[P] is smooth (in the usual sense).
Moreover, if f is a log smooth and integral morphism in LSchf (resp. LSch®) and Q — &
is a chart of & (resp. with Q saturated), then there exists a chart (P— M, Q - N, Q — P)
of f.as above such that the ring homomorphism Z[ Q] — Z[ P] induced by Q — P is flat.

REMARK 4.2. The proof of Theorem 4.1 in §6 shows that we can require in the
condition (a) that Q® — P*® is injective without changing the conclusion. Moreover,
we can replace the smoothness in the condition (b) by the étaleness without changing
the conclusion (cf. [5, (3.6)]).

CoOROLLARY 4.3 (cf. [S, (4.5)]). Letf: (X, #)—(Y, N) be a log smooth and inte-
gral morphism in LSch®. Then the underlying morphism X — Y of schemes is flat.

We give some important examples of log smooth morphisms in the following. Let
k be a field.

DEFINITION 4.4. A log structure on Spec k is called a log structure of a logarithmic
point if it is equivalent (cf. Definition 2.3) to the associated log structure of a: Q -k,
where Q is a monoid having no invertible element other than 1 and « is a homomorphism
defined by
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1 if x=1,
a(x)= .
0 otherwise .

Note that this log structure is equivalent to Q@ k* — k. We denote the log scheme
obtained in this way by (Speck, Q). The log scheme (Speck, Q) is called a logarithmic
point. Especially, if Q =N, the logarithmic point (Speck, ) is said to be the standard
point.

If k is algebraically closed, any log structure on Speck is equivalent to the log
structure of a logarithmic point (cf. [3] and [5, (2.5), (2)]). Note that if we set Q={1},
then the log structure of the logarithmic point induced by Q is the trivial log structure
(cf. Example 2.4).

ExAMPLE 4.5. Let P be a submonoid of a group M =Z* such that P® =M and
that P is saturated. Let Q be a submonoid of P, which is saturated but is not necessarily
saturated in P. We assume the following:

1. The monoid Q has no invertible element other than 1.

2. The order of the torsion part of M/Q#®P is invertible in k.

Let R=Z[1/N] where N is the order of the torsion part of M/Q*®°. The latter assumption
implies by Theorem 4.1 that (Spec R[P], P)— (Spec R[Q], Q) (see Example 2.5) is log
smooth. Define Spec k — Spec R[Q] by a: Q —k as in Definition 4.4. Let X be a scheme
over k which is smooth over Speck X g, rig; Spec R[P]. Then we have a diagram

X

1

Spec k X gy rig) Spec R[P] — Spec R[P]

| |

Spec K — Spec R[Q] .

Define a log structure .# on X by the pull-back of the canonical log structure on
Spec R[P]. Then we have a morphism

f: (X, M)— (Speck, Q)

of fine saturated log schemes. This morphism f is log smooth by Proposition 3.8 and
Proposition 3.9. We denote this log scheme (X, .#) simply by (X, P).

ExXAMPLE 4.6. (Toric varieties.) In this and the following examples, we use the
notation appearing in Example 4.5. Let ¢ be a cone in Ng=R“ and ¢" its dual cone in
Mg=R‘. Set P=Mno* and Q={0}cP. Then, Speck Xgp.. zo Spec Z[P] is k-
isomorphic to Spec k[ P] which is nothing but an affine toric variety. Let X — Spec k[ P]
be a smooth morphism. Then (X, P) - Speck is log smooth. Note that this morphism
is integral by Proposition 3.11.
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ExAMPLE 4.7. (Variety with normal crossings.) Let o be the cone in Mgz=R*
generated by e, ..., e;, where ¢,=(0,...,0,1,0,...,0) (1 at the i-th entry), 1 <i<d.
Let © be the subcone generated by ase, + - - - +a,e; with positive integers a; for
j=1,...,d. We assume that GCD(a,, ..., a;) (=N) is invertible in k. Set R=Z[1/N].
Then, by setting P=Mno and Q=Mn1t, we see that Speck xgp. rio; SPec R[P] is
k-isomorphic to Speck[z,, ..., z,]/(z$*- - -z4) and f is induced by

N k2, .y 225 289
d
N —k,

where the morphism in the first row is defined by e;— z;, (1 <i<d), and ¢ is defined by
o(l)=a,e,+ - - +aze, Let X—>Speck[zy, ..., z,]/(z{ " -z5%) be a smooth morphism.
Then, (X, N*)— (Speck, N) is log smooth. Note that this morphism is integral by
Proposition 3.11.

The following theorem is an application of Theorem 4.1 and will be proved in §7.

THEOREM 4.8. Let X be an algebraic scheme over a field k, and M — Oy a fine
saturated log structure on X. Then the log scheme (X, #) is log smooth over Spec k with
trivial log structure if and only if there exist an open étale covering U ={U;};.; of X and
a divisor D on X such that

1. there exists a smooth morphism h;: U;— V; where V, is an affine toric variety

over k for each iel,

2. the divisor U; x x D on Uj is the pull-back of the union of the closure of codimension

one torus orbits of V; by h; for each iel,

3. the log structure M — Oy is equivalent to the log structure Oxnj, Ox\ p < Ox

where j: X\ D < X is the inclusion.

COROLLARY 4.9. Let X be a smooth algebraic variety over a field k, and M — Oy
a fine saturated log structure on X. Then, the log scheme (X, #) is log smooth over
Speck with trivial log structure if and only if there exists a reduced normal crossing
divisor D on X such that the log structure M — Oy is equivalent to the log structure
Ox 0 j O3 p = Ox where j: X\ D < X is the inclusion.

5. Log differentials and log derivations. In this section, we are going to discuss
the log differentials and log derivations, which are closely related with log smoothness,
and play important roles in the sequel. To begin with, let us introduce some abbreviated
notation in order to avoid complications. Let (X, .#) be a log scheme. If we like to
omit writing the log structure ./, we write this log scheme by X' to distinguish it from
the underlying scheme X.

DEFINITION 5.1 (cf. [5], in different notation). Let X'=(X, .#) and Y'=(Y, A
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be fine log schemes, and (f, ¢): X' —> Y' a morphism, where ¢:f A >/ is a
homomorphism of sheaves of monoids.
1. Let & be an Oy-module. The sheaf of log derivations Dery(X*, &) of X' to &
over Y' is the sheaf of germs of pairs (D, Dlog) with De Zay(X, &) and
Dlog: .# — & such that the following conditions are satisfied:
(a) Dlog(ab)=Dlog(a)+ D log(b), for a, be 4,
(b) a(a)Dlog(a)= D(«(a)), for ae 4,
() Dlog(e(c))=0 for ce f~1 N .
2. The sheaf of log differentials of X over Y1 is the Oy-module defined by
Q)lﬁ/yf = [9)1(/1' D(Ox@z M)A,
where " is the Oyx-submodule generated by
(dx(a), 0)—(0, (@) ®a) and (0, 1® (),

for all ae M, be f~ 1N .
These are coherent Ox-modules if Y is locally Noetherian and X locally of finite
type over Y (cf. [3]).

ProPOSITION 5.2 (cf. [S, §1]). Given a Cartesian diagram of fine log schemes

L]

Yt — 7,
we have an isomorphism
Q*Q;l?f/ﬁ — Q)l(r/yr .
The proofs of the following three propositions are found in [5, §3].

PROPOSITION 5.3. Let X', Y', f, and & be the same as in Definition 5.1. Then there
is a natural isomorphism

Homg (Qxryt, €) = Deryr(X1, 8),
by ur(uod, uodlog), where d and dlog are defined by
d: Oy — Qx;y — Qxiyt
and
dlog: M —> Ox @z M —> Qy1y1 .

PROPOSITION 5.4. Let X1 S, Yt 2.7t be morphisms of fine log schemes.

1. There exists an exact sequence
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f*Q;rt/zf - Q}lﬁ/zf - Q;ﬁ/yT —0.

2. If f is log smooth, then
4 0— f*Qll/*/zf - le(*/zf - len/w —0

is exact.
3. If gof is log smooth and (4) is exact and splits locally, then f is log smooth.

ProposITION 5.5. If f:X'—Y' is log smooth, then Qyy: is a locally free Ox-
module of finite rank.

ExaMpPLE 5.6 (cf. [10, Chap. 3, §(3.1)]). Let X; be a toric variety over a field &
determined by a fan ¥ on Ng with N=Z*. Consider the log scheme (X, X) (cf. Example
2.6) over Speck. Then we have isomorphisms of ¢y-modules

@%k(Xf, (OX)‘:_'(DX ®ZN and Q;tlki)m)(@zM,
where M =Hom,(N, Z).
ExaMPLE 5.7. For X=Speck[z,,...,z,]/(zy" " 2), let f: (X, #)—(SpecK, N—

k) be the log smooth morphism defined in Example 4.7. Then Ders(X7, Oy) is a free
Ox-module generated by
0 0 0 0

Zi——y s Z

0z,

>, 9 0o
0z; 07144

with a relation

0
4+ 4z —=0.
0z, 0z,

Then sheaf Q51 is a free Oy-module generated by the logarithmic differentials

dz, dz,
ey ——dZ 41, ..., d2,
Zy ]
with a relation
dz, dz,

In the complex analytic case, the sheaf Q)1+ is nothing but the sheaf of relative logarithmic
differentials introduced, for example, in [1, §3] and [6, §2].

6. The proof of Theorem 4.1. In this section, we give a proof of Theorem 4.1
due to Kazuya Kato [5]. Before proving the general case, we prove the following
proposition.
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PROPOSITION 6.1. Let A be a commutative ring and h: Q — P a homomorphism of
fine monoids. The homomorphism h induces a morphism of log schemes

f: Xt'=(Spec A[P], P)—> Y'=(Spec A[Q], 0) .

We set K=Ker(h® : Q& — P®) and C=Coker(h®": Q8 — P®P), and denote the torsion
part of C by C,,. If both K and C,,, are finite groups of order invertible in A, then f is
log smooth.

ProOF. Suppose we have a commutative diagram

(T', &) =5 X' =(Spec A[P], P)
I
(7, 2) - Y'=(Spec A[Q], Q)

in LSchf, where the morphism ¢ is a thickening of order one. Since we may work étale
locally, we may assume that T is affine. Set # =Ker(€— 0;.). Since the morphism ¢
is a thickening of order one, by Lemma 3.6, we have the following commutative diagram
with exact rows:

*

l— 145 oy £ 0 @ 1
l n n

|l —1+SF — PP ()P — 1.
(t*)BP
Note that the square on the right hand side is Cartesian.
First, consider the following commutative diagram with exact rows:

1l— K — ow® ™ po o

O
l — 14+F — P — (F)P— 1.
(t*)BP
The multiplicative monoid 1+ . is isomorphic to the additive monoid # by 1+ x> x
since #2=0. If the order of K is invertible in A4, then we have u=1, and hence there
exists a morphism a’: R — #*P with R=Image(h®: Q® — P*®) such that a’ch®** =v and
(t*)%Poa’ = w.
Next, we consider the following commutative diagram with exact rows:

1 — R -4 pe _Cc—1

| [

R T T
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We show that there exists a homomorphism a”: P8 — %P such that a”-t=a’ and
(t*)toa” =w. The obstruction for the existence of a” lies in Ext!(C, .#). In general, if
a positive integer n is invertible in 4 then we have Ext!(Z/nZ, .#)=0. Combining this
with Ext!(Z, #)=0, we have Ext(C, .#)=0 since the order of the torsion part of C is
invertible in 4. Hence a homomorphism a” exists. Since the diagram

1*

L — Z
n n
pep > (L)

(1%yeP

is Cartesian, there exists a homomorphism a: P — % such that t*oca=(s')* and ach=s*.
Using this a, we can construct a morphism of log schemes g : (T, £) — Xt =(Spec A[P], P)
such that got=s' and sog= f. O

Now, let us prove Theorem 4.1. First, we prove the implication 2=-1. Let
R=Z[1/(N, - N,)] where N, is the order of Ker(Q® — P®?) and N, the order of the
torsion part of Coker(Q#° — P#?). By the assumption (a), we have

Y Xspec z10 Spec Z[P] -~ Y x Spec RIQ] Spec R[P] .

Since X = Y X, rigy Spec R[P] is smooth by (b), f is log smooth by Propositions 3.8,
3.9 and 6.1.

Next, let us prove the converse. Assume that the morphism f is log smooth. Then,
the sheaf Q1+ is a locally free Ox-module of finite rank (cf. Proposition 5.5). Take
any point xe€ X. We denote by x the separable closure of x.

Step 1. Consider the morphism of @yx-modules

1 ®d10g @X ®zﬂgp — Q)l(y/yf 5

which is surjective by the definition of Q1+ Then we can take elements ,, ..., t,€ M;
in such a way that the system {dlog?#}, <;., is an Oy z-base of Q)+ ;. Consider the
homomorphism { : N"— #; defined by

N'a(ng,...,n)—t} - ttTed;.

Combining this y with the homomorphism Q — f ~}(A");— .4z, we have a homo-
morphism ¢: H=N"® Q — M.

Step 2. Let k(X) denote the residue field at X. We have a homomorphism
5 k(%) ®z Z" — k(%) ®z Coker(f~ (N *]0F)s— M| 0% 5)
by k(X) @z Yt : k(¥X) ®z Z" — k(X) ®, ME¥ and the canonical projections JM5° — Mg"/
0.z~ Coker(f ~1(AN®/03 )z - M=* |0k ). We claim that this morphism (5) is surjec-
tive. Indeed, this morphism coincides with the composite morphism

k(%) ®z Z" —> k(%) ®o, - Qiyyrz — k(%) ®z Coker(f ™ (N */0F)s — MEF|O% 5) ,



332 F. KATO

where the first morphism is induced by dlogoy and the second one by the canonical
projection, and these morphisms are clearly surjective. Hence the morphism (5) is
surjective. On the other hand, the homomorphism Q% — f~Y(A"/0}); is surjective
since Q —» " is a chart of #". Hence, the homomorphism

k(%) ®7 Q0 — k(%) @z f ~ (N Oy)z
is surjective, and then, the homomorphism
1@z 0% : k(X) @z H — k(X) @z (M 0% 5)

is surjective. This shows that the cokernel C=Coker(p®: H® — #£°/0% 5) is annihilat-
ed by an integer N invertible in Oy .

Step 3. Take elements ay, ..., a;e 4/ which generate C. Then we can write
al=u;p(b;) for u;€ 0% z and b;e H®, for i=1, ..., d. Since 0% 3 is N-divisible, we can
write u;=vY forv;e Oy z, fori=1, ..., d, and hence we may suppose a” = ¢(b;), replacing
a; by a;/v; for i=1,...,d. Let G be the push-out of the diagram

H® 71 74,

where Z¢ — H*® is defined by e;— b;, and Z¢ — Z? is defined by e;+— Ne; for i=1, ..., d.
Then @®: H® - #£° and Z‘— /f°, defined by e;—~a; for i=1,...,d, induce a
homomorphism

¢: G— MEP

which maps G surjectively onto #£°/0% ;. Then P:= ¢~ (.M;) defines a chart of .# on
some neighborhood of x (cf. [5, Lemma 2.10]). If ./ is saturated, then so is P. There
exists an induced map Q — P which defines a chart of f in some neighborhood of x.
Since H® — PP isinjective, so is Q8 — P*®, The cokernel Coker(H® — P*P)is annihilated
by N, hence Coker(Q®8 — P#?), _is finite and annihilated by N.

Step 4. Set X' =Y Xg,.c z10;5pec Z[P] and g: X — X'. We need to show that the
morphism g is smooth in the usual sense. Since X has the log structure induced by g
from X''=(X’, P), it suffices to show that g is log smooth (cf. Proposition 3.8). Since
k(%) ®z(P#/Q%) 5 k(X) ®7Z° 5 k(%) ®oy o Qiyyt,z and Qv+ is locally free, we have
Qkiyt > Ox ®2(P®/Q®) in some neighborhood of x. On the other hand, by direct
calculation, one sees that Q}.1y1 = Ox. @ zip 2z1pyz10) > Ox ®z(P#/Q*). Hence we have
g*Qx1y1 S Qxvyr. This implies that g is log smooth by Proposition 5.4 (in fact, g is log
étale (cf. [5])).

Step 5. Finally, we need to show that the ring homomorphism Z[Q]— Z[P]
induced by 4: Q — P is flat in case f is integral. By [5, (4.1)], the ring homomorphism
Z[Q]— Z[P] is flat if and only if for any a,, a,€0Q, b,, b, € P with h(a,)b, =h(a,)b,,
there exist a,, a,€Q and be P such that b, =h(a;)b, b,=h(a,)b, and a,a;=a,a,. Set
M=(AM|0%)z and N=(A"/Oy);s. Let h: N— M be the homomorphism induced by f.
Then, we have a commutative diagram
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N-"om

o e

e~ P

Since f is integral, the ring homomorphism Z[N]— Z[M] induced by # is flat, and
hence /i: N— M satisfies the above condition. Recall that the morphism ¢ maps P
surjectively onto M, and P/R 5 M by ¢ where R is a subgroup in P. Similarly, i maps
O surjectively onto N, and Q/S 3 N by y where S is a submonoid in Q, since Q - A~
is a chart of A". For any a,, a,€Q, b,, b, € P with h(a,)b, = h(a,)b,, there exist a3, a, € N
and be M such that ¢(b,)=h(a3)b, ¢(b,)=(ay)b, and Y(a,)a; =y(a,)a,. Take as, a,eQ
and b€ P such that y(a;)=a3, Y(a,)=a,, and ¢(b')=b. We may assume a,a;=a,a,.
Then we have b, =h(as)b'cy, b, =h(a,)b’c, for some ¢y, ¢, € R. Since h(a,)b, =h(a,)b,,
a,ay=a,a,, and P is fine, we have ¢; =c,. Then, by setting b=5'c;, =b'c,, we have the
desired result. O

7. The proof of Theorem 4.8. In this section, we give a proof of Theorem 4.8.
If V'=Speck[P] is an affine toric variety, then it is easy to see that the log structure
associated to P— k[P] is equivalent to the log structure Oyn j, Oy« p = Ox where D
is the union of the closure of codimension one torus orbits of V and j: V\ D <V is
the inclusion. Hence, the “if”” part of Theorem 4.8 is easy to see. Let us prove the
converse. Let (X, .#) be as in the assumption of Theorem 4.8 and f: (X, .#)— Speck
the structure morphism. The key lemma is the following.

LemMmA 7.1. We can take étale locally a chart P— M of M such that
1. the chart (P> M, 1 k™, 1> P) of f satisfies the conditions (a) and (b) in
Theorem 4.1,
2. P is a fine saturated monoid, and has no torsion element.
Here, by a torsion element, we mean an element x#1 such that x"=1 for some positive
integer n.

First, we are going to show that the theorem follows from the above lemma. Since
the monoid P has no torsion element, P is the saturated submonoid of a finitely generated
free abelian group P®°. Hence, X is étale locally smooth over an affine toric variety,
and the log structure .# on X is étale locally equivalent to the pull-back of the log
structure induced by the union of the closure of codimension one torus orbits. Since
these log structures glue to the log structure .# on X, the pull-back of the union of the
closure of codimension one torus orbits glue to a divisor on X. In fact, this divisor is
the complement of the largest open subset U such that .# |u is trivial, with the reduced
scheme structure. Hence our assertion is proved.

Now, we are going to prove Lemma 7.1. We may work étale locally. Take a chart
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(P> #,1—>k>,1— P)of fasin Theorem 4.1. We may assume that Pis saturated. Then

P,.:={xeP|x"=1 for some n}

tor *

is a subgroup in P. Take a decomposition P = G, ® G, of the finitely generated abelian
goup P®P, where G; (resp. G,,,) is a free (resp. torsion) subgroup of P®°. Then we have
P, =PnG, =G,, since P is saturated. Define a submonoid by P;=PnG;.

CLaM 1. P=P;@®P,,.

ProoF. Take x e P. Decompose x=yz in P® so that ye G; and ze G,, = P,,,. Since
y"=(xz"Y)"=x"e P for n large, we have ye P. Hence ye P;. O

CLAM 2. The homomorphism o : P; = P 2> Oy defines a log structure equivalent
to M.

Proor. If xeP,,, then a(x)e Oy since a(x)"=1 for n large. Hence a(P,,)< 0%,
which implies that the associated log structure of P; is equivalent to that of P. O

Hence, the morphism f is equivalent to the morphism induced by the diagram

P, 2 0y

ol ]

1 - k.
Then we have to check the conditions (a) and (b) in Theorem 4.1. The condition (a) is
easy to verify. Let us check the condition (b). We need to show that the morphism
X —> Spec k[ P;]
induced by X — Spec Z[ P] — Spec Z[ P;] is smooth.
CLAM 3. The morphism
6) Spec k[ P]— Spec k[ P¢]
induced by P —, P is étale.

PrOOF. Since P=P;® P,,,, we have k[ P]=k[P;]®k[P,,]. Since every element
in P, is a root of unity, and since the order of P,, is invertible in k, the morphism
k < k[ P,,] is a finite separable extension of the field k. This shows that the morphism
(6) is étale. O

Now we have proved Lemma 7.1, and hence, Theorem 4.8.

8. Formulation of log smooth deformations. From now on, we fix the following



LOG SMOOTH DEFORMATION THEORY 335

notation. Let k be a filed and Q a fine saturated monoid having no invertible element
other than 1. Then we have a logarithmic point (cf. Definition 4.4) k" =(Speck, Q). Let
(f, @): X'=(X, .#)—k'=(Speck, Q) be a log smooth morphism in LSch®. We often
denote this morphism of log schemes simply by f.

Let A be a complete Noetherian local ring with residue field k. For example, 4 is
k or the ring of Witt vectors with entries in k when k is perfect. We denote by A[Q]
the completion of the monoid ring A[Q] along the maximal ideal u+ A[Q \ {1}] where
u denotes the maximal ideal of A. The completion A[Q] is a complete local A-algebra
and is Noetherian since Q is finitely generated. If the monoid Q is isomorphic to N,
then the ring A[Q] is isomorphic to A[¢] as a local A-algebra. Let €4, be the category
of Artinian local A[Q]-algebras with residue field k, and € Aoy the category of pro-objects
of @ 41qp (cf. [11]). For 4 € Obj(% arop)> We define a log structure on the scheme Spec 4
by the log structure

Q@A — A

associated to the homomorphism Q — A[Q] — A. We denote by (Spec 4, Q) the log
scheme obtained in this way.

DErFINITION 8.1. For 4 € Obj(% 4;¢y), @ log smooth lifting of f: (X, M) — (Speck, Q)
on A is a log smooth morphism 7: (X, .#)— (Spec A, Q) in LSch together with a
Cartesian diagram

X, M) — (X, M)
/| |7
(Speck, Q) — (Spec 4, Q)

in LSch®. Two log smooth liftings are said to be isomorphic if they are isomorphic in
LSch,.. 4. 0)-

Note that (Speck k, Q) — (Spec 4, Q) is an exact closed immersion, and hence the
above diagram is Cartesian in LSch® if and only if so is it in LSch (cf. Lemma 3.4). In
particular, the underlying morphisms of log smooth liftings are (not necessarily flat)
liftings in the usual sense. Moreover, since exact closed immersions are stable under base
change, (X, .#)— (X, .#) is also an exact closed immersion. If either Q= {1} or 0=N,
the underlying morphisms of any log smooth liftings of f are flat since these morphisms
of log schemes are integral (cf. Proposition 3.11). Hence in this case the underlying
morphisms of log smooth liftings of f are flat liftings of f.

REMARK 8.2. In Definition 8.1, we assume that any log smooth lifting is log
smooth. This assumption is crucial since any lifting of a log smooth morphism is not
necessarily log smooth. Here is an example due to the referee. Set Q=/N and
X =Speck[x]. The morphism X — Speck k of schemes induces a log structure .# on X
such that the morphism f: (X, .#)— (Speck, N) is strict, and hence log smooth (cf.
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Proposition 3.8). The strict morphism
f: (Speck[x, £]/(xe, &2), .A) —> (Spec k[]/(e?), N)

induced by the morphism Speck k[x, &]/(xe, £2) — Spec k[e]/(¢?) of schemes gives a
lifting of f to (Speck k[¢]/(c2), N), where N— k[¢]/(¢?) is defined by 1+>¢. Then f is
not log smooth since f is strict but the underlying morphism Spek k[x, £]/(xe, £2) —
Speck k[¢]/(¢?) of schemes is not flat (cf. Proposition 3.11, Corollary 4.3).

Take a local chart (P—>.#,0—->Q@®k™, Q— P) of f extending the given Q —»k
as in Theorem 4.1 such that Q% — PfP js injective and the induced morphism
X — Speck Xgpec 2101 Spec Z[ P] is étale (cf. Remark 4.2). Then f factors through
Speck X gpec 2101 SPec Z[P] by the étale morphism X — Speck X g, 210 Spec Z[P] and
the natural projection étale locally. For 4 € Obj(% 0, an étale lifting

@) X — Spec 4 x spec z10] Spec Z[ P]

of X — Speck Xgpec zi01Spec Z[P], with the naturally induced log structure, gives a
local log smooth lifting of f. Conversely, suppose f: (X, .#)— (Spec A, Q) is a local log
smooth lifting of f on A.

LEMMA 8.3. The local chart (P— M, Q- Q@ k™, Q— P)of f lifts to a local chart
(P>M,Q->Q0DA", Q- P)of J.

Proor. The proof is done by induction on the length of 4. Take 4’ e Obj(%,;0;)
with a surjective morphism A4 — A4’ such that I=Ker(4 - A)#0 and I>=0. Let
f' (X', M) (Spec A, Q) be a pull-back of 7. Then 7 is a log smooth lifting of f to
A’. By induction, we have a lifted local chart (P - .#", 0 > Q®(4")*, Q — P) of f'. The
morphism (X', #")— (X, .4) is a thickening of order one. Let R=Z[1/N7], where N is
the order of the torsion part of P#/Q®P. Consider the commutative diagram

(X', M) —> (Spec R[P], P)

l l

(X, M) — (Spec R[Q], Q) -

Since (Spec R[P], P)—(Spec R[Q], Q) is log smooth, (X, .#)— (Spec R[Q], Q) factors
through (Spec R[P], P) by a morphism g: (X, .#)— (Spec R[P], P). This morphism g
defines a homomorphism P — .4 of sheaves of monoids on X such that the diagram

P — M
I
Q — Q04"

is commutative. Since .#/0y > M'/0%., we can easily show that the morphism P — .47
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defines a chart (cf. Lemma 3.3). O

Then f factors through Spec A X spec z1g) SPeC Z[ P] by the induced morphism
X - Spec 4 X spec zig) SPEC Z[ P] and the natural projection, and we have the following
commutative diagram

X — X

l l

Speck X spec z101Spec Z[ P] — Spec A X gy 210y SpeC Z[ P]

l J

Speck — Spec 4,

such that each square is Cartesian. We need to show that X — Spec 4 x spec zj0) Spec Z[P]
is étale. Set ¥'=Soec 4 X spec zi1 Spec Z[P]. Since X —Spec 4 is log smooth, Q)l?f/ 4t 18
a locally free Og-module. By Proposition 5.2, we have Qi 1®p0x > Qi
(5 0x®z(Pt/Q*®P), and hence we have Q}T/,ﬂ 3 0y ®z(P®/Q*®?) étale locally. On
the other hand, by direct calculation, we have Q},r/ 4t > Oy @ (PP/Q%P). Hence, we have
Qpa1lx > Q- By [5, (3.8), (3.12)], X— ¥ is étale. Therefore, we have proved the
following proposition.

ProPOSITION 8.4 (cf. [S, (3.14)]). For A€ o), a log smooth lifting of f:
(X, #)— (Speck, Q) on A exists étale locally, and is unique up to isomorphism. In
particular, log smooth liftings of an integral and log smooth morphism are integral.

REMARK 8.5. In Definition 8.1, we assume that any log smooth lifting is log
smooth. Without this assumption, Proposition 8.4 is false. For example, the log smooth
morphism f: (X, #)— (Speck, N) in Remark 8.2 has at least two different liftings to
(Speck[£]/(¢?), N), one of which is log smooth while the other is not log smooth.

Let f: (X, .#)— (Spec A, Q) be a log smooth lifting of f to 4, and u: 4'> A4 a
surjective homomorphism in %, such that I?=0 where I=XKer(u). Suppose
7" (X', M) — (Spec A', Q) is a log smooth lifting of f to A’ which is also a lifting of f.
Let (P—>.A',Q—->Q@®(A)*,Q—>P) be a local chart of f’ which is a lifting of
(P> M, Q—>Q@k*,Q— P). Define a local chart (P—.#4,0->Q@®A",Q—P) of
foy Posl'>M and Q- Q@A) > Q@A*. An automorphism @: (X', 4" >
(X', ") over (Spec A', Q), which is the identity on (X, .#), induces an automorphism
0: (') = (M. Consider the diagram

Ppe» = pep

1 — 1+ — (M) — AP —1.
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For aeP®®, the element a'(a): [foa'(@] ' is in 1+.#. Then we have a morphism
A: PP I=]-03 3 I®,0¢by Al@)=a'(a)* [0-a’(a)] "' — 1. The morphism 4 lifts to
a morphism 4: P®*/Q*%* — |® 0% and defines a morphism of ¢ g-modules
Oz ®z(P¥/Q*) > 1®,05 .
Since Q;ﬁ/ 3 Og ®2(P8P/QFP) étale locally, this defines a local section of
Homoz Qi 4 I®4Oz) = Zer(XT, U) @ 41 .

Conversely, for a local section (D, D log)e Zen( X', 04) ® ,I, D induces an automorphism
of O¢. and Dlog induces an automorphism of .#’, and then, induces an automorphism
of (X', ."). By this, applying the argument in SGA I [2, Exposé 3], we get the following
proposition.

PROPOSITION 8.6 (cf. [5, (3.14)]). Let f: (X, .#)— (Spec A, Q) be a log smooth
lifting of f to A, and u: A'—> A a surjective homomorphism in 6,4 such that I*=0,
where I=Ker(u) (i.e., (Spec 4, Q) > (Spec A, Q) is a thickening of order <1).

1. The sheaf of germs of lifting automorphisms of f to A’ is

Der (X1, 09) @1 .

2. Any log smooth lifting of f to A' which lifts f canonically induces an isomorphism
from the set of all isomorphism classes of such liftings to

H(X, Zer 1(X1, 03) @41,
as pointed sets.
3. The obstructions for lifting f to A’ are in
Hz()?, @e’ur(fT, 0z) @41 .

Define the log smooth deformation functor LD = LDyt by letting LDy+,:(4) to be
the set of isomorphism classes of log smooth liftings of f: Xt — k' to A4 for 4 € Obj(% 410y
This is a covariant functor from %4, to the category Ens of sets such that LDy+ (k)
consists of one point. We shall prove the following theorem in the next section.

THEOREM 8.7. The log smooth deformation functor LDy, has a representable hull
(¢f. [11]) if f is integral and X is proper over k.

9. The proof of Theorem 8.7. In this section, we prove Theorem 8.7 by checking
Schlessinger’s criterion ([11, Theorem 2.11]) for LD. Let u;: A; > Agand u,: A, - A,
be morphisms in € 4;4;. Consider the map

® LD(4, onAz)_’LD(A 1) X LD(40) LD(4,) .

Then we need to check the following conditions.
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(H1) The map (8) is surjective whenever u,: A, — A, is surjective.
(H2) The map (8) is bijective when Ay=k and A,=k[e], where k[¢]=k[E]/(E?).
(H3) dimy(zp) < 00, where ty p=LD(k[€]).

Suppose (H1) and (H2) are valid. Then by Proposition 8.6, we have an isomorphism
tLD =~ HI(X, @e’tkr(XT, (Dx))

of k-linear spaces. Qur assumption implies that #, , is a finite dimensional vector space,
since Der (X, Oy)is a coherent Oy-module. Thus, (H3) follows. Hence, we need to check
(H1) and (H2). Set B=A, x 4,4,. Let v;: B—A; be the natural map for i=1, 2. We
denote the morphisms of schemes associated to u; and v; also by u;: Spec 4, — Spec 4;
and v;: Spec A; — Spec B for i=1, 2, respectively.

Proor oF (H1). Suppose the homomorphism u,: 4, - A, is surjective. Take an
element (n,, #,) € LD(A ) X yp(4, LD(4,) where #; is an isomorphism class of a log smooth
lifting f;: (X;, .4;)— (Spec 4;, Q) for each i=1, 2. Note that the underlying morphism
of f;s are flat since f;’s are integral (cf. Proposition 8.4). The equality LD(u,)(n) =
LD(u,)(n,) (=1n,) implies that there exists an isomorphism (u,)*(X,, M) 5 (u,)*(Xy, )
over (Spec 4,, Q). Here, (u;)*(X;, #4;) is the pull-back of (X;, .#;) by u;: Spec A, — Spec A4;
fori=1, 2. Set (X, Mo)=(u,)*(X,, #,). We denote the induced morphism of log schemes
(Xo, Mo) = (X;, M;)byu] fori=1, 2. Then we have the following commutative diagram:

ul

Kioctly) L Koo ) 5 (1)
il ol I’
(Spec 4, Q) <~ (Spec Ao, Q) > (Spec A5, Q) -
We have to find an element ¢ e LD(B), which represents a lifting of f to B, such that
LD(v;)(¢)=n; fori=1, 2. Consider the scheme Z=(| X|, Oy, x 0x0(9 x,) over Spec B. Define
a log structure on Z by the natural homomorphism
N =My X gy My — O07=04, Xox,Ux, -
It is easy to verify that this homomorphism is a log structure. Since the diagram
N — O
I
Q = 0xoQ— B

is commutative, we have a morphism g: (Z, #")—(Spec B, Q) of log schemes. By
construction, we have a morphism v;: (X;, #4;) > (Z, &) for i=1, 2 such that the diagram
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ot
Xy, M) —> (2, /)

(Xo, M) Y (X2, )
2

is commutative. Since u, : A, — A, is surjective, the underlying morphism X, - Z of v}
is a closed immersion in the classical sense. We have to show that the morphism v} is
an exact closed immersion. Take a local chart (P— .#,0—>Q@®k™, 00— P)of f asin
Theorem 4.1 such that Qf — P® is injective and the induced homomorphism
Z[Q]— Z[P] is flat. By Lemma 8.3, this local chart lifts to a local chart of f; for each
i=0, 1, 2. Since u,: A, > A, is surjective, we have an isomorphism

N[Oz =5 (My[O%,) X aojoz,) (Mo O,) -

By this, one sees that P = P X, P— 4" is a local chart of .#". This shows that (Z, A4")
is a fine saturated log scheme, and v} is an exact closed immersion. Hence,
(Z, /') (Spec B, Q) is a lifting of f to (Spec B, Q). Since the underlying morphism of
f; of schemes is a flat lifting of that of f for each i=0, 1,2, Z— Spec B is also a flat
lifting of f. On the other hand, since the local lifting Z — Spec B X gp. z10; Spec Z[ P] -
Spec B, where Z — Spec B X gpe. z0) Spec Z[ P] is smooth, is also a flat lifting of f, these
two liftings coincide. This shows that g: (Z, #")—(Spec B, Q) is log smooth. Hence ¢
represents an element &eLD(B). It is easy to verify that LD(v;)(¢)=#, for i=1, 2 since
the morphisms f;, f, and g have a common local chart. O

REMARK 9.1. In the above proof, the flatness of the underlying morphisms is
important. It is used to prove that the lifting (Z, #") - (Spec B, Q) of f to (Spec B, Q)
is log smooth. Without assuming that f is integral, this is false in general. Here is an
example due to the referee. Let f: (X,, #,)=(Speck[x], N*)—(Speck, N?) be a log
smooth morphism defined by

K[x] < N2

.

k «—— N?,
B
where A(1,0)=(1,0), k0, 1)=(1, 1), a1, 0)=0, (0, 1)==x, and (1, 0)=p(0, 1)=0. Set
(Spec 4, N*)=(Spec A4,, N?):=(Speck[e]/(¢?), N?), where N? — k[¢]/(¢?) is defined by
(1,0)—¢, (0, 1)—>0. Let f;: (X;, #;)— (Spec 4;, k[¢]) be log smooth liftings of f for
i=1,2. Then, we have X; 3 Speck[x, ¢]/(¢?, ex), and hence Z:=(] X]|, (9Xlx0xO(0X2)
3 Speck[x, ¢, 8]/(2, 62, €6, ex, 6x). But a log smooth lifting to (Spec B, N?) is iso-
morphic to Speck[x, ¢, §]/(e2, 62, &d), and is not isomorphic to Z.
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ProOF OF (H2). We continue to use the same notation as above. We need the
following lemma:

LeMMA 9.2. Let g': (Z', /")—(Spec B, Q) be a log smooth lifting of f with a
commutative diagram

Xy, M) — (2, N7)

A

(Xo, jfo) 7’ (Xz, «//[2)

of liftings such that (v;)*(Z', /") & (X,, ;) over (Spec A;, Q) for i=1, 2. Then the natural
morphism (Z, /') —>(Z', /") is an isomorphism.

ProorF. We may work étale locally. By Lemma 8.3, the local chart (P— .#,
0-0®k™,0—P) of f lifts to a local chart of g’. Take a local chart (P— A",
Q0->0®B*,Q—P) of g by P> A"—> A . Then, the schemes Z and Z' are smooth
liftings of X — Speck Xgpec 20 Spec Z[P] to Spec B Xy, 7101 Spec Z[ P]. Hence we have
only to show that the natural morphism Z— Z’' of underlying schemes is an iso-
morphism. This follows from classical theory [11, Corollary 3.6] since each X; is a
smooth lifting of X — Speck Xg,e. zi0; SPEC Z[P] to Spec A; Xy 210y SPEC Z[P] for
i=0,1,2. O

Letg': (Z', /") — (Spec B, Q) be a log smooth lifting of f which represents a class
&' e LD(B). Suppose that the class &’ is mapped to (1, #,) by (8). Then,

(Xos M) =5 (V0w )X(Z', V) =5 (v 0u) (27, N) (X, M)

defines an automorphism 6 of the lifting (X,, #,). If this automorphism 6 lifts to
an automorphism 6’ of the lifting (X,, .#,) such that 6’ oul=ul00, then replacing
Xy, M) (Z', V') by (Xy, M) O (X,, M) (Z', ¥"), we have a commutative
diagram as in Lemma 9.2, and then we have £=¢'. Now if 4,=k (so that (X,, #,)=
(X, ), 0=id), then 0’ exists. 0O

10. Example 1: Log smooth deformations over a trivial base. As we have seen in
Theorem 4.8, any log scheme (X, .#) which is log smooth over Speck with the trivial
log structure is smooth over an affine toric variety étale locally.

ExampPLE 10.1. (Usual smooth deformations.) Let X be a smooth algebraic
variety over a field k. Then X with the trivial log structure is log smooth over Spec & (this is
the case D=0 in Corollary 4.9), and a log smooth deformation of X in our sense is
nothing but a usual smooth deformation of X.

ExaMpPLE 10.2. (Generalized relative deformations.) Let X be an algebraic variety
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over a field k. Assume that there exists a fine saturated log structure .# on X such that
[+ (X, #)— Speck is log smooth. Then by Theorem 4.8, X is covered by étale open
sets which are smooth over affine toric varieties, and the log structure .4 — 0Oy is
equivalent to the log structure defined by

&) «//[=j*(9;\un(9x

for some divisor D on X, where j is the inclusion X\ D < X. In this situation, our log
smooth deformation of f is a deformation of the pair (X, D). If X is smooth over &,
then D is a reduced normal crossing divisor (cf. Corollary 4.9). Assume that X is smooth
over k. Then we have an exact sequence

0 —_— ge’zk(XT, (QX) I @eik(X, @X)(= @X) — N — 0 N
where A4 is an Oy-module written locally as

(‘/Vm\x@@m)@ T ('B(‘/VD“X@(QD,,)’

where D, ..., D, are local components of D, and A7, x is the normal bundle of D; in
X for i=1, ..., d. Then, we have an exact sequence

HY2, /) — tp — H'(X, Ox) — H'(D, A).

In this sequence, H(D, 4") is viewed as the set of isomorphism classes of locally trivial
deformations of D in X, and H!(D, #) is viewed as the set of obstructions for
deformations of D in X. Hence this sequence explains the relation between the notion
of log smooth deformations and that of usual smooth deformations. Note that, if D is
a smooth divisor on X, the log smooth deformation is nothing but the relative deforma-
tion of the pair (X, D) studied by Makio [9] and others.

ExamPLE 10.3. (Toric varieties.) Let X be a complete toric variety over a field k
defined by a fan ¥ in Ng, and consider the log scheme X' =(Xj, Z) (cf. Example 2.6)
over Speck. We have seen in Example 5.6 that

Den X1, Oy) = Ox @z N ,

and hence is a globally free Oy-module. Since H(X, Zer (X', 0y))=0, any toric variety
is infinitesimally rigid with respect to log smooth deformations. Note that toric varieties
without log structures need not be rigid with respect to usual smooth deformations.

11. Example 2: Smoothings of normal crossing varieties. Let »>0 be an integer.
Let us write the n-dimensional affine space over a field F by A%=Spec F[T},, ..., T,].
For 1<i<n, the hyperplane in A% defined by the ideal (T;) is denoted by H; . We
denote by 0 the origin of A4j.

Let k be a field. In this and the next sections, we mean, by a normal crossing variety
over k of dimension n—1, a scheme X of finite type over k enjoying the following
condition: For any closed point x € X, there exist a scheme U and a point y e U together
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with étale morphisms

L
¢:U->X and ¢:U- | H,p
i=1
such that ¢(y)=x and ¢(y)=0, where k' is a finite extension of k, depending on x, and
1</, <n. Clearly, the integer /, depends only on the closed point x. We call it the
multiplicity of X at x. A normal crossing variety X is said to be simple if every irreducible
component of X is regular. It is easy to see that any scheme étale over a normal crossing
variety is again a normal crossing variety. In this section, we consider a certain type
of log structures on a normal crossing variety X, and discuss the deformations of the
resulting log schemes.
Before discussing log structures on normal crossing varieties, we should consider
their étale local structure in more detail.

LemMma 11.1. Let S and S’ be Noetherian schemes and ¢ : S’ — S an étale morphism.
Assume that every irreducible component of S is regular, and any union of irreducible
components of S’ is connected. Then, the morphism ¢ is injective in codimension zero,
i.e., for any irreducible component T of S, there exists at most one irreducible component
T of S’ such that ¢(T"Y=T. Moreover, in this case, we have T'=T xS', and hence,
every irreducible component of S' is regular.

PrOOF. Let T be an irreducible component of S and # the generic point of T. If
there exists a point #’'€ S’ such that ¢(n')=#, then n’ must be the generic point of an
irreducible component of S’. Hence, one finds that T xS’ is isomorphic to a finite
union of irreducible components of S’. Since T xgS’ is regular and connected, it is
irreducible. Therefore, whenever there exists n’€ S” as above, we have {#'} =T x5S§".

a

DEerFINITION 11.2. Let X be a normal crossing variety and xe X a closed point.
An étale morphism ¢: U — X, with a point ye U such that ¢(y)=x, is called a local
chart around x if there exists a diagram

¢ b

x2 v Lo x Ly
6 1 l(p sending I¢
U:’;l Hi,k’ — A 0

with the square Cartesian, where k' is a finite extension of k£ and the lower horizontal
arrow is the canonical closed immersion, such that

(a) V=SpecR is an affine scheme,

(b) @ is an étale morphism,

(c) y is the unique point which is mapped to x by ¢.
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Note that, in the above definition, if we set z;=1*®*T, for 1 <i</,, then each ideal
(z;) is prime and the irreducible components of U are precisely the closed subsets of U
corresponding to the ideals (z,), ..., (z,); these are easy consequences of Lemma 11.1.

PrRoOPOSITION 11.3. Let X be a normal crossing variety and xe X a closed point.
Then there exists a local chart ¢ : U— X around x.

Since any étale open set of X is again a normal crossing variety, the local charts
form an open basis with respect to the étale topology.

PROOF OF PROPOSITION 11.3. Let us write S=|J;=, H;,. By definition, one can
take a scheme U and a point ye U with étale morphism ¢: U—> X and ¢: U—S.
Replacing U by a Zariski open subset, we may assume that (1) the scheme U is affine
and connected, (2) y is the unique point of U which is mapped to x by ¢, and (3)
all the irreducible components of U contain y. Then, by Lemma 11.1, every irreduci-
ble component of U is regular, i.e., U is a simple normal crossing variety. Let
U=U,u - - uU, be the decomposition of U into the union of irreducible components.

Again by Lemma 11.1, we have /</,; however, the multiplicity / ;’ of U at y clearly
satisfies /} </, and since the multiplicities do not change under étale morphisms, we
have /] =1,. Hence, we have /=1[Y =1,. Therefore, changing indices if necessary, we may
assume that ¢ maps the generic point of U; to that of the irreducible component H, ;.
of Sfor 1<i<l,.

The normal crossing variety S is a normal crossing divisor in the n-dimensional
affine space Ay =Speck'[T,, ..., T,] over k'. Then, by [2, Expos¢ 1, Proposition 8.1],
replacing U by a Zariski open subset, we may assume that there exists a Cartesian
diagram

v, v

ol e

S <A,

where the horizontal arrows are closed immersions and the vertical arrows are étale.
Since we may assume V is affine, we are done. O

Next, let us discuss log structures on normal crossing varieties. Let X be a normal
crossing variety over a field k. Suppose that X has a closed embedding :: X < V into
a smooth variety V' as a normal crossing divisor. We denote the open immersion
VN X < V by j. In this situation, one can define a log structure on X as in Corollary
4.9, i.e., by

1*(Oy nj Oy~ x) — Ox ,

where 1* denotes the pull-back of a log structure. Let us call this the log structure
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associated to the embedding 1: X — V. For a general normal crossing variety X, we
cannot define such a log structure on X, because X may not have such an embedding.
But, as we have seen in Proposition 11.3, X étale locally has such an embedding. Then,
we can consider the log structure of this type for a general X defined as follows:

DEFINITION 11.4 (cf. [12]). A log structure .# — Oy is said to be of embedding
type, if the following condition is satisfied: There exists an étale covering {¢,: U, - X},_,
by local charts, with the embeddings 1,: U, =, V; as in Definition 11.2, such that, for
each A€ A, the restriction ¢ .4 — Oy, is equivalent (cf. Definition 2.3) to the log structure
associated to the embedding 1,. If .# — Oy is a log structure of embedding type of X,
we call the log scheme (X, .#) a logarithmic embedding.

A log structure of embedding type has étale locally a chart described explicitly as
follows: Let ¢: U— X be a local chart, and

u <. v

o e

i n
Ui=1Hi,k’ =, A},

the Cartesian diagram as in Definition 11.2. The scheme S= Uf.=1 H;, has the log
structure .# associated to the embedding S —, A}.. This log structure has a chart de-
fined by

ng"ﬂs Wlth ei|_""ti
for 1<i</, where ¢; is the image of 7; under
(AR, O g0 ) O%p ~s) — T'(S, M)

with j: A% \ S = A4} the open immersion. Then, the log structure .#,; on U associated
to the embedding 1 is equivalent to the pull-back of .#; by ¢. Hence, the log structure
My, is equivalent to the log structure associated to the pre-log structure (cf. §2) defined by

(10) N-—0, with e—z,

where z;=1*®*T; for 1<i<l.
The proof of the following proposition is straightforward and left to the reader:

PrROPOSITION 11.5. For any logarithmic embedding (X, M), there exists an exact
sequence of abelian sheaves

(1) |l — Oy — M® — Vv, Zg—0,
where v: X — X is the normalization of X.

DEerINITION 11.6 (cf. [4], [6]). A log structure of embedding type # — Oy is said
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to be of semistable type, if there exists a homomorphism Zy — %P of abelian sheaves
on X such that the diagram

ME® —> v, Zg

N

Zy
commutes, where d: Zy - v,Zy is the diagonal homomorphism.
If A is a log structure of semistable type and Zy — .##° is the the homomorphism
as above, then one sees that Zy X _ep# is isomorphic to Ny, and thus, one gets a
morphism Ny — 4 of sheaves of monoids. This morphism defines a morphism of log
schemes
f: (X, M)—> (Speck, N) .

Here, (Speck, N) is the standard point (cf. Definition 4.4). Note that this morphism is
similar to that discussed in Example 4.7, i.e., writing it in terms of the local chart
¢@: U—> X as above, one sees that this morphism is induced by the diagram

N'— (U, 0,)
N— k,

where the upper horizontal arrow is induced by (10) and the right vertical arrow is the
diagonal homomorphism. Hence, f has étale locally a chart (N'—» .4, N-»N®k*,
N— N') with N— N' the diagonal homomorphism. We call this morphism f of log
schemes the logarithmic semistable reduction. By Theorem 4.1, logarithmic semistable
reductions are log smooth.

The criteria for the existence of these log structures are stated as follows: Let X
be a normal crossing variety. Let us consider the Oy-module 7y = &z¢*(Q%, O), which
is called the infinitesimal normal bundle of X. It is well-known and easily verified that
Ty is, in fact, an invertible Op-module, where D denotes the singular locus of X
considered as a scheme with the reduced structure (cf. [1]). We will prove the following
theorem in the next section:

THEOREM 11.7. Let X be a normal crossing variety with D the singular locus.

1. There exists a log structure of embedding type on X if and only if there exists a
line bundle & on X such that ¥® o, O, = T3

2. (cf. [6, (1.1)]) There exists a log structure of semistable type on X if and only if
X is d-semistable, i.e., T4 =0,

Let X be a d-semistable normal crossing variety and .# a log structure of
semistable type. Let f: (X, .#)— (Speck, N) be the log smooth morphism constructed
as above. Since f is log smooth and integral (by Proposition 3.11), the log smooth
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deformation functor of f has a hull (cf. Theorem 8.7). Let us consider the infinitesimal
deformations of f on an Artinian local A[N]-algebra 4. Let t be the image of 1 under
the morphism N— A[N] — A4 of monoids. Take a suitable local chart ¢ : U— X which
induces a chart (N'> 4, N-» N®k*, N->N') of f as above, where N— N' is the
diagonal homomorphism. Let 7 (X, A ) (Spec 4, Q) be a local log smooth lifting of
fonAand (N> M,N>N@®A*, N> N") a lifting local chart (cf. Lemma 8.3). If
we denote by Z; the image of e; under N'—.# — Oy for 1<i<l, then each % is
mapped to z; by 4 —k and we have %, - -%,=1. Hence, if =0, the deformation f is
locally trivial, and if t#0, it is an infinitesimal smoothing.

In the complex analytic situation, a log smooth deformation of this type is nothing
but a log deformation discussed by Kawamata and Namikawa in [6].

12. The proof of Theorem 11.7. In this final section, we prove Theorem 11.7.
First, we should fix ideas and notation about the infinitesimal normal bundle introduced
in the previous section.

Let X be a normal crossing variety over a field k. For alocal chart ¢ : U=Spec 4 > X
of X around some closed point x, we use the following notation: Let V'=Spec R and,
using the notation as in Definition 11.2, set Z;=®*T, for 1 <i<I, where /=1[_. We set

;=(Z;) and J;:=(Z, - Z;--Z)
for 1<j<I(if /=1, we set J; =R as a convention), and set
I=1,---1, and J=J,+ - +J,.

Then, we have 4= R/I, and the ideal /;/Ic A, which is prime of high zero, is generated
by z;:=(Z;mod I'). The singular locus

Dy=D x,U
of U is the closed subscheme defined by J. We set
O=R/J.

Note that, for 1<j<l, I;/Il; is a free A-module of rank one and is generated
by {;:=(Z;mod II;). There exists a natural isomorphism I;/II;®,Q > I;/JI; of Q-
modules which maps {;®1 to &;:=(Z;mod JI;). Moreover, there exists a natural
isomorphism

(12) I =~ LIL®, - ®,0,/1,

of A-modules, and hence, the A-module I/I? is free of rank one and is generated by
{;® -+ - ®{,. We denote by n; the natural projection I;/II; > I;/I< A.
The cotangent complex of the morphism k — A4 is given by

1)
L. . 0_'R®RA—>QII(/,‘®RA—’O,
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where 8 is defined by R—F-R % Qgp with F=Z,---Z, (cf. [8]). Then the tangent
complex of U is the complex

6*
Hom (L, 4): 0 — O ®r A —> Hom (R @z A4, ) — 0,

where @, =Homg(Q},, R).
We define

13) Ti=Hom (R®gA, A)/5*(Or; ®rA) .
LEMMA 12.1.  We have a natural isomorphism
(14) TY ~, Hom(I/I?, A)®,0 .
Proor. Consider the exact sequence
0— I/I* — Qz, @gAd —> 2}, — 0.

Taking Hom ,(—, 4), we get the following exact sequence:
0 —> Hom (2} 4, 4) — Oy ®x A —— Hom (I/I2, 4) - T, —0.

The A-module Hom 4,(I/1%, A) is isomorphic to 4 by
Hom ,(I/I?, A)sut+—u((,® - ®{)eA.

With this identification, one finds easily that the image of v in 4 is J. This implies that
T} is, in fact, a Q-module. Hence, we have a morphism

1®,4Q: Hom(I/I*, A®,Q — T}
of @-modules which is, in fact, an isomorphism. O

Considering all the local charts U on X, these modules T} glue to an invertible
0p-module isomorphic to &z45, (x4, Ox), which is denoted by 7; for later purposes,
we describe its gluing data explicitly in the following.

Suppose we have two local charts ¢ : U— X and ¢’: U’ — X and an étale morphism
Y : U—- U’ such that ¢ =¢’oy. Since we are interested in the singular locus, we may
assume />1 and /'> 1. For these local charts, we use all the notation as above. (For
U’, we denote them by /', 4, I', J', z;, {;, etc.) Let f: A’ — A be the ring homomorphism
corresponding to . We need to show that the morphism y naturally induces an
isomorphism T ®, Q 5 T; of Q-modules. Let U; (resp. Uj) be the irreducible
component of U (resp. U’) corresponding to the ideal 7;/I (resp. I;/I') for 1 <j<I (resp.
1<j<I’). Since V¥ is étale and injective in codimension zero (cf. Lemma 11.1), we may
assume that the generic point of U; is mapped to that of U by ¥ for 1<;j</ In
particular, we have /</’.
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CLAIM. In the situation as above, we have the following:
(@) For 1<j<, there exists an isomorphism, naturally induced by f, of Q-modules

(15) w5 DT ®0 0 = LII;®,40 .

(b) For i>1, the natural projection w;: I;/I'l[;>1I;/I'c A and f induce an
isomorphism of A-modules

(16) b LIIT, @ A— A

PrOOF. (a) By the proof of Lemma 11.1, one sees that U x . U= U, for 1 <j<L
This implies that 4/(I;/)=(A'/(I;/I')® 4 A) (= A/(I;/I') ® 4 A)), and hence,

(17) L= @4, (1<j<]).

For 1<j<I, we can set f(z})=u;z; for some u;e A. Here, each u; is determined modulo
J;/1. Because of (17), u;z; generates the ideal /;/I, and hence, u; is a unit in 4/(J;/I) (and,
needless to say, in A/(J/I)). (Note that u; is not necessarily a unit in A, since 4 is not
an integral domain for />1.) Then, by &) (y;modJ/I)¢;, we get the desired
isomorphism.

(b) Since  is injective in codimension zero, the point 7;/I’ does not belong to
Y(U). Then, y maps U= Spec A4 to Spec 4(;, ;-\, and this implies that the image of elements
of I:/I' under f is invertible. Hence, g,({; ® 1)= f(z}) is an invertible element of 4, and
p; 1s an isomorphism. O

Set p;:=p;®40. Then, these isomorphisms t;’s and p;’s induce
(18  :=7,®g * @oui®gpus1 Qg ®opr: 1@ 0 = II*@,0.

The Q-dual of 7 is the desired isomorphism (cf. Lemma 12.1). One can easily check
that this isomorphism t does not depend on the parameters zj, z;; it is canonically

induced by f:4'—>A4. Hence, for any sequence of étale morphisms of local charts

U-IL U’ L U”,we obviously have 1" =10(t' ®¢ Q), where t: I'/I*® 4,0 3 I/I*®, 0,

T I Q40.Q S TIII?®,.Q and t": I"[I"*®4.Q 3 I/I*®,Q are the isomor-
phisms defined as above with respect to , ¥' and ' oy, respectively.

In the rest of this section, once we introduce the local chart ¢: U— X, we will
tacitly make use of the notation as above.

ConsTRUCTION 12.2. Here, we describe the log structure of embedding type by
another étale local expression. Let ¢: U=Spec4 - X be a local chart. For m=
(my, ..., m)eN', define an 4-module P, by

Pm5=(11/111)®ml 4 ®A(Il/111)®ml .

Each P,, is a free A-module of rank one and P ... ;,=I/I?. The natural projections
n;: I;/II;— I;/I1< A induce a natural 4-homomorphism
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P,—A.

m* m

Define a monoid
M:={(m,a)|meN', a:a generator of P,},

and a homomorphism ¢: M — 4 of monoids by (m, a)~ ¢,(a). Then, one finds that the
associated log structure oy : 4, — O of the pre-log structure M — A is that associated
to the embedding 1: U =, V.

CoNSTRUCTION 12.3. Let .# be a log structure of embedding type on X. Then,
the exact sequence (11) induces the following commutative diagram of natural
morphisms:

Homg (Zy, v, Zg) —0» Ext (Zy, 0%)

;l ;l

HO(X, V*Zg) —a> HI(X, (0;) .

Let d: Zy —»v,Zy be the diagonal homomorphism. Then, 9(d) defines a linear equiva-
lence class of line bundles on X. We denote this class by ¢l ,. Let Resy: Pic X —» Pic D
be the restriction morphism.

CrLAaM A. For any log structure M of embedding type on X, we have Resy(cl ,)=
[(Z¥)"].

ProoF. We will prove this claim by writing out the class cl , explicitly. For any
local chart ¢ : U— X, we define the constant monoid M as in Construction 12.2; then,
we have a homomorphism of monoids ¢: M — .#j,. Let dy be the restriction of d to U.
One can lift b, to a homomorphism b,: Z, > M® by 1—~((1,...,1),{,® - ®).

Suppose we have two local charts ¢ : U— X and ¢’: U’ — X and an étale morphism
Y : U—- U’ such that ¢ =¢’-y. As in the beginning of this section, let U; (resp. U’) be
the irreducible component of U (resp. U’) corresponding to I;/I (resp. I;/I') for 1 <j<I
(resp. 1<j<I’), and assume that the generic point of U; is mapped to that of U] by ¥
for 1 <j<I. Consider the gluing morphism y: Yy *.4, = My. Let ¢': M' > y*. M, be
similar to ¢. Then, for 1<j</, the global section y(c'(ej, {;)) of .4, is a multiple of
o(e;, {;) by a section of Op; i.e., there exists u;e A™ such that y(a'(ej, {}))=u;al(e;, {;).
Note that, since y is an equivalence of log structures, we have f(z})=u;z;. As for i>/,
y(a'(e;, £}))=0(0, v;) for some v;e 4. Note that this v; is nothing but §,({;® 1), where
p; is as defined in (16).

Define a cocycle {4,} by

Ay=uy U1 0,

This cocycle gives a class [4,] in H'(X, O%), which, by the definition of the connecting
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homomorphism 0, is nothing but the class ¢l,. Set J,=(4,modJ/I), i.e.,
[0,]1=Resy([4,]). Then, since | ® - - ® ;648 ® - - - @&, defines an isomorphism

I'ireeQ =~ 1I’®,0
which is nothing but 7 defined in (15), the class [,] is the class of (7¥)". O
Then, the first part of Theorem 11.7 follows from the following claim:
CLAM B. Let X be a normal crossing variety. Then, the map

(19) {equlvalence classel:s of log struc- } s {[#]ePic X| P e Op S (T))
tures of embedding type on X

defined by M+ cl , is surjective.

In order to prove this claim, we need the following lemmas: Let ¢ :U=Spec4 - X
be a local chart on X.

LEMMA 12.4. The natural morphism
1
® JiI— JjI
j=1

of A-modules, induced by J; — J, is an isomorphism.

ProoF. The surjectivity is clear. Let us show the injectivity. Take a;Z, - - i
ZeJjfor 1<j<lwith Z,, ..., Z, as above such that

1
Z ajZ1' . 'Zj"’Zz=b'Zl‘ 7,
ji=1
where a;, be R. Since R is an integral domain, a; is divisible by Z;, and hence, we have
a;Z,- - Z;-Z,=0 (modI). 0

Let n;: I;/II;— I;/I and q; :I;/1-I;/JI; (=1;/1];® 4,Q) be the natural projections,
and set p;:=g;om;. Let q: I/I> > I|JI (=1/I* ® 4 Q) be the natural projection.

LEMMA 12.5. Let My, ..., M, be free A-modules of rank one and set M:=
M, ®, " ®,M, Suppose we are given an A-module isomorphism §: M > I/I*> and
A-module homomorphisms g;: M;— I;/I for 1 <j<l such that

1. for each j, there exists a free generator 6; of M; satisfying g;(6;)=z;,

2. (41°91)®g " ®g(q:1°9:)=9°F.
Then, there exists a unique collection {G;: M; 5 I;/I;}i_, of A-isomorphisms such that
miog;=g; for eachjand §; @, ®4§,=4g.

Proor. We fix the free generators §; of M; as above. Then M is generated by
0, ® - ®,. Set §(6,® - ®)=v{{® - @, where ve 4™ (see the beginning of
this section as for the notation). By the second condition, we have v=1 (mod J/I),
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ie.,

]
U=1+ Z ajzl-..éj...zl
j=1
foraje A. Weset uj=1+a;z,- - -2; - -z, and define §; by §;(6;): =u;{; for 1 <j</. Then,
since v=u, - - "u;, each u; is a unit in 4 and §; is an isomorphism. Moreover, we have
§.1® - ®§,=4g as desired. The uniqueness follows from Lemma 12.4. dJ

The proof of Claim B is done step by step as follows:

Step 1. Suppose that we are given a line bundle % on X satisfying ¥ ®,, Op=
(7%)". Suppose we have two local charts ¢: U— X and ¢’: U'— X and an étale mor-
phism : U— U’ such that ¢=¢'oy. Recall that (I}/I')®4 A=1;/I for 1<j<I (cf.
(17)), and if f(z;)=wu;z;, each u; is determined modulo J;/I. Giving the line bundle ¥
as above is equivalent to giving a compatible system of isomorphisms

T I Q@u A 112

for all such U— U’, with T® ,Q =r, where 1 is defined as in (18). Then, we show that
7 induces canonically an isomorphism of log structures Y *.#,. = .#,, and prove that
the log structures .#; glue to a log structure of embedding type on X. Moreover, since
local charts form an étale open basis, we can pass through this procedure replacing U
by a Zariski open subset if necessary. In particular, we may assume that each u; as
above is a unit in A4, because (u;mod J/I) is a unit in 4/(J/I) (in case /> 1).

Step 2. We construct isomorphisms
(20) T /I @0 A = 111
of A-modules for 1 <;</; this is done by considering the following three possible cases
separately.

(i) Ifl=I'=1,1ie., I;=Iand I'=T, then we set T,: I'//I'l'®4 A > I,/II, by
Ty :=1.

(ii) If/=1and /'>1, we define 7,: I'/I',®4 A > I,/II, as follows: Suppose T
maps (| ® - ®{; ®]1 to vf,, where ve 4™. Let p;: I}/I'[;®, A— A be as (16), for
1<i<!. Suppose, moreover, each ; for i>1 maps {;® | to v;e A ™. Then, define 7, by
T ®D):=voy o

(iii) Suppose />1 and /"> 1. We claim that, under the conditions

1) mofy=p;,  (1<j<I)
and
(22) T1®4 QuTi®uP141®4 Qupr =T,

the A-isomorphisms in (20) exist uniquely for 1 <j</. Set M;:=I;/I'l;®4 Aand g;:=p;
for 1<j<l Define § by §®,p,+1® 4" - ®,p, =7 (this is possible since f;((;® 1) is a
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unit element in 4 for i>/), which is obviously an isomorphism. Then, since we as-
sumed each u; to be a unit in 4, M;:=1I;/I)I' ® 4 4, g, and g; satisfy the conditions in
Lemma 12.5. Hence, by Lemma 12.5, the isomorphisms in (20) exist uniquely.

Note that, in all cases, we have a commutative diagram

1,11, —s I/,
23) :

; ;

A — A,
S

for 1 <j<; this follows from (21) in case /, /’>1, and is obvious in the other cases.
Step 3. Let us use notation as in Construction 12.2. These morphisms £; induce
morphisms

VY - P;n’_’Pma

where m=(m,, ..., m;) for m'=(m,, ..., m;)e N". Then these y, induce naturally a
morphism of monoids M’ — M compatible with M'—> A, M—- A and f By the
construction of these morphisms, the induced morphism of sheaves of monoids
y:y* My S My is an isomorphism. By the commutative diagram (23), this isomor-
phism makes the following diagram commutative:

WEMy = My

Yoy l l“u

(QU f— (OU’

hence y gives an equivalence of log structures. Our construction of the isomorphism y

is canonical in the following sense: Suppose we are given a sequence of étale morphisms

U J—» U’ L U" of local charts (with U and U’ sufficiently small). We have y” =y *y'),

where y:y* My S5 My, VW FMy S My and  y7 YR F My S My are  the
isomorphisms of log structures defined as above corresponding to ¥, ¥’ and y/'oy,
respectively. This follows from the naturality of n; and §;, and the compatibility of £’s.
Thus, we get a log structure .# of embedding type on X. It is straightforward to check
cl,=[¥]. Thus, we complete the proof of Claim B, and hence, the proof of the first
part of Theorem 11.7. O

Note that if X is a normal crossing divisor of a smooth variety V, and .# is the
log structure associated to the embedding X <, V, then the class cl , is nothing but the
class of conormal bundle of X in V.

Next, let us prove the second part of Theorem 11.7. Suppose .# is a log structure
of semistable type. Consider the exact sequence

0
(24) Homy (Zy, M*) —— Homy (Zy, v,Z3) —> Exty (Zy, OF)
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induced by the exact sequence (11). The morphism Z, — . ®° is mapped to d by =. This

implies that ¢l ,=0. Hence, (7 )" is a trivial line bundle on D.

Conversely, if X is d-semistable, there exists at least one log structure of embedding
type on X by the first part of Theorem 11.7 proved above. Since (J3)Y is trivial, we
can take a log structure .# of embedding type such that ¢l , =1 by the natural surjection
(19). Since the obstruction for the existence of a morphism Zy — .# 8" which is mapped
to D, is nothing but the class ¢l ,, we deduce that .# is of semistable type. Thus, the
proof of Theorem 11.7 is now completed. O
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