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1. Introduction

Logarithmic structures in algebraic geometry

It can be said that Logarithmic Geometry is concerned with a method of

finding and using “hidden smoothness” in singular varieties. The original insight

comes from consideration of de Rham cohomology. Since singular varieties nat-

urally occur “at the boundary” of many moduli problems, logarithmic geometry

was soon applied in the theory of moduli.

Foundations for this theory were first given by Kazuya Kato in [27], following

ideas of Fontaine and Illusie. The main body of work on logarithmic geometry

has been concerned with deep applications in the cohomological study of p-adic
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2 Logarithmic Geometry and Moduli

and arithmetic schemes. This gave the theory an aura of “yet another extremely

complicated theory”. The treatments of the theory are however quite accessible.

We hope to convince the reader here that the theory is simple enough and useful

enough to be considered by anybody interested in moduli of singular varieties,

indeed enough to be included in a Handbook of Moduli.

Normal crossings and logarithmic smoothness

So what is the original insight? Let X be a nonsingular complex variety, S

a curve with a point s and f : X → S a dominant morphism smooth away from

s, in such a way that f−1s = Xs = Y1 ∪ . . . ∪ Ym is a reduced simple normal

crossings divisor. Then of course ΩX/S = ΩX/f
∗ΩS fails to be locally free at the

singular points of f . But consider instead the sheaves ΩX(log(Xs)) of differential

forms with at most logarithmic poles along the Yi, and similarly ΩS(log(s)). Then

there is an injective sheaf homomorphism f∗ΩS(log(s)) → ΩX(log(Xs)), and the

quotient sheaf ΩX(log(Xs))/ΩS(log(s)) is locally free.

So in terms of logarithmic forms, the morphism f is as good as a smooth

morphism.

There is much more to be said: first, this ΩX(log(Xs))/ΩS(log(s)) can be

extended to a logarithmic de Rham complex, and its hypercohomology, while not

recovering the cohomology of the singular fibers, does give rise to the limiting

Hodge structure. So it is evidently worth considering.

Second, the picture is quite a bit more general, and can be applied to all toric

and toroidal maps between toric varieties or toroidal embeddings (with a little

caveat about the characteristic of the residue fields). So there is some flexibility

in choosing X → S.

The search for a structure

Since we are considering moduli, then as soon as we consider X → S as above

we must also consider the normal crossings fiber Xs → {s}. But what structure

should we put on this variety? The notion of differentials with logarithmic poles

along Xs is not in itself intrinsic to Xs. Also the normal crossings variety Xs is

not in itself toric or toroidal, so a new structure is needed to incorporate it into

the picture.

One is tempted to consider varieties which are assembled from nice variety by

some sort of gluing, as normal crossings varieties are. But already normal crossings

varieties do not give a satisfactory answer in general, because their deformation

spaces have “bad” components. Here is a classical example: consider a smooth

projective variety Z such that Pic0(Z) is nontrivial. Let L be a line bundle on

Z and set Y = P(O ⊕ L), with zero section Z ⊂ Y . Let X be the blowing up of

Z × 0 ⊂ Y ×A1. We have a flat morphism f : X → A1 with fiber X0 = f−1(0) '
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Y ∪ Y , where the two copies of Y are glued with the zero section of one attached

to the ∞ section of the other.

So clearly X0 is a normal crossings variety with a nice smoothing to a copy

of Y . But there are other deformations: the variety Y ∪ Y also deforms to Y ∪ Y ′
where Y ′ = P(O ⊕ L′) and L′ a deformation of the line bundle L. And it is not

hard to see that Y ∪ Y ′ does not have a smoothing. Ideally one really does not

want to see this deformation Y ∪ Y ′ in the picture - and ideally X0 should have a

natural structure whose deformation space excludes Y ∪ Y ′ automatically.

Such a structure was proposed by Friedman in [10], where the notion of d-

semistable varieties was introduced. This structure is somewhat subtle, and while

it solves the issue in this case, it is not quite as flexible as one could wish. As

we will see in Section 5, logarithmic structures subsume d-semistability and do

provide an appropriate flexibility.

Organization of this chapter

In this chapter we briefly describe logarithmic structures and indicate where

they can be useful in the study of moduli spaces. Section 2 gives the basic defi-

nitions of logarithmic structures, and section 3 discusses logarithmic differentials

and log smooth deformations, which are important in considering moduli spaces.

Section 4 gives the first example where logarithmic geometry fits well with

moduli spaces: the moduli space of stable curves is the moduli space of log smooth

curves. The issue of d-semistability does not arise since a nodal curve is automat-

ically d-semistable. So the theory for curves is simple. Turning to higher di-

mensions, Section 5 shows how d-semistability can be described using logarithmic

structures.

If one is to enlarge algebraic geometry to include logarithmic structures, the

task of generalizing the techniques of algebraic geometry to logarithmic structure

can certainly seem daunting. In section 6 we show how to encode logarithmic

structure in terms of certain algebraic stacks. This allows us to reduce various

constructions to the case of algebraic stacks. (One can argue that the theory of

stacks is not simple either, but at least in the theory of moduli they have come to

be accepted, with some exceptions [34].)

In section 7 we make use of logarithmic stacks to describe the complexes which

govern deformations and obstructions for logarithmic structures even in the non-

smooth case. This comes in handy later. For instance, even when studying moduli

of log-smooth schemes, the moduli spaces tend to be singular, and their cotangent

complexes are a necessary ingredients in constructing virtual fundamental classes.

Section 8 describes a beautiful construction, similar to polar coordinates, in

which families of complex log smooth varieties give rise canonically to families of

topological manifolds. Differential geometers have used polar coordinates on nodal
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curves to “make space” for monodromy to act by Dehn twists. Rounding (using

Ogus’s terminology) is a magnificent way to generalize this.

The immediate implications of logarithmic structures for De Rham cohomol-

ogy and Hodge structures are described in Section 9.

We conclude by describing three applications, where logarithmic structures

serve as the proverbial “magic powder” (term suggested by Kato and Ogus) to

clarify or remove unwanted behavior from moduli spaces.

Section 10 describes a number of cases where the main irreducible compo-

nent of a moduli space can be separated from other “unwanted” components by

sprinkling the objects with a bit of logarithmic structures.

In Section 11 we introduce twisted curves, a central object of orbifold stable

maps, and show how logarithmic structures give a palatable way to construct the

moduli stack of twisted curves.

Section 12 gives background for the work of B. Kim, in which Jun Li’s moduli

space of relative stable maps, with its obstruction theory and virtual fundamental

class, is beautifully simplified using logarithmic structures.

Notation

Following the lead of Ogus [45], we try whenever possible to denote a loga-

rithmic scheme by a regular letter (such as X) and the underlying scheme by X.

When this is impossible we write X for the underlying scheme and (X,MX) for

a logarithmic scheme over it.
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2. Definitions and basic properties

In this section we introduce the basic definitions of logarithmic geometry in

the sense of [27]. Good introductions are given in [27] and [45]. Further technique

is developed in [12].
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Logarithmic structures

The basic definitions are as follows:

Definition 2.1. A monoid is a commutative semi-group with a unit. A morphism

of monoids is required to preserve the unit element. We use Mon to denote the

category of Monoids.

Definition 2.2. Let X be a scheme. A pre-logarithmic structure on X is a sheaf

of monoids MX on the étale site X ét combined with a morphism of sheaves of

monoids: α : MX −→ OX , called the structure morphism, where we view OX
as a monoid under multiplication. A pre-log structure is called a log structure if

α−1(O∗X) ∼= O∗X via α. The pair (X,MX) is called a log scheme, and will be

denoted by X.

Note that, given a log structure MX on X, we can view O∗ as a subsheaf

MX .

Definition 2.3. Given a log scheme X, the quotient sheafMX =MX/O∗X is called

the characteristic of the log structure MX .

Definition 2.4. Let M and N be pre-log structures on X. A morphism between

them is a morphism M→N of sheaves of monoids which is compatible with the

structure morphisms.

How should one think of such a beast? There are two extreme cases:

(1) If an element m ∈ M has α(m) = x 6= 0, one often thinks of m as some

sort of partial data of a “branch of the logarithm of x”. Evidently no data

is added if x is invertible, but some is added otherwise. In particular, we

will see later that m permits us to take the logarithmic differential dx/x

of x.

(2) If α(m) = 0 it is often the case that it m comes by restricting the log

structure of an ambient space, and serves as the “ghost” of a logarithmic

cotangent vector coming from that space. So the log structure “remem-

bers” deformations that are lost when looking at the underlying scheme.

The log structure associated to a pre-log structure

We have a natural inclusion

i : (log structures on X) ↪→ (pre-log structures on X)

by viewing a log structure as a pre-log structure. We now construct a left adjoint.
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Let α :M→ OX be a pre-log structure on X. We define the associated log

structure Ma to be the push-out of

α−1(O∗X)

��

// M

O∗X

in the category of sheaves of monoids on X ét, endowed with

Ma → OX (a, b) 7→ α(a)b (a ∈M, b ∈ O∗X).

In this way, we obtain a functor a : (pre-log structures on X) → (log struc-

tures on X). From the universal property of push-out, any morphism of pre-log

structure from a pre-log structure M to a log structure on X factor through Ma

uniquely.

Lemma 2.5. [45, 1.1.5] The functor a is left adjoint to i.

Example 2.6. The category of log structures on X has an initial object, called the

trivial log structure, given by the inclusion O∗X ↪→ OX . It also has a final object,

given by the identity map OX → OX . Trivial log structures are quite useful as

they make the category of schemes into a full subcategory of the category of log

schemes (see Definition 2.9). The final object is rarely used since it is not fine, see

definition 2.16.

Example 2.7. Let X be a regular scheme, and D ⊂ X a divisor. We can define a

log structure M on X associated to the divisor D as

M(U) =
{
g ∈ OX(U) : g|U\D ∈ O∗X(U \D)

}
⊂ OX(U).

The case where D is a normal crossings divisor is special - we will see later

that it is log smooth.

Note that the concept of normal crossing is local in the étale topology. This

is one reason we use the étale topology instead of the Zariski topology.

Example 2.8. Let P be a monoid, R a ring, and denote by R[P ] the monoid

algebra. Let X = SpecR[P ]. Then X has a canonical log structure associated to

the canonical map P → R[P ]. We denote by Spec (P → R[P ]) the log scheme

with underlying X, and the canonical log structure.

The inverse image and the category of log schemes

Let f : X → Y be a morphism of schemes. Given a log structure MY on Y ,

we can define a log structure on X, called the invese image of MY , to be the log

structure associated to the pre-log structure f−1(MY ) → f−1(OY ) → OX . This

is usually denoted by f∗(MY ). Using the inverse image of log structures, we can

give the following definition.
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Definition 2.9. A morphism of log schemes X → Y consists of a morphism of

underlying schemes f : X → Y , and a morphism f [ : f∗MY → MX of log

structures on X.

We denote by LSch the category of log schemes.

Example 2.10. In Example 2.8, the log structure on Spec (P → R[P ]) can be

viewed as the inverse image of the log structure on Spec (P → Z[P ]) via the

canonical map Spec (R[P ])→ Spec (Z[P ]).

Example 2.11. Let k be a field, Y=Spec k[x1, · · · , xn], D=V (x1 · · ·xr). Note that

D is a normal crossing divisor in Y . By example 2.7, we have a log structureMY

on Y associated to the divisor D. In fact,MY can be viewed as a subsheaf of OY
generated by O∗Y and {x1, · · · , xr}.

Consider the inclusion j : p = Spec k ↪→ Y sending the point to the origin

of Y . Then j∗MY = k∗ ⊕ Nr, and the structure map j∗M −→ OX is given by

(a, n1, · · · , nr) 7→ a · 0n1+···+nr , where we define 00 = 1 and 0n = 0 if n 6= 0. Such

point with the log structure above is call a logarithmic point; when r = 1 we call

it the standard logarithmic point.

Charts of log structures

Definition 2.12. Let X be a log scheme, and P a monoid. A chart for MX is a

morphism P → Γ(X,MX), such that the induced map of log strucutres P a →MX

is an isomorphism, where P a is the log structure associated to the pre-log structure

given by P → Γ(X,MX)→ Γ(X,OX).

In fact, a chart of MX is equivalent to a morphism

f : X → Spec (P → Z[P ]),

such that f [ is an isomorphism. In general, we have the following:

Lemma 2.13. [45, 1.1.9] The morphism

HomLSch(X,Spec (P → Z[P ])) → HomMon(P,Γ(X,MX))

associating to f the composition

P // Γ(X,PX)
Γ(f[)

// Γ(X,MX)

is an isomorphism.

We can also consider charts for log morphisms.

Definition 2.14. Let f : X → Y be a morphism of log schemes. A chart for f

is a triple (PX →MX , QY →MY , Q → P ) where PX and QY are the constant

sheaves associated to the monoids P and Q, which satisfy the following conditions:

(1) PX →MX and QY →MY are charts of MX and MY ;
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(2) the morphism of monoids Q→ P makes the following diagram commuta-

tive:

QX //

��

PX

��

f∗MY
// MX .

Fine log structures

Arbitrary log structures are too wild to manipulate; they are roughly analo-

gous to arbitrary ringed spaces: both notions are useful for general constructions,

but a narrower, more geometric category is desirable. In Definition 2.16 below we

introduce the notion of fine log structures. Continuing the analogy above, these

are well-behaved log structures analogous to noetherian schemes, in the sense that

you can do geometry on them.

Given a monoid P , we can associate a group

P gp := {(a, b)|(a, b) ∼ (c, d) if ∃s ∈ P such that s+ a+ d = s+ b+ c}.

Note that any morphism from P to an abelian group factors through P gp uniquely.

Definition 2.15. P is called integral if P → P gp is injective. It is called saturated

if it is integral and for any p ∈ P gp, if n · p ∈ P for some positive integer n then

p ∈ P .

Definition 2.16. A log scheme X is said to be fine, if étale locally there is a chart

P → MX with P a finitely generated integral monoid. If moreover P can be

choosen to be saturated, then X is called a fine and saturated (or fs) log structure.

This is equivalent to saying that for every geometric point x̄ → X the monoid

Mx̄,X is saturated as in Definition 2.15. Finally if P ' Nk we say that the log

strcture is locally free.

In the following, we will focus on fine log schemes.

3. Differentials, smoothness, and log smooth deformations

The main reference in this section is [27].

Logarithmic differentials

In [14] Grothendieck defines a derivation as the difference of infinitesimal

liftings of a section. We can do the same thing with logarithmic schemes. First, we

need a concept of infinitesimal extension, which requires the following definition.

Definition 3.1. A morphism f : X → X of log schemes is called strict if f [ :

f∗MY →MX is an isomorphism. It is called a strict closed immersion 1 if it is

strict and the underlying map X → Y is a closed immersion in the usual sense.

1The term used in [27] is an exact closed immersion.
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Let us consider a commutative diagram of solid arrows of log schemes:

T0

φ
//

jJ

��

X

f

��

T1
ψ

//

g1

>>

g2

>>

Y

where j is a strict closed immersion defined by an ideal J with J2 = 0. Note that

T0 and T1 have the same underlying topological space, and isomorphic étale sites.

Then we have the following commutative diagram of sheaves of algebras:

OT 0
φ−1OXoo

g#
1

{{
g#
2{{OT 1

OO

ψ−1OY

OO

oo

Then g#
1 − g

#
2 is a derivation ∂g1−g2

: φ−1OX → J in the usual sense. We also

have a commutative diagram given by the log structures:

MT0 φ−1MX
oo

g[1

zz
g[2zzMT1

OO

ψ−1MY

OO

oo

Note that we have an “exact sequence” of mutiplicative monoids

1→ (1 + J)→MT1
→MT0

→ 1,

by which we mean that the group 1 + J acts freely on MT1 with quotient MT0 .

Hence we obtain a morphism Dg1−g2
: φ−1MX → J such that for every m ∈

φ−1MX we have (g[1 − g[2)(m) = 1 + Dg1−g2
(m). It is not hard to check that it

is a monoid homomorphism: Dg1−g2(m · n) = Dg1−g2(m) + Dg1−g2(n) for any

m,n ∈ φ−1(MX). By the definition of log structures, we also have

(1) α(m)Dg1−g2m = ∂g1−g2(α(m)), ∀m ∈ φ−1MX ;

(2) Dg1−g2
|ψ−1MY

= 0.

Remark 3.2. (1) Since the log structure contains all the invertible elements in

the structure sheaf, the map Dg1−g2
determines ∂g1−g2

.

(2) The above properties show that Dg1−g2 behaves like “d log”. This is one

of the reasons for the name “logarithmic structure”.

Summarizing the above discussion gives the following definitions:

Definition 3.3. [44],[45, Definition 1.1.1] Consider a morphism f : X → Y of fine

log schemes. Let I be an OX -module. A log derivation of X over Y to I is a pair
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(∂,D) where ∂ ∈ DerY (X, I) and D :MX → I is an additive map such that the

following conditions hold:

(1) D(ab) = D(a) +D(b) for a, b ∈MX ;

(2) α(a)D(a) = ∂(α(a)), for a ∈MX .

(3) D(a) = 0, for a ∈ f−1MY .

The sheaf DerY (X, I) of log derivations of X over Y to I is the sheaf of germs of

pairs (∂,D). The sheaf DerY (X,OX) is usually denoted by TX/Y , and is called

the logarithmic tangent sheaf of X over Y .

As an analogue of differentials of usual schemes, we have the following result:

Proposition 3.4. [45, IV.1.1.6] of Log differentials There exists an OX-module

Ω1
X/Y with a universal derivations (∂,D) ∈ DerY (X,Ω1

X/Y ), such that for any

OX-module I, the canonical map

HomOX
(Ω1

X/Y , I)→ DerY (X, I), u 7→ (u ◦ ∂, u ◦D)

is an isomorphism of OX-modules. In fact, we have the following construction:

Ω1
X/Y = ΩX/Y ⊕ (OX ⊗ZMgp

X )/K

where K is the OX-module generated by local sections of the following forms:

(1) (dα(a), 0)− (0, α(a)⊗ a) with a ∈MX ;

(2) (0, 1⊗ a) with a ∈ Im(f−1(MY )→MX).

The universal derivation (∂,D) is given by ∂ : OX
d→ ΩX/Y → Ω1

X/Y and D :

MX → OX ⊗ZMgp
X → Ω1

X/Y .

Definition 3.5. Given a morphism f : X → Y of log schemes, the OX -module

Ω1
X/Y is called the sheaf of logarithmic differentials. Sometimes we use the short

notation Ω1
f for Ω1

X/Y .

Note that Hom(Ω1
X/Y ,OX) ∼= TX/Y .

Remark 3.6. If we consider only fine log structures, and assume that Y is locally

noetherian and X locally of finite type over Y , then both DerY (X, I) and Ω1
X/Y

in the definitions above are coherent sheaves. The proof of this can be found in

[45, IV.1.1]

Example 3.7. Consider R = k[x1, · · · , xn]/(x1 · · ·xr), where k is a field. Denote

X = Spec R. LetMX be the log structure on X given by Nr → R, ei 7→ xi, where

ei is the standard generator of the monoid Nr. Let Y = Spec (N → k) be the

logarithmic point described in 2.11. Now we can define a morphism f : X → Y

by the following diagram:

Nr // R

N //

∆

OO

k

OO
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where ∆ : e 7→ e1 + · · ·+ er, and e is the standard generator of N. Then it is easy

to see that DerY (X,OX) is a free OX -module generated by

x1
∂

∂x1
, · · · , xr

∂

∂xr
,

∂

∂xr+1
, · · · , ∂

∂xn
,

with a relation x1
∂
∂x1

+ · · · + xr
∂
∂xr

= 0. The sheaf Ω1
f is a free OX -module

generated by the logarithmic differentials:

dx1

x1
, · · · , dxr

xr
, dxr+1, · · · , dxn

with a relation dx1

x1
+ · · ·+ dxr

xr
= 0.

Example 3.8. Let h : Q → P be a morphism of fine monoids. Denote X = Spec

(P → Z[P ]) and Y = Spec (Q → Z[Q]). Then we have a morphism f : X → Y

induced by h. A direct calculation shows that Ω1
f = OX ⊗ Cok(hgp). This can

also be seen from the universal property of the sheaf of logarithmic differentials.

Logarithmic Smoothness

Let us go back to the following cartesian diagram of log schemes:

(3.9) T0

φ
//

jJ

��

X

f

��

T1
ψ

// Y

where j is a strict closed immersion defined by J with J2 = 0. As in the usual

case, we can define log smoothness by the infinitesimal lifting property.

Definition 3.10. A morphism f : X → Y of fine log schemes is called log smooth

(resp. étale) if the underlying morphism X → Y is locally of finite presentation

and for any commutative diagram (3.9), étale locally on T1 there exists a (resp.

there exists a unique) morphism g : T1 → X such that φ = g ◦ j and ψ = f ◦ g.

We have the following useful criterion for smoothness from [27, Theorem 3.5].

Theorem 3.11. (K.Kato) Let f : X → Y be a morphism of fine log schemes.

Assume we have a chart Q→MY , where Q is a finitely generated integral monoid.

Then the following are equivalent:

(1) f is log smooth (resp. log étale);

(2) étale locally on X, there exists a chart (PX →MX , QY →MY , Q → P )

extending the chart QY →MY , satisfying the following properties.

(a) The kernel and the torsion part of the cokernel (resp. the kernel and

the cokernel) of Qgp → P gp are finite groups of order invertible on

X.
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(b) The induced morphism from X → Y ×Spec Z[Q] Spec Z[P ] is étale in

the classical sense.

Remark 3.12. (1) We can requireQgp → P gp in (a) to be injective, and replace

the requirement of X → Y ×Spec Z[Q]Spec Z[P ] be étale in (b) by requiring

it to be smooth without changing the conclusion of the theorem 3.11.

(2) The arrow in (b) shows that a log smooth morphism is “locally toric”

relative to the base. Consider the case Y is a log scheme with underlying

space given by Spec C with the trivial log structure, and X = Spec(P →
C[P ]) where P is a fine, saturated and torsion free monoid. Then X is a

toric variety with the action of Spec C[P gp]. According to the theorem,

X is log smooth relative to Y , though the underlying space might be

singular. These singularities are called toric singularities in [28]. This is

closely related to the classical notion of toroidal embeddings, see [32].

Example 3.13. Using the theorem, we can check directly that the morphism f in

example 3.7 is log smooth, but the underlying map has normal crossing singular-

ities. We will see later that one of the major advantages of log structures is in

dealing with the normal crossing singularities.

Let X
f→ Y

g→ Z be morphisms of fine log schemes. Consider the sheaves

of log differentials Ω1
g and Ω1

g◦f , with their universal derivations (∂g, Dg) and

(∂g◦f , Dg◦f ) respectively. We have a canonical map f∗Ω1
g → Ω1

g◦f induced by

f∗(∂gu) 7→ ∂g◦ff
∗(u) and f∗(Dgv) 7→ Dg◦ff

[(v),

where u ∈ OY and v ∈ MY . Denote by (∂f , Df ) the universal derivation associ-

ated to Ω1
f . Similarly, we have a canonical map Ω1

g◦f → Ω1
f induced by

∂g◦fu
′ 7→ ∂fu

′ and Dg◦fv
′ 7→ Dfv

′,

where u′ ∈ OX and v′ ∈ MX . The following proposition shows that log differen-

tials behave like usual differentials, especially for log smooth morphisms.

Proposition 3.14. (1) The sequence f∗Ω1
g → Ω1

g◦f → Ω1
f → 0 is exact.

(2) If f is log smooth, then Ω1
f is a locally free OX-module, and we have the

following exact sequence: 0→ f∗Ω1
g → Ω1

g◦f → Ω1
f → 0.

(3) If g ◦ f is log smooth and the sequence in (2) is exact and splits locally,

then f is log smooth.

A proof can be found in [45, Chapter IV].

Logarithmic smooth deformation

Having discussed log smoothness, a natural thing to do is to develop log

smooth deformations. In many cases, we would require this to be a flat deformation

for the underlying space. Unfortunately log smoothness does not imply flatness,

so we need the following definition.
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Definition 3.15. A map of fine monoids h : Q→ P is called integral if the induced

map on monoid algebra Z[Q]→ Z[P ] is flat.

Definition 3.16. A morphism f : X → Y of fine log schemes is called integral if for

every geometric point x̄ ∈ X, the map of characteristic monoids h : f−1(MY )x̄ →
MX,x̄ is integral.

Remark 3.17. (1) If f is integral, then étale locally we have a chart (PX →
MX , QY →MY , Q

h→ P ) such that h is integral.

(2) If h : Q→ P is integral of integral monoids, then for any integral monoid

Q
′
, the push-out of P ← Q → Q

′
in the category of monoids is integral.

Thus integral morphisms are stable under base change by integral log

schemes.

(3) Given a morphism h : Q → P of integral monoids, there is an explicit

criterion, which looks complicated, but sometimes is useful for checking

integrality of h directly: if a1, a2 ∈ Q, b1, b2 ∈ P and h(a1)b1 = h(a2)b2,

then there exist a3, a4 ∈ Q and b ∈ P such that b1 = h(a3)b, b2 = h(a4)b

and a1a3 = a2a4. This comes essentially from the equational criterion for

flatness.

Now we have the following fact from [27, 4.5].

Proposition 3.18. If f is a log smooth and integral morphism of fine log schemes,

then f the underlying map is flat in the usual sense.

Now let us consider the following deformation problem. We are given a log

smooth integral morphism f0 : X0 → B0 of fine log schemes, and a strict closed

immersion j : B0 → B defined by an ideal J with J2 = 0. We want to find a log

smooth lifting f : X → B fitting in the following cartesian diagram:

X0
� � //

��

X

��

B0
� � // B.

Remark 3.19. Since f0 is integral, andMX/(1+J) ∼=MX0
, it is not hard to show

that the lifting f is automatically integral and hence flat.

We have the following theorem for log smooth deformations.

Theorem 3.20. [27, 3.14]With the notation as above, we have:

(1) There is a canonical obstruction η ∈ H2(X0, TX0/B0
⊗ J) such that η = 0

if and only if there exists a log smooth lifting.

(2) If η = 0, then the set of log smooth deformations form a torsor under

H1(X0, TX0/B0
⊗ J).
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(3) The automorphism group of any deformation is given by H0(X0, TX0/B0
⊗

J).

The theorem can be proved in a manner similar to the case of usual deforma-

tion theory as in [15, Exposé 3]. Another proof using the logarithmic cotangent

complex can be found in [49, Thm 5.6], which we will discuss later.

4. Log smooth curves and their moduli

Now that we have reviewed some of the foundations, we can discuss the first

application to the study of moduli spaces: F. Kato’s interpretation of Mg,n as a

moduli space for log curves. The general philosophy is expressed by F. Kato in

the introduction to [26]:

Philosophy. Since log smoothness includes some degenerating objects like semistable

reductions, etc., the moduli space of log smooth objects should be already com-

pactied, once its existence has been established.

Along the lines of this philosophy, to compactifyMg,n, we want to introduce

a notion of log curve which extends the notion of smooth curve. Following F.

Kato, we do so after some preliminaries.

Relative characteristic sheaves

Recall from Definition 2.3 that the characteristic MX of a log scheme X is

defined as MX/O∗X . In the study of log curves, the following relative notion of

characteristic plays an important role.

Definition 4.1. Given a morphism f : X → Y of log schemes, the relative charac-

teristic MX/Y is defined as the quotientMX/ im(f∗MY →MX) in the category

of integral monoids.

Example 4.2. Let f : X → Y be the morphism from Example 3.7. Then the

relative characteristic MX/Y is the cokernel in the category of integral monoids

of the diagonal map ∆ : N→ N2, which is Z.

Lemma 4.3 ([26, Lemma 1.6]). If f : X → Y is an integral morphism of fine log

schemes, then MX/Y,x̄ = 0 if and only if f is strict in an étale neighborhood of x.

As the following example illustrates, the integrality assumption on f is nec-

essary.

Example 4.4. Let P be the monoid on three generators x, y, and z subject to the

relation x+ y = 2z. We have an injection

i : P −→ N2

sending x to (2, 0), y to (1, 1), and z to (0, 2). Let X = Spec k[N2] and Y =

Spec k[P ] with their canonical log structures. Then it follows from [27, Prop 3.4]
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that the morphism of log schemes f : X → Y induced by i is log étale, but f is

not flat, and hence, by [27, Cor 4.5], f is not integral. It is easy to check that

MX/Y,0 = N2/P ' Z/2,

so MX/Y,0 = 0, but f is not strict.

Log curves

Definition 4.5. A log curve is a log smooth integral morphism f : X → S of fs log

schemes such that the geometric fibers of f are reduced connected 1-dimensional

schemes.

We require f to be integral so that, by [27, Cor 4.5], f is flat. The reason for

the fs assumption is to avoid cusps or worse singularities, as the following example

shows.

Example 4.6. If X = Spec k[N − {1}] is given its canonical log structure and

S = Spec k is given the trivial log structure, then X → S is log smooth and

integral; however, X = Spec k[x, y]/(y2 − x3) has a cusp.

It is a remarkable fact that by endowing our curves with log structures as in

Definition 4.5, this is enough to control the singularities of the curve.

Theorem 4.7 ([26, Thm 1.3]). If k is a seperably closed field and f : X → S is a

log curve with S = Spec k, then X has at worst nodal singularities. Moreover, if

r1, . . . , r` are the nodes of X, then there exist smooth points s1, . . . , sn of X such

that

MX/S = Zr1 ⊕ · · · ⊕ Zr` ⊕ Ns1 ⊕ . . .Nsn ;

here Mx denotes the skyscraper sheaf for a monoid M supported at a point x ∈ X.

The reader should think of the si in the above theorem as marked points. So

we can already see how n-pointed curves emerge naturally from the log geometry

perspective.

Example 4.8. Consider the closed subscheme X of P2
k ×k A1

k defined by xz = ty,

where t is the coordinate of A1
k and x, y, and z are the coordinates of P2

k. Then X

has a natural log structure MX . For example, on the locus where z is invertible,

X is given by Spec k[Pz] with Pz a monoid on five generators a, b, c, c′, u subject

to the relations c + c′ = 0 and a + c = b + u; here MX is given by the canonical

log structure associated to Pz. Then the projection

X −→ A1
k

is a log curve, where X is given the log structure above and A1
k is given the log

structure defined by the divisor t = 0. We see that every fiber above t 6= 0 is

isomorphic to P1
k with log structure given by the divisor at 0 and ∞; the fiber

above t = 0 is nodal. The n in Theorem 4.7 is equal to 2 for all geometric fibers.
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Since our goal is to give a log geometric description of Mg,n, we would like

to express the stability condition purely in terms of log geometry. The following

proposition provides the key.

Proposition 4.9 ([26, Prop 1.13]). With notation as in Theorem 4.7, there is a

natural isomorphism

Ω1
X/S −→ ωX(s1 + · · ·+ sn),

where ωX is the dualizing sheaf of X.

We therefore make the following definition.

Definition 4.10. Let f : X → S be a log curve and for all geometric points t̄ of S,

let `(t̄) and n(t̄) be such that

MXt̄/t̄ = Zr1 ⊕ · · · ⊕ Zr`(t̄) ⊕ Ns1 ⊕ . . .Nsn(t̄)
.

We say f is of type (g, n) if f is proper, X has genus g, and n(t̄) = n for all t̄. We

say f is stable of type of (g, n) if it of type (g, n) and

H0(X t̄, TXt̄/t̄) = 0

for all geometric points t̄ of S.

It is, in fact, true ([26, Prop 1.7]) that if f : X → S is a log curve of type

(g, n), then the si in each geometric fiber fit together to yield n sections σi of f . It

follows then that every stable log curve of type (g, n) is an n-pointed stable curve

of genus g in the classical sense.

Log structures on stable curves

Having now shown that every log curve is naturally a pointed nodal curve, we

shift gears and ask the following question: given a stable genus g curve f : X → S

with n marked points, how many log structures can we put on X and S so that

the associated morphism of log schemes is a log curve with relative characteristic

supported on our given n marked points? We begin by sketching the construction

of a canonical such log structure.

Lemmas 2.1 and 2.2 of [26] show that to endow X and S with log struc-

tures as desired, it is enough to consider the case when S = SpecA and A is

strict Henselian. For every node ri of the closed fiber of f , we can find an étale

neighborhood Ui of the points specializing to ri and a diagram

Ui

��

ψi
// SpecA[x, y, t]/(xy − t)

π

��

S
ϕi

// SpecA[t]

which is cartesian. Let ti ∈ A be the image of t under the morphism induced by ϕi.

Endowing SpecA[t] with the log structure associated to the morphism N → A[t]
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sending 1 to t, and SpecA[x, y, t]/(xy − t) with the log structure associated to

N2 → A[x, y, t]/(xy − t) sending e1 (resp. e2) to x (resp. y), we see that (π,∆) is

a morphism of log schemes, where ∆ : N→ N2 is the diagonal map. Pulling back

these log structures under ϕi (resp. ψi), we obtain log structures Li (resp. M′i)
on S (resp. Ui). Away from the points specializing to ri, we define a log structure

M′′i as the pullback of Li. The log structures M′i and M′′i glue to yield a log

structure Mi on X. Let N be the log structure on X associated to the divisor

defined by the marked points. We let

MX =M1 ⊕O∗X · · · ⊕O∗X M` ⊕O∗X N

and

MS = L1 ⊕O∗S · · · ⊕O∗S L`.
It is not difficult to see that with these definitions, we have endowed f with the

structure of a log curve.

Moreover, a detailed analysis of the proof of Theorem 4.7 shows that this log

structure we have just constructed is “minimal” among all possible log structures

giving X/S the structure of a log curve (see 1.8 and Thm 2.3 of [26]):

Theorem 4.11. Let X/S be a stable genus g curve with n marked points and let

X/S be the log curve obtained by endowing X/S with the canonical log structure

above. If X ′/S′ is a log curve and a : S′ → S and b : X ′ → X are morphisms

such that X ′ ' X ×S S′ and such that the divisors of marked points in X ′ are

sent scheme-theoretically to the divisors of marked points in X, there are unique

morphisms a and b of log schemes extending the morphisms a and b above such

that

X ′
b //

��

X

��

S′
a // S

is cartesian in the category of fs log schemes.

Definition 4.12. A log curve X/S is called basic if it satisfies the universal property

in Theorem 4.11.

Moduli

Before discussing moduli of log smooth curves, we begin with some generali-

ties about log structures and stacks. Note that the definition of a log structure is

not particular to schemes; indeed, Definition 2.2 makes sense for any ringed topos.

We can therefore define log structures on the étale site of a Deligne-Mumford stack

or the lisse-étale site of an Artin stack. The notions of fine and fs log structures

carry over to this setting as well, so one can speak of fine (or fs) log algebraic

stacks.
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There is another equivalent way to talk about log structures on stacks;

namely, if X is a stack over the category of schemes, and MX is a log struc-

ture on X, then X can naturally be viewed as a stack over the category of log

schemes. For concreteness, say X is a stack over the category of schemes with

the étale topology. Then we obtain a category X̃ fibered over the category of log

schemes by defining X̃(S,MS) to be the category whose objects are morphisms

f : (S,MS)→ (X,MX)

of log stacks and whose morphisms g from f ∈ X̃(S,MS) to f ′ ∈ X̃(S′,MS′) are

given by diagrams

(S,MS)
g

//

f
&&LLLLLLLLLL

(S′,MS′)

f ′xxqqqqqqqqqq

(X,MX).

One checks that X̃ is a stack over the category of log schemes where coverings are

given by surjective strict étale morphisms.

Conversely, given any stack Y over the category of log schemes with the strict

étale topology, we obtain a log stack (Y ′,MY′) over the category of schemes with

the étale topology by letting Y ′(S) be the category of pairs (MS , ξ) where ξ is

an object of Y(S,MS). The log structure MY′ is then defined by the following

property: if f : S → Y is a morphism which corresponds to the pair (MS , ξ), then

f∗MY′ =MS .

It is however important to note that these two procedures are not inverse to

each other. If we start with a logarithmic stack (X,MX), and take the result (X̃)′

of the composite operation, we do not get X but rather the stack LOGX described

in section 6. In order to recover the stack X over schemes from a stack X̃ over

log schemes, it is necessary to distinguish objects similar to the basic log curves

of Definition 4.12. Rather than launch into a premature categorical discussion, let

us see how this works for log curves. The issue is revisited in sections 11 (with

Olsson’s terminology of special log structures) and 12 (with Kim’s terminology of

minimal log structures).

Let Mlog

g,n be the stack over the category of fs log schemes with the strict

étale topology where Mlog

g,n(S,MS) is the category of stable log curves of type

(g, n) over (S,MS). Let Mbas
g,n be the substack of basic stable log curves of type

(g, n). By the above discussion, we obtain a log stack over the category of schemes

with the étale topology, which we again denote by (Mbas
g,n,MMbas

g,n
).

Note that the Deligne-Mumford compactification Mg,n carries a natural log

structureMMg,n
coming from the simple normal crossing divisor at the boundary.

It follows from [7, §2] thatMMg,n
can also be described as the log structure which

assigns to each stable curve X/S the basic log structure obtained on S. The
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discussion following Definition 4.5 above shows that we have a natural morphism

F : (Mbas
g,n,MMbas

g,n
) −→ (Mg,n,MMg,n

)

and from Theorem 4.11 we see

Theorem 4.13 ([26, §4]). The morphism F is an equivalence of log stacks.

4.14. Back to the big picture

We end by mentioning a type of converse to the philosophic principal men-

tioned at the beginning of this section. We have seen that since log smoothness

includes degenerate objects, log geometry can naturally lead to compactifications;

however, it is also generally true that we do not end up with “too many” degenerate

objects.

Philosophy. Log geometry controls degenerations.

In higher dimensions, compactifications tend to have unwanted extra com-

ponents. Log geometry helps to cut down on these components. Let us give some

inkling of an idea as to why this should be true. Suppose X is an algebraic stack

which is irreducible. Suppose we can find a proper algebraic stack X̄ with a fine

log structure and an open immersion i : X→ X̄ such that X is the trivial locus of

X̄.

As we now explain, log geometry provides us with a good method of trying to

show that X̄ is irreducible as well. If k is separably closed and x : Spec k → X̄ is a

morphism, then pulling back the log structure on X̄ endows Spec k with a fine log

structure. By [27, Lemma 2.10], it follows that this is the log structure associated

to a morphism of monoids P → k, where P is fine. Hence, we have a strict closed

immersion of log schemes j : Spec k → Spec k[[P ]], where Spec k[[P ]] is given its

canonical log structure. Note that the generic point SpecK of Spec k[[P ]] carries

the trivial log structure. Therefore, if x factors as a morphism of log stacks through

j, then we automatically obtain a commutative diagram

X
i // X̄

SpecK //

y

OO

Spec k[[P ]]

88rrrrrrrrrrr
Spec k

x

OO

j
oo

and hence x is the specialization of the point y of X. We see then that the log

structure on Spec k obtained from X̄ somehow serves as a compass telling us which

way to look in order to find a family degenerating to our given point x of X̄.

5. D-semistability and log structures

The main references here are [10, 24, 47].
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Convention. Throughout this section, every scheme is over an algebraically closed

field. The notation X will be reserved for a normal crossing variety. By this we

mean a variety for which every closed point x ∈ X has an étale neighborhood

x → U which admits an étale map U → Spec
k[x1, · · · , xn]

(x1 · · ·xr)
→ X such that x

maps to the point with coordinates (0, · · · , 0). By a standard neighborhood of

x ∈ X, we mean an étale neighborhood of x as above. The notation Mk denotes

the log structure of the standard log point N→ k, n 7→ 0n, see example 2.11.

Introduction

To study the geometry of a normal crossing variety X, e.g. to study the

deformation theory of X, one would like to ask the following questions:

Question 5.1. Can we embed X into another variety i : X → X as a normal

crossing divisor?

Question 5.2. Can we find a semi-stable smoothing of X, i.e. embed X → Spec k

in a flat family over a curve X → C, in such a way that there exists a diagram

X

��

// X

��

X ∗ = X \Xoo

f∗

��

Spec k
0 // C C∗ = C\0oo

where X is smooth, the squares are cartesian and f∗ is smooth?

The answer to these questions are not always yes, because the existence of

such maps would imply the existence of certain log structures on X, which in turn

would imply intrinsic condition on X, so their existence is not guaranteed.

Example 5.3 (log structure of embedding type). If we can find an embedding as in

Question (5.1) above, then i∗(j∗O×X ∗) → OX defines a log structure MX on X,

which étale locally has a chart Nr → Spec
k[x1, · · · , xn]

(x1 · · ·xr)
sending the element ei in

the standard basis of Nr to xi. This is called a log structure of embedding type.

Example 5.4 (log structure of semi-stable type). If we can find a semi-stable

smoothing as in Question (5.2) above, then what we have in this case is not only a

log structure of embedding type on X, but also a morphism (of sheaf of monoids)

f [ : f∗Mk → MX , which makes X a log smooth variety over the standard log

point (Spec k,Mk). Étale locally a chart for the log structure on X can be put in

the form (
Spec

k[x1, · · · , xn]

(x1 · · ·xr)
,Nr, ei 7→ xi, i = 1, · · · , r

)
.
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Modulo the units in the monoid, the morphsim of quotient monoids induced by

f [ : f∗Mk → MX is just the diagonal ∆ : N → Nr. Such a pair (MX , f
[ :

f∗Mk →MX) is called a log structure of semi-stable type on X.

Remark 5.5. The log structure Mk on Spec k can be defined by the pullback of

the log structure (M0 = j∗O×C∗ → OC) on C, i.e. the log structure defined by the

divisor 0 of C. We have an isomorphism Mk :=Mk/k
×∼=(M0/O×C )0

∼=N, where

the second isomorphism assigns each function to its vanishing order at the point

0 in N. This gives a geometric interpretation of the standard log point.

Concerning the existence of such log structure on the normal crossing variety

X, we have the following theorems ([24], Sec.11):

Theorem 5.6. Let X be a normal crossing variety over the spectrum of an alge-

braically closed field, then X can be equipped with a log structure of embedding type

iff there exists a line bundle L on X such that

Ext1X(Ω1
X ,OX)|D ∼=L|D

where D is the non-smooth locus of X.

Remark 5.7. It is not hard to see Ext1X(Ω1
X ,OX)|D is a line bundle on D.

Definition 5.8. (see [10, Def. 1.13 and Prop. 2.3]) Let X and D as before. If

Ext1X(Ω1
X ,OX)|D is a trivial on D, then we say that X is d-semistable.

Theorem 5.9 (d-semistability). Let X be a normal crossing variety over the

spectrum of an algebraically closed field, then X can be equipped with a log structure

over the standard log point, such that the structure morphism is log smooth if and

only if X is d-semistable.

Generalization of these theorems can be found in [47], section 3.

Corollary 5.10. If X has a semistable smoothing as in Question 5.2, then X is

d-semistable.

In fact, we can put a log structure on X such that it is log smooth over the

standard log point by Example 5.4, so we can apply Theorem 5.9

Remark 5.11. Being d-semistable is not equivalent to having a semi-stably smooth-

ing. See [54, Section 3] for counterexamples.

Example 5.12 (a normal crossing variety that is not d-semistable [10]). Let X be

the subvariety of P 3 defined by the product of 4 linear equations f = L1L2L3L4 =

0. It is a normal crossing variety provided the four planes has no points in common.

Then D is defined by the homogeneous ideal (LiLj |1 ≤ i < j ≤ 4), and it is not

hard to calculate that Ext1X(Ω1
X ,OX)|D ∼= OD(4), which is not trivial. So X is

not d-semistable.
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Corollary 5.13. The X in Example 5.12 does not admit a semi-stably smoothing.

Remark 5.14. If we put X in the 1−dimensional family X defined by f + tg = 0

with parameter t, where g is a smooth quartic, then X is the fiber over t = 0

and for generic g, X over (t 6= 0) is smooth. But the whole space of this family

is not smooth: in fact, for a generic g, this family is singular at the 24 points of

D ∩ {g = 0}. However, a single blowing up at such a point gives a P 1 × P 1.

Contract along either ruling gives back a family with parameter t which has one

less singularity. If we do this process to all 24 points, we will get a family which

is a semi-stable smoothing of X̃, the blowing-up of X at those 24 points. X̃ is

d-semistable. For details, see [10, Rem. 1.14].

Refined analysis of the existence of log structures

Continuing with the notation X,D above, let us analyze the situation. We

want to break the job of finding a suitable log structure over the standard log

point into 2 steps:

(1) Put a log structure of embedding type on X.

(2) See if it is possible to make that log structure semi-stable.

We will see that two related obstructions arise naturally, where the vanishing

of the first corresponds to the first step, and the vanishing of the second, which

means precisely being d-semistable, allows us to do the second step.

Since étale locally a log structure of embedding type always exists, let us

consider the stack G, which to each U ∈ Xét associates the groupoid of log structure

of embedding type on U . Using Artin’s approximation theorem one can show that

any two elements of U are locally isomorphic, which means G is a gerbe. Since

AutG ∼=K, where K is the kernel of the restriction map O×X → O
×
D, we have:

Proposition 5.15. There is an obstruction η in H2(Xét,K) whose vanishing is

equivalent to the existence of a log structure of embedding type on X.

For the calculation of this obstruction, we state the following result (See [24],

Sec.11 and [47], Sec.3):

Proposition 5.16. In the long exact sequence of cohomology associated to the

short exact sequence 1→ K → O×X → O
×
D → 1, the line bundle Ext1X(Ω1

X ,OX)|D
maps to −η ∈ H2(Xét,K).

Combining these results with the exactness of the long exact sequence , we

get Theorem 5.6.

Remark 5.17. General theory tells us if η = 0, then the set of all log structure of

embedding type on X is naturally a torsor under H1(Xét,K). In general the set

of all log structure of embedding type is only a pseudo torsor under this group.
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Suppose η = 0, then we can put a log structure of embedding type on X,

which maps to (Spec k, k×). To go one step further, i.e., to make it a log structure

of semistable type, we need a morphism of monoids f∗Mk →MX , such that in an

standard neighborhood of x ∈ X, a chart of the morphism is given by the diagonal

∆ : N→ Nr, where r is the number of irrducible components passing through x.

Since Mk
∼=N ⊕ k× (non-canonically), and the image of k× ⊂ Mk is deter-

mined by the underlying morphism of schemes. To give the morphism wanted

from Mk to MX , we only have to specify the image of an element in Mk having

vanishing order 1.

Now the question becomes a lifting problem for morphism of sheaves in

monoids:

MX

β

��

N∼= f−1Mk

99

f[

// MX

where étale locally f [ is the diagonal ∆. To lift f [ it is equivalent to lift the

element f [(1).

Consider the sheaf of all the possible local liftings of f [(1), T = β−1(f [(1)),

then T is a torsor under O×X . To find a lifting of f [(1), it is equivalent to find a

global section of T , i.e. a trivialization of T .

It seems like we have got an obstruction of finding a log structure on X which

is semi-stable in H1(Xét,OX) = Pic(X). This is, however, not quite true. In fact,

what we got is for each log scheme X with a log structure of embedding type, the

obstruction of making it semi-stable. And our original question (on the existence

of log structure of semi-stable type) allows some ambiguity of choosing the log

structure of embedding type MX on X. As we said in remark 5.17, in this case

the set of all log structure of embedding type on X is an H1(Xét,K)-torsor, which

implies:

Proposition 5.18. If η = 0, i.e. there exists a log structure of embedding type on

X. Then there is an obstruction for finding a log structure of semi-stable type on

X, η′ ∈ H1(Xét,O×X)/H1(Xét,K), whose vanishing is equivalent to the existence

of such a log structure.

By the long exact sequence of cohomology, H1(Xét,O×X)/H1(Xét,K) embeds

into H1(Dét,O×D)∼= Pic(D). For the calculation of η′ as an element of Pic(D), we

state the following proposition (See [47]).

Proposition 5.19. We have −η′ = [Ext1X(Ω1
X ,OX)|D] ∈ Pic(D).

Combining these two proposition, we get Theorem 5.9.
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6. Stacks of logarithmic structures

The main reference of this section is [46].

A motivating example

Before introducing the stack LOGS classifying fine log structures on schemes

over a fine log scheme S, constructed by Olsson in [46], let us look at an example,

which will give the local covers of LOGS .

Definition 6.1. Let X be a scheme and r ≥ 1 an integer. A Deligne-Faltings log

structure of rank r on X (abbreviated as a DF log structure of rank r) is the

following date:

• a sequence L1, · · · , Lr of line bundles on X, and

• a morphism si : Li → OX of line bundles, for each i.

Consider the following three categories fibered in groupoids over the category

of schemes:

(1) the category of triples (X,L, s : L→ OX) consisting of a scheme X and

a DF log structure of rank 1 on X;

(2) the category of pairs (X,β : N →MX) consisting of a fine log scheme

X and a morphism of sheaves of monoids β that étale locally lifts to a

chart: β̃ : N→MX ;

(3) the quotient stack [A1/Gm], where the quotient is formed with respect

to the multiplication action of Gm on A1.

Lemma 6.2. ([27], complement 1). These three categories fibered in groupoids

are equivalent.

Let us sketch the proof. Given a DF log structure (L, s : L→ OX) of rank 1

on X, define a sheaf of monoids M′ on X to be∐
n≥0

Isom(OX , L⊗n),

the sheafification of the presheaf that takes U to
∐
n≥0 Isom(OU , (L|U )⊗n). It

comes with a natural morphism of sheaves of monoidsM′ → N, where the monoid

structure on M′ is induced by

(n, a : O → L⊗n) · (m, b : O → L⊗m) = (n+m, a⊗ b).

The map s : L→ OX induces a morphism

Isom(OX , L⊗n)
⊗s−→ Hom(OX ,OX) = OX

of sheaves, hence giving a pre-log structure on M′ :

M′ → OX .
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We takeMX to be the log structure associated to this pre-log structureM′. Note

that M′/O∗X ∼= N, and we define β : N→MX to be the composite

β : N ∼=M′/O∗X →MX/O∗X .

Locally the line bundle L is trivial, and one can choose a trivialization of L, which

gives trivializations of all L⊗n. Sending n ∈ N to this trivialization defines a section

N →M′, and hence a section β̃ : N →M′ →MX . One can check that this is a

chart.

Conversely, given a fine log structure (MX ,MX
α→ OX) on X with a mor-

phism β : N → MX that étale locally lifts to a chart β̃ : N → MX , we have a

section β(1) ofMX , and its inverse image under π :MX →MX is an O∗X -torsor,

which corresponds to a line bundle L. The composition

π−1(β(1)) ⊂MX
α−→ OX

gives a morphism of line bundles s : L→ OX .
Giving a morphismX → [A1/Gm] is equivalent to giving a Gm-torsor (namely

a line bundle L) with a Gm-equivariant morphism to A1 :

Y //

��

A1

��

X // [A1/Gm].

This diagram is equivalent to the following one

Y
s //

��

A1
X

��

X // [A1/Gm]X ,

and the top arrow is Gm-equivariant, namely a morphism of line bundles s : L→
OX . This finishes the proof.

In fact, in the three fibered categories, one can replace N by Nr, and rank

1 DF-log structure by rank r DF-log structure, and replace [A1/Gm] by [Ar/Grm]

(which is equivalent to [A1/Gm]r), and they are still equivalent.

More generally, let P be a fine monoid and S a scheme, and let S[P ] be

the product S ×Spec Z Spec Z[P ], which has a fine log structure coming from the

chart P → Z[P ] (2.8). For an affine S-scheme Spec R, the set of R-points S[P ](R)

is the set of monoid homomorphisms Hommon(P,R), where R is regarded as a

multiplicative monoid. Let P gp be the group associated to P. For any affine S-

scheme Spec R, the group Hommon(P gp, R) = Homgp(P gp, R∗) acts on the set

Hommon(P,R) by pointwise multiplication. This induces an action of the S-group

scheme S[P gp] on S[P ]. When S = Spec k for a field k and P is saturated and
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torsion-free, the k-group variety S[P gp] is a torus, and S[P ] is a toric variety with

respect to this torus action.

We have the following.

Lemma 6.3. ([46], 5.14, 5.15) The following two categories fibered in groupoids

over the category of S-schemes are equivalent:

(1) the category of pairs (X,β : P →MX) consisting of a fine log scheme

X with a morphism X → S and a morphism of sheaves of monoids β that

fppf locally lifts to a chart: β̃ : P →MX ;

(2) the quotient stack SP := [S[P ]/S[P gp]].

If in addition P is fs, then one can replace “fppf” by “étale”.

6.4. In fact, the action of S[P gp] on S[P ] extends to an action on the log structure

on S[P ], and so this log structure descends to a log structure MSP on the stack

SP (cf. Section 4 for the definition of log structures on stacks), and there is a

natural morphism πP : P →MSP of sheaves of monoids that fppf locally lifts to

a chart. This is the universal pair (MSP , πP ) on SP that induces the equivalence

in (6.3) above.

Moreover, for a morphism h : Q→ P of fine monoids, the induced morphism

S[h] : S[P ]→ S[Q]

is compatible with the actions of S[P gp], S[Qgp] and the homomorphism S[hgp] :

S[P gp]→ S[Qgp], hence it descends to a morphism

S(h) : SP → SQ
of S-stacks. The map h : Q → P, regarded as a morphism of constant sheaves,

induces a morphism S(h)∗MSQ → MSP of log structures, making S(h) into a

morphism of S-log stacks.

The stack of log structures

Now we can discuss the stack LOGS parameterizing fine log structures.

Let S be a fine log scheme. Define LOGS to be the category with

• objects: morphisms X → S of fine log schemes, and

• morphisms: strict morphisms X → Y over S.

With the functor (X → S) 7→ (X → S) from LOGS → SchS , this defines a

fibered category over S. One of the main results in [46] is the following.

Theorem 6.5. ([46], 1.1) LOGS is an algebraic stack locally of finite presentation

over S.

Here for an algebraic stack we use a slightly different definition from [36,

4.1]. Namely the first axiom there that the diagonal is representable, separated

and quasi-compact, is replaced by that the diagonal is representable and of finite

presentation. In fact the stack LOGS is not quasi-separated [46, 3.17].
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Here are two basic properties of LOGS .

Proposition 6.6. ([46], 3.19, 3.20) (1). The natural map iS : S → LOGS
corresponding to the identity morphism S → S is an open immersion;

(2). The 2-functor

S 7→ LOGS : {fine log schemes} → {algebraic stacks}

preserves fiber product. More precisely, if

X ′ //

��

X

��

S′ // S

is a Cartesian square of fine log schemes, then the induced diagram

LOGX′ //

��

LOGX

��

LOGS′ // LOGS

is a 2-Cartesian square of algebraic stacks.

What is LOGS good for?

One can use this stack LOGS to reinterprete many concepts in log geometry.

Note that for a morphism f : X → S of fine log schemes, the induced morphism

LOG(f) : LOGX → LOGS is faithful, hence representable.

Definition 6.7. Let P be a property of representable morphisms of algebraic stacks.

Then we say that f : X → S has property LOG(P ) if LOG(f) : LOGX → LOGS
has property P. We say that f has property weak LOG(P ) if the map X → LOGS
corresponding to the given morphism f : X → S has property P.

6.8. Caution: The diagram

X
iX //

f

��

LOGX

LOG(f)

��

S
iS

// LOGS

does not necessarily commute. It commutes if and only if f is strict. In [49,

Section 2] a device is introduced in order to fix this issue, using stacks of diagrams

of logarithmic structures.

Recall from (3.10) the notion of log smoothness and log étaleness.
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Theorem 6.9. For a morphism f : X → S of fine log schemes, f is LOG smooth

(resp. LOG étale) if and only if f is log smooth (resp. log étale), if and only if f

is weakly LOG smooth (resp. weakly LOG étale).

This is part of [46, 4.6].

6.10. Another application is the following. Consider the deformation problem for

a log smooth integral morphism f0 : X0 → B0 of fine log schemes and a strict

square-zero thickening B0 → B defined by an ideal J ⊂ OB . In (3.20) we gave the

relation between this deformation problem and the cohomology groups of the log

tangent bundle TX0/B0
. The stack LOGS provides another way of thinking of this

problem.

By (6.9), the log smooth morphism f0 : X0 → B0 induces a representable

smooth morphism X0 → LOGB0
, denoted Lf0

, and the deformation problem

X0
� � //

f0

��

X

f

��

B0
� � // B

is equivalent to the following

X0 //

Lf0

��

X

Lf

��

LOGB0
// LOGB .

The solution to this deformation problem is the cohomology groups of the ordinary

tangent bundle TX0/LOGB0
, therefore, theorem (3.20) holds with TX0/B0

replaced

by TX0/LOGB0
. In fact, we have Ω1

X0/B0

∼= ΩX0/LOGB0
(cf. ([49], 3.8)).

See section 7 for the general deformation theory of log schemes.

Local structure of LOGS .

For a fine log scheme S, the relation between the quotient stacks SP and

LOGS is that, the stack LOGS can be covered by the relative versions of the

SP ’s.

Let u : U → S be a strict morphism of fine log schemes, such that the

underlying morphism u is étale. We will just say that u is an étale strict morphism,

if there is no confusion. Let β : Q → MU be a chart, and let h : Q → P be a

morphism of fine monoids. The chart β induces a strict morphism U → S[Q],

which we also denote by β.

Let SP be the quotient stack [S[P ]/S[P gp]] with the natural fine log structure

MSP in (6.4), and let SP be the underlying stack. Consider the 2-commutative
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diagram

SP ×SQ U
pr2

//

pr1
��

U
β

// S[Q]

π
��

SP
S(h)

// SQ.

Let Z be the U -log stack with underlying stack Z = SP×SQU and the inverse image

log structure MZ = pr∗1MSP . Applying pr∗1 to the morphism of log structures

S(h)∗MSQ →MSP (cf. (6.4)), noting that π ◦ β : U → SQ is strict, we obtain a

morphism pr∗2MU →MZ , making pr2 into a morphism of log stacks pr2 : Z → U.

This gives a morphism

Z → LOGU → LOGS .

Proposition 6.11. ([46], 5.25) For any fine log scheme S, the natural morphism∐
(U,β,h)

SP ×SQ U → LOGS

is a representable étale surjection, where the disjoint union is taken over the iso-

morphism classes of all triples (U, β, h) consisting of an étale strict morphism

U → S, a chart Q
β→MU , and a morphism h : Q→ P of fine monoids, for some

fine monoids P and Q.

7. Log deformation theory in general

The main reference here is [49].

As is well known, the general deformation theory of schemes and morphisms

of schemes is not as easy as in the smooth case. To understand deformation theory

of general morphisms, one has to use the full power of the cotangent complex, see

[19, 20]. In log geometry, one can generalize it to get a reasonable theory of

logarithmic cotangent complex.

This log cotangent complex will be compatible with the usual cotangent

complex when the morphism in question is strict and is also compatible with

log smooth deformation theory for log smooth morphisms. Basically, this is an

application of the deformation theory of representable morphisms to algebraic

stacks ([50]) to the classifying morphisms from the underlying scheme of X to the

stack LOGY ([46], see also section 6 of this chapter.)

Convention. We will focus on the category of fine log schemes. For a log scheme

X, X means the underlying scheme of X.

Remark 7.1. We will work with the category D′(X ét) and similar categories, and

one can talk about distinguished triangles and Ext’s in these categories. For

relevant definitions, see [49] and [50].
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Our presentation here follows [49]. An alternative approach to the contangent

complex due to Gabber is also explained in [49, Section 8].

The Log Cotangent Complex

In Section 6, an Artin stack LOGY is defined for a log scheme Y . It has

the property that morphisms of log schemes X → Y are equivalent to morphisms

X → LOGY . Thus one may interpret deformations of a morphism of log schemes

X → Y as deformations of the associated representable morphism X → LOGY .

In [50], the deformation theory of representable morphisms of stacks was studied

in detail. As an application of this theory, one makes the following definition:

Definition 7.2. For a morphism of log schemes f : X → Y , the logarithemic

cotangent complex of f is the complex Lf = LX/LOGY
, where the right hand side

is the cotangent complex of the morphism X → LOGY defined in Section 6.

Remark 7.3. One should think about Lf as an object of the category D′qcoh(X ét).

In the above definition, the right hand side is an object of the categoryD′qcoh(X lis−ét).

As the restriction functor D′qcoh(X lis−ét)→ D′qcoh(X ét) is an equivalence of cate-

gories, no information of the cotangent complex would lost.

Basic Properties

For every morphism of fine log schemes f : X → Y the log cotangent complex

is a projective system

Lf = (· · · → L≥−n−1
f → L≥−nf → · · · → L≥0

f )

where each L≥−nf is an essentially constant ind-object in D[−n,0](OX) (The derived

category of OX -modules supported in [−n, 0]).

The log cotangent complex Lf has the following properties:

(1) For any n ≥ 0, the natural map τ≥−nL
≥−n−1
f → L≥−nf is an isomorphism.

(2) If f is strict, then the system (τ≥−nLf ′) represents Lf , where Lf ′ is the

usual cotangent complex of the underlying morphism of schemes f ′.

(3) If f : X → Y is log smooth, then the sheaf of log differentials Ω1
X/Y

represents Lf .

(4) If

X ′
a //

g

��

X

f

��

Y ′
b // Y

is a commutative diagram of fine log schemes, then there is a natural map

a∗Lf → Lg
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which is an isomorphism if the square above is cartesian and f is log flat.

Furthermore, if the composite X ′ → Y ′ → Y satisfies the condition (T)

below, then the map

g∗Lb ⊕ a∗Lf → Lbg

is also an isomorphism.

(5) Given a composite

X
f

// Y
g

// Z

satisfying condition (T) below, there is a natural map

Lf → f∗Lg[1]

making the resulting triangle

(7.4) f∗Lg → Lgf → Lf → f∗Lg[1]

distinguished.

Remark 7.5. In (4) and (5) above, f∗, a∗, g∗ should be understood in the derived

sense.

Remark 7.6. One might hope for a theory of log cotangent complex in which every

triangle (7.4) is distinguished. This is unfortunately not the case - an example due

to W. Bauer is given in [49, Section 7].

On the other hand, Gabber has shown (see [49, Section 8]) that if one loosens

the requirement 3, then one can obtain a theory of log cotangent complexes for

which one has a distinguished triangle (7.4) for all composites X
f

// Y
g

// Z .

The Condition (T) mentioned above is the following:

There exists a family of commutative diagrams

Xi

πXi //

$$HHHHHHHHHH X ×Y Yi

��

// X ×Z Zi

��

// X

f

��

Yi
πYi //

&&MMMMMMMMMMMM Y ×Z Zi //

��

Y

g

��

Zi
πZi // Z

such that

(1) The underlying schemes of Xi, Yi, Zi are all affine.

(2) The π’s are all strict, and their underlying morphisms are flat and locally

of finite presentation.

(3) The underlying family of morphisms of schemes of {Xi → X} is jointly

surjective.
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(4) There exists charts

βXi
: QXi

→MXi
, βYi

: QYi
→MYi

, βZi
: QZi

→MZi

and injective maps

QZi
→ QYi

→ QXi

compatible with the morphisms fi, gi and

TorjOZi
⊗Z[QZi

]Z[QYi
](OZi

⊗Z[QZi
] Z[QXi

],OYi
[G]) = 0 for all j > 0.

Here G := Coker(QgpZi
→ QgpYi

) and OYi [G] is viewed as an OZi ⊗Z[QZi
]

Z[QYi
]-algebra via the map

OZi
⊗Z[QZi

] Z[QYi
]→ OYi

[G], t⊗ eq 7→ g∗i (t)βQYi
(q) · q̄

where q̄ denotes the image of q in G.

Deformation Theory of Log Schemes in General

In this section, we explain the relation between the log cotangent complex

and deformation theory of log schemes. Let f : X → Y be a morphism of fine log

schemes and let I be a quasi-coherent sheaf on X. Define a Y -extension of X by

I to be a commutative diagram of log schemes

X
j

//

f

��

X ′

f ′~~||||||||

Y

where j is an strict closed immersion defined by a square-zero ideal, together with

an isomorphism εj : I ∼= Ker(OX′ → OX). The set of Y -extensions of X by I

forms, in a natural way, a category ExalY (X, I). Let ExalY (X, I) be the set of

isomorphism classes of this category.

There is a tautological equivalence of categories (see [50, Problem 1] for the

meaning of the right hand side):

ExalY (X, I) ∼= ExalLOGY
(X, I).

Hence, by [50, Theorem 1.1] and our definition of Lf , we obtain the following

result:

Theorem 7.7. ([49, Theorem 5.2]) There is a natural bijection

ExalY (X, I) ∼= Ext1(Lf , I).

It is precisely the theorem above that guarantees that general deformation

theory is controlled by our logarithmic cotangent complex.
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Definition 7.8. Let j0 : Y0 ↪→ Y be an strict closed immersion of fine log schemes

defined by a square-zero ideal I ⊂ OY , and let f0 : X0 → Y0 be a LOG flat

morphism (Definition 6.7). A log flat deformation of X0 to Y is a cartesian square

X0

j
//

f0

��

X

f

��

Y0

j0
// Y

with f LOG flat.

To give a log flat deformation as above is equivalent to give a 2-commutative

diagram

X0
j

//

Lf0

��

X

Lf

��

LOGY0

j0
// LOGY

with Lf flat. Thus from ([50], 1.4) we obtain the following:

Theorem 7.9. Let J denote the ideal of LOGY0 in LOGY . Then

(1) There exists a canonical class o ∈ Ext2(Lf0
,L∗f0

J) whose vanishing is

equivalent to the existence of a log flat deformation of X0 to Y .

(2) If o = 0, then the set of isomorphism classes of log flat deformations of

X0 to Y is naturally a torsor under Ext1(Lf0
,L∗f0

J).

(3) The automorphism group of any log flat deformation of X0 to Y is canon-

ically isomorphic to Ext0(Lf0
,L∗f0

J)).

This theorem gives an answer to the question of general deformation theory

of log schemes.

Deformations of morphisms

As in the case of usual schemes, once one understands deformations of log

schemes, one obtains a solution to the related problem of deformations of a log

morphisms.

We are given a commutative diagram of solid arrows

(7.10) X0 X

Y0 Y

Z0 Z

i //

j
//

k //

f0

""EEEEEEEEEEE

h0

��
44444444444444444

f

""E
E

E
E

E
E

44444444

h

��
44444444

g0

��

g

��
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where i, j, k are strict closed immersion defined by square-zero ideal sheaves I, J,K

living on X,Y, Z respectively. The question is to find a dotted arrow f fitting in

the diagram. To nail down f , we need some more data.

The morphisms h and g induce morphisms w : h∗0K → I and v : g∗0K → J .

Assume given a morphism u : f∗0 J → I such that the composite

h∗0K = f∗0 g
∗
0K → f∗0 J → I

is equal to w.

What we want to find is an f fitting in the diagram (7.10) such that the

morphism f∗0 J → I induced by f is equal to u. This can also be solved by the

logarithmic cotangent complex.

Theorem 7.11. In the situation above, assume in addition that u induces a map

L∗f0
J ′ → I, where J ′ is the ideal of LOGY0

in LOGY , then there is a canonical

class o ∈ Ext1(f∗0LY0/Z0
, I) which vanishes iff there exists f fitting in the diagram

(7.10) such that the morphism f∗0 J → I induced by f is equal to u. If o = 0, then

the set of such maps f is a torsor under the group Ext0(f∗0LY0/Z0
, I).

For a proof of this theorem, see [49], Theorem 5.9.

8. Rounding

The main reference for this section is [30]. We have benefitted from a lecture

by A. Ogus, who reported on results in [43].

What is rounding?

The process of “rounding”, in its most basic form, produces a manifold with

corners from a smooth analytic space with a normal crossings divisor. So the

corners are not rounded but rather the opposite: they are created. On the other

hand, these corners are rather round and shapely. Also, anybody who has seen the

construction under any name and hears the name “rounding” immediately knows

what this is about. Evidently then, even though “rounding” might be something

of a misnomer, it is a very good name. The origin of the name seems to be in work

of Kajiwara, Nakayama and Ogus [23, 43].

In various moduli problems, the rounding of the moduli space often has a

more natural topological interpretation than the moduli space itself. A good ex-

ample is the Deligne-Mumford moduli spaceMg,n of marked nodal curves, whose

boundary is a normal crossings divisor. The “interior” Mg,n can be described

topologically as a quotient of Teichmuller space by the appropriate mapping class

group. There is a natural generalization of Teichmuller space involving 2-manifolds

decorated with circles, due to Harvey [18]; the analogous quotient yields a topo-

logical description of the rounding of Mg,n, rather than the moduli space Mg,n

itself.
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Another example is that of twisted curves, discussed in section 11. A twisted

curve is an algebraic stack with a log structure, so it is a bit exotic. But its rounding

is a good old topological space. A similar example occurs in current work of one of

us (Gillam): the relative Hilbert stack of a marked Riemann surface can be defined

algebraically using Jun Li style expansions, but it is not representable (except in

some trivial cases). However its rounding is a topological space (even a manifold

with corners) which is relatively easy to describe. A similar phenomenon occurs

in many moduli problems involving expansions, discussed briefly below.

The topological preeminence of the rounding of moduli spaces might ulti-

mately be traced back to the preference in topology for operations involving real

codimension one subspaces (e.g. connected sum of manifolds) as opposed to the

algebro-geometric preference for complex codimension one operations (e.g. pushout

of two smooth varieties along a common divisor). From this point of view, one

might think of log geometry as an attempt to speak algebraically about various

“real codimension one” phenomena.

The oriented real blowup

The most general rounding operation is the Kato–Nakayama logarithmic

space associated to a log analytic space [30]. In the basic example of a smooth ana-

lytic space with log structure from a normal crossings divisor, the Kato–Nakayama

space can be described in terms of oriented real blowup, which is a relatively simple

rounding operation that can be described as follows.

Suppose X is a topological space, π : L → X is a complex line bundle,

and s : X → L is a section of π. Locally on X we can choose a trivialization

(π, φ) : L→ X × C and consider the subspace

BL,s,φX :=

{
l ∈ L : |φ(l)| · (φsπ)(l) = φ(l) · |(φsπ)(l)|

}
of L. A continuous function u : X → C∗ yields a new trivialization (π, u · φ),

where (u ·φ)(l) := (uπ)(l)φ(l) . The key observation is that BL,s,φX = BL,s,u·φX,

so the subspace BL,s,φX is independent of the choice of φ, hence one can define

a subspace BL,sX ⊆ L by defining it locally on X using a trivialization, then

gluing the locally defined subspaces. From the local picture using a trivialization,

it is clear that the subspace BL,sX contains the zero section and L|Z(s) (where

Z(s) ⊆ X is the zero locus of s) and is invariant under the R>0 action on L

inherited from the full C∗ scaling action. We let B∗L,sX be the complement of the

zero section in BL,s and we call

BloL,sX := (B∗L,sX)/R>0

the oriented real blowup of X along (L, s).

The space BloL,sX is a closed subspace of the oriented circle bundle S1L :=

L∗/R>0 associated to L and is, in particular, proper over X. The projection
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τ : BloL,sX → X is an isomorphism away from Z(s) and τ−1(Z(s)) is oriented

circle bundle S1L|Z(s). The spaces BL,sX and BloL,sX are natural under pulling

back line bundles and sections.

If X is an analytic space and D ⊆ X is a Cartier divisor, then D determines

a line bundle OX(D) together with a section s whose zero locus is D. In this

situation, we will write BDX, BloDX, etc. and speak of the oriented real blowup

of X along D. The space BloDX inherits a differentiable structure from its

inclusion in S1OX(D).

The basic example to keep in mind is the oriented real blowup Blo0 C of the

complex plane C at the origin. The origin is the zero locus of the identity map

Id : C→ C, hence

Blo0 C =
{

(z, Z) ∈ C× C∗ : |z|Z = z|Z|
}
/ R>0

=
{

(z, Z) ∈ C× S1 : |z|Z = z
}

∼= R≥0 × S1,

where the last isomorphism from R≥0×S1 is given by (λ, Z) 7→ (λZ,Z). Evidently

Blo0 C is a half-infinite annulus whose boundary S1 is the exceptional locus of

τ : Blo0 C→ C (the fiber over the origin).

The Kato–Nakayama space

Let (X,MX) be a fine and saturated logarithmic analytic space.

Definition 8.1. [[30, 1.2]] We define its canonical rounding, or Kato-Nakayama

space, denoted X log, as the space whose points are pairs (x, F ) where x ∈ X and

F : MX,x → S1 is a monoid homomorphism satisfying F (u) = u(x)/|u(x)| for

every u ∈ O∗X,x ⊆MX,x.

This space has a natural topology. Let us describe the topology in the special

case whereMX is the canonical log structure associated to a Cartier divisor D ⊆
X, see Example 2.7. Locally on X we can find f1, . . . , fn ∈ MX(X) which,

together with the units, generate MX . The map

X log → X × (S1)n

(x, F ) 7→ (x, F (f1,x), . . . , F (fn,x))

is then easily seen to be a monomorphism onto a closed subset of X × (S1)n, so

we give X log the subspace topology so that this is a closed embedding. Since one

can check easily that this topology does not depend on the choice of generators

f1, . . . , fn, the locally defined topologies glue to a topology on X log making the

projection τ : X log → X given by τ(x, F ) := x a proper map.

8.2. Relating Kato–Nakayama spaces to oriented blowups
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There is a morphism

φ : X log → BloDX

(x, F ) 7→ (x, f 7→ F (f))

of topological spaces overX which requires a little explanation. Here f ∈ S1OX(−D)|x
is in the circle bundle associated to the fiber OX(−D)|x ∼= C and f ∈ OX,x(−D)

is a lifting of f to the stalk (one shows that any such f is actually in MX,x and

that F (f) does not depend on this choice of lifting f). If we use the identification

S1OX(D) = HomS1(S1OX(−D), S1),

then we can think of φ as a map from X log to S1OX(D); one then shows that this

φ is continuous and that φ factors through BloDX ⊆ S1OX(D).

When X is a smooth analytic space and D is a smooth divisor, the map φ is

easily seen to be an isomorphism since one can reduce to the case (X,D) = (C, 0)

on formal grounds. Slightly more generally, if X is smooth, but D is only a

normal crossings divisor, then locally we can write D as a union of smooth divisors

D1, . . . , Di which look like the first i coordinate hyperplanes in Cn (n = dimX),

and we can define a variant of the oriented real blowup

Blo′DX := (BloD1
X)×X · · · ×X (BloDi

X)

and a map φ : X log → Blo′DX. In this local picture, the log structure MX is

the direct sum (in the category of log structures) of the log structures Mj
X from

D1, . . . , Di, the associated Kato–Nakayama space X log is the fibered product over

X of the (X,Mj
X)log, and φ is just the fibered product over X of the previously

constructed isomorphisms φj : (X,Mj
X)log → BloDj

X. The locally defined vari-

ants can be glued to define a global variant Blo′DX of the oriented real blowup

and an isomorphism φ : X log ∼= Blo′DX of topological spaces over X.

8.3. Topology, cohomology, and the Kato–Nakayama space

Locally, if X = Cn and D is the union of the first i coordinate hyperplanes,

then D is the zero locus of (z1, . . . , zn) 7→ z1 · · · zi ∈ C and we have

BloDX = {(z1, . . . , zn, Z) ∈ Cn × S1 : |z1 · · · zi|Z = z1 · · · zi}
Blo′DX = {(z, Z) ∈ Cn × (S1)i : |zj |Zj = zj for j = 1, . . . , i}.

In the general normal crossings divisor situation, the fiber of τ : X log → X over a

point x ∈ X is naturally identified with

S1ND1/X |x × · · · × S
1NDi/X |x,

where D1, . . . , Di are the branches of D containing x. When dimX = n, a point

y ∈ τ−1(x) has a neighborhood diffeomorphic to a neighborhood of the origin in

Ri≥0×R2n−i. (Note i ≤ n, so the depth of the corners in a Kato–Nakayama space

is somewhat constrained.) Recall that the topology near the origin only depends
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on whether i > 0, but the differentiable structure depends on the actual value

of i. In particular, the topological boundary of the manifold X log is given by

τ−1(D), and this manifold with boundary is homotopy equivalent to its interior,

so H∗(X log) = H∗(X \D).

The topology of morphisms of Kato–Nakayama spaces is also very nice, as

shown by the following beautiful general result, see [43, Theorem 0.3]:

Theorem 8.4. Let f : X → Y be a log smooth and integral morphism of fine log

analytic spaces. Then the associated map X log → Y log is a topological submersion.

In fact, Nakayama and Ogus prove a more general result, replacing integrality

by K. Kato’s notion of exact morphisms, see [27, Definition 4.6].

The fact that the topology is nice suggests that one expects nice cohomo-

logical implications. This is indeed the original motivation leading Kato and

Nakayama to define X log, see [30, Theorem 0.2 (1)]:

Theorem 8.5. Let (X,M) be a fine and saturated log scheme with X of finite

type over C. Let F be a constructible sheaf on the log-étale site Xlog-ét, and let

F log be its pullback to the topological space X log. Then for all q ∈ Z we have

Hq(Xlog-ét, F ) = Hq(X log, F log).

Very strong results hold true for de Rham cohomology. In fact the Kato–

Nakayama space is a model for the log de Rham cohomology of X in the sense

that

H∗(X log,C) = H∗(X,∧•Ω(X,M))

under mild assumptions on X. We discuss this in Section 9 below.

Kato–Nakayama spaces of expanded pairs

Given a pair (X,D) consisting of a smooth variety X over C with a smooth

divisor D ⊆ X, the notion of an expanded pair t : X → B over a base B arises in

various relative curve counting theories. The fiber of t over a point b ∈ B always

looks like

X[n]0 = X
∐
D

∆1

∐
D

· · ·
∐
D

∆n

(for an appropriate n), where ∆i = P(ND/X ⊕OD) is a P1 bundle over X. Both

X and B have natural log structures making t a log smooth map of log schemes.

The fiber of tlog : X log → Blog over a point c ∈ τ−1
B (b) looks like

X log
∐

c1:S1ND/X
∼=S1ND/∆1

∆log
1 · · ·

∐
cn:S1ND/∆n−1

∼=S1ND/∆n

∆log
n ,

where the choice of c ∈ τ−1(b) ∼= (S1)n determines the choice of orientation

reversing S1 bundle isomorphisms c1, . . . , cn. Here each ∆j has the log structure
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from the two copies of D, and ∆log
j is a cylinder bundle over D (better: an I-bundle

over Dlog).

The action of (C∗)n on X[n]0 given by scaling the fibers of the P1 bundles

∆i is an action by isomorphisms of log schemes, so it lifts to an action on Kato–

Nakayama spaces. This lifted action is nontrivial on Blog as the (S1)n factor of

(C∗)n acts simply transitively on τ−1
B (b) ∼= (S1)n. In the usual moduli problems

involving expansions, the isotropy group of a point b involves elements of (C∗)n

such that the induced action on X[n]0 respects a map from a curve to X[n]0,

a subscheme of X[n]0, etc., and this isotropy is usually required to be finite to

have a good moduli problem. Since G ∩ R>0 = {Id} for any finite subgroup G of

C∗, the Kato–Nakayama space of the moduli problem is often representable even

if the moduli problem itself is not. This is always the case for moduli problems

involving, say, quotients of sheaves on X[n]0 pulled back from X, since these

quotients themselves have no automorphisms and the only isotropy comes from

the subgroup of (C∗)n preserving the quotient.

9. Log de Rham and Hodge structures

The main references of this section are [31, 30, 29]. This section owes much

to a lecture by Phillip Griffiths [13].

Moduli spaces of polarized Hodge structures.

We assume the reader to be familiar with some basic concepts of Hodge

theory. First of all, we briefly summarize the classical theory of the moduli spaces

of polarized Hodge structures.

9.1. The moduli space Mh = Γ\Dh. Let n be an integer, and let h be a

sequence of non-negative integers (hn,0, hn−1,0, · · · , h0,n) satisfying hp,q = hq,p,

called the Hodge numbers. Let HZ be a free abelian group of rank
∑
hp,n−p, with

a non-degenerate bilinear form Q : HZ ⊗HZ → Z, which is symmetric (resp. anti-

symmetric) if n is even (resp. odd). Let GZ be the group functor Aut(HZ, Q)

on commutative rings, sending a ring R to the group of automorphisms on the

free R-module HR := HZ⊗R preserving the bilinear form Q. It is an affine group

scheme of finite type over Z (which is clear if we write down the matrix representing

the bilinear form Q with respect to some basis of HZ). Let Γ be an arithmetic

subgroup of GZ(Z).

The set of Hodge structures of weight n on HR with prescribed Hodge num-

bers h, such that Q induces a polarization on HR (i.e. it induces a morphism

HR ⊗ HR → R(−n) of Hodge structures, and the bilinear form QC(u, v) :=

Q(u,Cv), where C is the Weil operator, is symmetric and positive definite), is

parameterized by the homogeneous space Dh = GR/K, where K is the stabilizer
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group of a fixed polarized Hodge structure F0 on HR. See for instance ([9]) for

these concepts.

This homogeneous space D = Dh = GR/K has a complex structure defined

as follows. It is clear that Q : HR⊗HR → R(−n) is a morphism of Hodge structures

if and only if Q(F p, Fn−p+1) = 0 for all p. Let fp =
∑
r≥p h

r,n−r, and let D∨,

the compact dual of D, be the subspace of the product of the Grassmannians∏
p Gr(fp, HR) consisting of all flags F • :

· · · ⊂ F p+1 ⊂ F p ⊂ · · ·

such that Q(F p, Fn−p+1) = 0. Then D∨ ' GC/P, where P is a parabolic subgroup

preserving a fixed flag. This gives D∨ a complex structure. We see that D ⊂ D∨

is the locus of flags satisfying

(i) F p ∩ Fn−p+1
= 0 (so that F p ⊕ Fn−p+1 ∼= HC) for all p, and

(ii) Q(u,Cu) > 0 for all u 6= 0 in HC.

They are both open conditions, so D ⊂ D∨ is an open complex submanifold.

The group Γ acts on Dh properly discontinuously, and the quotient Mh = Γ\Dh is

the moduli space of Γ-equivalence classes of Q-polarized Hodge structures on HC
with Hodge type h. See ([31], 0.3.6, 0.3.7).

Variations of Hodge structures.

Definition 9.2. ([9], 3.11, 3.12) Let S be a complex manifold. A variation of Hodge

structures H of weight n on S is given by

• a local system HZ of free abelian groups of finite rank on S;

• a finite decreasing filtration F •HO of the vector bundle HO := HZ ⊗Z OS
by holomorphic sub-bundles,

such that the following conditions are satisfied:

1) (Griffiths transversality) the natural flat connection ∇ = d⊗idHO : HO →
Ω1
S ⊗HO takes F pHO into Ω1

S ⊗ F p−1HO , for every p;

2) for each point s ∈ S, the fiber F •(s) over s is a Hodge structure of weight

n.

A polarization of the variation of Hodge structures H is a locally constant

bilinear form

Q : HZ ⊗HZ → Z

such that on each fiber over s ∈ S, it induces a polarization of the fiber Hodge

structure.

Suppose we have a polarized family of Hodge structures (H ,Q : HZ⊗HZ →
Z) of weight n on S (not necessarily a variation of Hodge structures), and a global

section of the sheaf

Γ\Isom((HZ,Q), (HZ, Q)),
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where HZ is regarded as a constant sheaf on S. If the monodromy group of this

family of Hodge structures on S is contained in Γ, i.e. the image of the homomor-

phism

π1(S)→ GZ(Z)

is contained in Γ, then there is a well-defined function

ϕ : S →Mh

inducing this family of Hodge structures. This map is locally liftable to Dh.

If f : X → S is a projective smooth morphism between quasi-projective com-

plex algebraic manifolds, with a relative hyperplane section η ∈ H0(S,R2f∗Z),

then the family of the primitive parts Pn(Xs,Z) of the cohomology groupsHn(Xs,Z)

modulo torsion form a polarized variation of Hodge structures of weight n on S,

and it induces a map

ϕ : S →Mh

if Γ contains the monodromy group. The map ϕ is called the period map. To be

precise, the family of Hn(Xs,C)’s are the stalks of Rnf∗(f
−1OS), and the Hodge

filtration on Rnf∗(f
−1OS) is given by the degenerate spectral sequence

Epq1 = Rqf∗Ω
p
X/S =⇒ Rp+qf∗(f

−1OS),

which is induced from the natural quasi-isomorphism (the relative holomorphic

Poincaré lemma)

f−1OS −→ Ω•X/S .

Since η is a global section, the primitive part form a family of sub-Hodge structures

on S. Griffiths proved that the period map is holomorphic, and the family of Hodge

structures is a variation of Hodge structures. See ([9], 3) for more detail.

For instance, one can take S to be the moduli space Ag (resp. Mg) of princi-

pally polarized abelian varieties of dimension g (resp. projective smooth curves of

genus g), and take X to be the universal family of such objects over S, and n = 1.

In this case, the local system HZ = R1f∗Z is torsion-free and is equal to its primi-

tive part, and the filtration F •HO is given by F 0HO = HO , F
1HO = R0f∗ΩX/S

and F 2HO = 0. This variation of Hodge structures (and its tensor powers) are of

great arithmetic interest.

Logarithmic Hodge structures.

Consider the following situation. Let f : X → S be a family of projective

manifolds, where S is the complement of a normal crossing divisor D in a compact

manifold S, and suppose one can extend the family f to a family f : X → S which

is log smooth (here S has the log structure induced by the divisor D (2.7)). Then

one can ask if it is possible to enlarge the moduli space Mh to some Mh so that

the period map extends to ϕ : S →Mh.
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To study the degenerations of Hodge structures, Kato and Usui introduced

the notion of logarithmic Hodge structures [31].

Log de Rham complex. Let (X,α : MX → OX) be an fs log analytic space

over C, and let X log be the Kato-Nakayama space (Definition 8.1), with τ = τX :

X log → X the natural proper map. Over the open set X∗ ⊂ X where the log

structure is trivial, the map τ is a homeomorphism, and the section jlog : X∗ ↪→
X log is a homotopy equivalence. For x ∈ X, the fiber τ−1(x) is a compact torus

(S1)m, where m is the rank of M
gp

X,x. For instance, let ∆ be the open unit disk

{|z| < 1} equipped with the log structure induced by the center {z = 0} (cf.

2.7). Then ∆log is homeomorphic to [0, 1)× S1. See sections 8.2 and 8.3 for more

examples.

One can define a sheaf of rings OXlog on X log. Roughly speaking, this is the

subsheaf of rings of jlog
∗ OX∗ on X log generated over τ−1OX by “ log(q)”, for all

q ∈Mgp
X . See ([30], Section 3) for the precise definition.

For example, if x ∈ X and y ∈ τ−1(x), and the free abelian group M
gp

X,x

has rank m and is generated by f1, · · · , fm ∈ Mgp
X,x, then the stalk OXlog,y is

isomorphic to the polynomial ring OX,x[log(f1), · · · , log(fm)]. This shows that in

general, (X log,OXlog) is not a locally ringed space.

For a morphism f : X → Y of fs log analytic spaces, one can define the sheaf

of relative log differentials Ω1
X/Y in the same way as Definition 3.5, namely it is

the sheaf representing the functor of Y -log derivations (Definition 3.3), where we

use the sheaf OX of holomorphic functions as the structure sheaf. The explicit de-

scription in Proposition 3.4 still applies. If (∂,D) is the universal Y -log derivation

of X to Ω1
X/Y , the morphism D : MX → Ω1

X/Y is also written as d log, and it can

be extended by linearity to Mgp
X . In the explicit description

Ω1
X/Y = (ΩX/Y ⊕ OX ⊗Z M

gp
X )/K,

d log(a) is the image of 0⊕ (1⊗ a), for a local section a of Mgp
X .

The sheaf Ω1
X/Y is an analytic coherent OX -module. For an integer r ≥ 1,

let ΩrX/Y be the r-th exterior power of Ω1
X/Y . The derivation ∂ : OX → Ω1

X/Y can

be prolonged to a complex Ω•X/Y :

OX
∂ // Ω1

X/Y
d // Ω2

X/Y
d // · · · // ΩrX/Y // · · ·

by imposing that d(d log(a)) = 0 for a ∈ Mgp
X . This is a complex of f−1OY -

modules, called the relative log de Rham complex on X with respect to f.

For any sheaf F of OX -modules, define

τ∗F := τ−1F ⊗τ−1OX
OXlog

as a sheaf on X log. For an integer r ≥ 1, define

ΩrXlog/Y log := τ∗ΩrX/Y .



Abramovich, Chen, Gillam, Huang, Olsson, Satriano, and Sun 43

The structure sheaf OXlog comes with a natural derivation d : OXlog → Ω1
Xlog/Y log

(see ([30], 3.5)), which can be prolonged to a complex Ω•Xlog/Y log of (f log)−1OY log -

modules

OXlog
d // Ω1

Xlog/Y log

d // Ω2
Xlog/Y log

d // · · · // ΩrXlog/Y log // · · · ,

which can be called the relative log de Rham complex on X log with respect to f.

When Y is a point with trivial log structure, we denote Ω•X/Y (resp. Ω•Xlog/Y log)

by Ω•X (resp. Ω•Xlog), and call it the absolute log de Rham complex on X (resp.

X log).

Under mild conditions, F. Kato proved the relative log Poincaré lemma and

the logarithmic analogue of the de Rham theorem. We state in the following a

weaker version. See [25] for the more general version. We say an fs log analytic

space is log smooth if it is so over a point with trivial log structure (pt,C∗).

Theorem 9.3. ([25], 3.4.2, 3.2.5) Let f : X → Y be a log smooth morphism

of fs log analytic spaces, with Y log smooth. Assume that the induced morphism

f−1MY → MX is injective, that the stalk MX/Y,x of the relative characteristic

(4.1) is torsion-free for every x ∈ X, and that f is exact ([27], 4.6). Then there

is a natural quasi-isomorphism

(f log)−1OY log −→ Ω•Xlog/Y log .

Corollary 9.4. ([25], 4.1.5) Let f : X → Y be as in Theorem 9.3 above, and

assume in addition that f is proper. Then there is a natural quasi-isomorphism

τ∗YRf∗Ω
•
X/Y −→ Rf log

∗ Z⊗Z OY log .

These results apply in particular to semi-stable degenerations. Also, the

absolute log Poincaré lemma was proved earlier by Kato and Nakayama ([30],

Theorem 3.8).

Log variations of polarized Hodge structures. For y ∈ X log and x = τ(y) ∈
X, let sp(y) be the set of all ring homomorphisms s : OXlog,y → C that extend

the evaluation map evx : OX,x → C. Since OXlog,y is isomorphic to the polynomial

ring over OX,x generated by log of a basis for MX,x, if we fix an s0 ∈ sp(y), then

we have a bijection:

s 7→ (f 7→ s(log(f))− s0(log(f))) : sp(y)
∼−→ Homgroup(M

gp

X,x,C),

where C is viewed as an additive group.

Definition 9.5. Let X be an fs log analytic space. A log variation of polarized

Hodge structures of weight n (abbreviated as LVPHS ) on X is given by

• a local system of free abelian groups of finite rank HZ on X log,

• a bilinear form Q : HZ ⊗HZ → Z,
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• a finite decreasing filtration F •HO of HO := HZ ⊗Z OXlog by OXlog -

submodules,

such that the following conditions are satisfied:

1) there exist a locally free OX -module E and a finite decreasing filtration

F •E by OX -submodules, such that Grp(E ) is locally free and

F pHO
∼= τ∗F pE

for each p;

2) for y ∈ X log and x = τ(y) ∈ X, let s ∈ sp(y) and let f1, · · · , fr ∈
MX,x−O∗X,x generate the monoid MX,x. If the real numbers | exp(s(log(fi)))| are

sufficient small for all i, then (HZ,y,Q, F •(s)) is a polarized Hodge structure of

weight n;

3) (Griffiths transversality) the connection∇ = d⊗idHZ : HO → Ω1
Xlog⊗O

Xlog

HO takes F pHO into Ω1
Xlog ⊗ F p−1HO .

Here F •(s), the specialization of F • at s, is the decreasing filtration of

HC,y := C ⊗Z HZ,y defined by F p(s) = C ⊗s,O
Xlog,y

(F pHO)y. For a fixed point

y ∈ X log, the family (HZ,y,Q, F •(s))s∈sp(y) is called a polarized log Hodge struc-

ture of weight n on the log point (x,MX,x); this is the same as a log variation of

polarized Hodge structures of weight n on the log point (x,MX,x).

9.6. Variant. The definition we gave here follows ([31], 0.2.19), except that

our polarization Q is integral. This definition differs slightly from the one as in

([41], 5.3) and ([29], 2.3), and is weaker. The main difference is that, in loc. cit.

the locally free OX -module E with its filtration F •E is part of the data of the

definition, and the flat connection is for E on X (namely ∇ : E → Ω1
X ⊗ E ) and

is required to satisfy the Griffiths transversality.

9.7. LVPHS from geometry. Log variations of polarized Hodge structures

arise from geometry in the following way. Let f : X → Y be a projective vertical

log smooth morphism between log smooth fs log analytic spaces, and we fix a

line bundle on X which is relatively very ample over Y . Here “vertical” means

f−1(Y ∗) = X∗. By a theorem of Kajiwara and Nakayama ([23], 0.3), for every

integer n, the sheaf Rnf log
∗ Z is a local system on Y log. We take HZ to be Rnf log

∗ Z
modulo torsion, take Q to be the pairing induced by the fixed line bundle (which

is obtained in the same way as ([29], 8.2) where we replace all local systems of

Q-vector spaces by the integral lattices in them), take E to be Rnf∗(Ω
•
X/Y ), with

filtration F pE = Rnf∗(Ω
≥p
X/Y ) ⊂ E , and take F pHO to be τ∗F pE . Then by a

theorem of Kato, Matsubara and Nakayama ([29], Theorem 8.1), this is a log

variation of polarized Hodge structures on Y, even in the stronger sense ([29], 2.3).

See ([29], Theorem 8.1) for a more general version with coefficients. The special

case when Y is the unit disk {|z| < 1} in the complex plane with log structure
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induced by the divisor {z = 0} and f is family of projective manifolds with semi-

stable reduction over {z = 0} was proved earlier by Matsubara ([41], Theorem C),

except for the polarization part.

9.8. Relation to Deligne’s canonical extensions. Suppose that X and Y are

smooth, that the log structure on Y is induced by a normal crossing divisor D ⊂ Y,
and that f : X → Y is a morphism of semi-stable reduction. Let f ′ : X∗ → Y ∗

be the restriction of f. Then the flat connection (Rnf ′∗Ω
•
X∗/Y ∗ ,∇

′) on Y ∗ has

unipotent local monodromy around each component of D, and the flat connection

(Rnf∗Ω
•
X/Y ,∇) on Y is its canonical extension in the sense of Deligne [8].

Kato-Usui spaces.

We fix n, h,HZ, Q,GZ, D and D∨ as in (9.1). For a ring R, let gR = Lie(GR).

A subset σ ⊂ gR is called a nilpotent cone if it is a cone

σ =

n∑
i=1

R≥0Ni

generated by mutually commutative nilpotent operators Ni ∈ gR ⊂ End(HR). It

is called a rational nilpotent cone if it can be generated by nilpotent operators in

gQ. Let Γ be a neat subgroup of GZ(Z), i.e. for every element γ ∈ Γ, its eigenvalues

on HC generate a torsion-free subgroup of C∗.

Nilpotent orbits.

Definition 9.9. Let σ =
∑
iR≥0Ni be a nilpotent cone. A subset Z ⊂ D∨ is called

a σ-nilpotent orbit, if there exists an F0 ∈ D∨ such that

• Z = exp(
∑
iCNi)F0,

• NF p0 ⊂ F
p−1
0 for all p ∈ Z and N ∈ σ,

• exp(
∑
i ziNi)F0 ∈ D if Im(zi)� 0 for all i.

We also call the pair (σ, Z) a nilpotent orbit.

Let Σ be a fan in gQ, i.e. Σ is a non-empty set of rational nilpotent cones in

gR such that

• if σ ∈ Σ, then all faces of σ are in Σ,

• for σ, σ′ ∈ Σ, the intersection σ ∩ σ′ is a face of both σ and σ′,

• for every σ ∈ Σ, we have σ ∩ (−σ) = 0.

One can then define the set Dh,Σ (or just DΣ, if there is no confusion) of

nilpotent orbits in the directions in Σ to be the set of nilpotent orbits (σ, Z) where

σ ∈ Σ. There is a natural injection

F 7→ (0, {F}) : D ↪→ DΣ.
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The moduli space MΣ. Let Σ be a fan in gQ and let Γ ⊂ GZ(Z) be a subgroup.

Then we say that Γ is compatible with Σ if for every γ ∈ Γ and σ ∈ Σ, we have

Ad(γ)(σ) ∈ Σ. In this case, there is an action of Γ on DΣ given by

(σ, Z)
� γ

// (Ad(γ)(σ), γZ).

We say that Γ is strongly compatible with Σ if every cone σ ∈ Σ is generated by

elements in log Γ. Kato and Usui showed that when Γ is strongly compatible with

Σ and the arithmetic subgroup Γ is neat, the quotient set Γ\DΣ can be given the

structure of a log locally ringed space over C, in fact a log manifold (see ([31],

3.5.7)). Roughly speaking, a log manifold is a log locally ringed space over C,
which is locally isomorphic to the “zero locus” of some log differential forms on a

log smooth analytic space.

Informally speaking, Kato and Usui proved the following. First, there is a

one-to-one correspondence between DΣ and the set of polarized log Hodge struc-

tures of the given type. Second, if X → S is a log smooth family extending the

projective smooth family X → S, where S ⊂ S is the complement of a normal

crossing divisor, then the period map extends to S →MΣ. We briefly explain the

first part in the following.

We shall show how to get a nilpotent orbit from a polarized log Hodge struc-

ture on a log point ([31], 0.4.24). Let x be an fs log point with log structure

Mx. Then Mx is a sharp fs monoid and M
gp

x if a free abelian group of finite

rank, say r. Fix y ∈ xlog. We have xlog = Hom(M
gp

x , S
1) ' (S1)r and hence

π1(xlog) = Hom(M
gp

x ,Z) ' Zr. Let π+
1 (xlog) ⊂ π1(xlog) be the subset consisting

of those homomorphisms a : M
gp

x → Z that take Mx into N; this subset is an fs

monoid.

Let (HZ, Q, F
•HO) be a polarized log Hodge structure on x. Let (hi)

n
i=1 be a

family of generators for π+
1 (xlog) and fix an s0 ∈ sp(y). Let z1, · · · , zr be complex

numbers, and let s ∈ sp(y) be such that

s
( log(f)

2πi

)
− s0

( log(f)

2πi

)
=

r∑
i=1

zihi(f), for f ∈Mgp

x .

Let Ni : HQ,y → HQ,y be the logarithm of hi. Then we have

F (s) = exp
( n∑
i=1

ziNi

)
F (s0),

which shows that (F (s))s∈sp(y) is an orbit of filtrations under exp(σ ⊗ C) for

σ =
∑
iR≥0Ni. Moreover, the condition 2) in Definition (9.5) implies that F (s) ∈

D if Im(zi) � 0 for all i, and the condition 3) in Definition (9.5) implies that

NF (s0)p ⊂ F (s0)p−1 for all p ∈ Z and N ∈ σ. In other words, the family (F (s))s
is a σ-nilpotent orbit.
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10. The main component of moduli spaces

Moduli: compactness and main components

In Section 4, we gave an overview of F. Kato’s work [26] in which he uses log

geometry to compactify the moduli space Mg,n of curves. Specifically, he shows

that the moduli space of log smooth curves agrees with the Deligne-Mumford

compactification Mg,n. The key philosophic idea in that section was that since

moduli spaces of log smooth objects already includes degenerate objects, it is

reasonable to expect that such a moduli space is a compactification of the moduli

of objects with trivial log structure.

While the Deligne–Mumford space of stable curves Mg,n turns out to be

irreducible, it is an unfortunate fact of life that if X is a moduli space of higher

dimensional objects, then moduli-theoretic “compactifications” X̄ of X tend to

have many irreducible components. If X is irreducible, then it sits entirely within

one of these many components of X̄ and so it is natural then to ask if this “main

component” can itself be given a moduli interpretation.

In Section 4.14 we stated a second philosophic principle: log geometry con-

trols degenerations; that is, moduli of log smooth objects does not incorporate “too

many” degenerate objects. This provides a type of converse to the aforementioned

philosophy that moduli of log smooth objects should be compact. As explained in

Section 4.14, the log structure gives us a fighting chance to show that our moduli

space is irreducible (although it is of course too näıve to expect that moduli of log

smooth objects is always irreducible). Combining the two principles, one may hope

that if X is an irreducible moduli space and X̄ a moduli-theoretic compactification,

then by appropriately incorporating log structures into the objects parameterized

by X̄, one will isolate the main component.

This technique of using log geometry to isolate the main component of a

moduli space has been carried out by M. Olsson in several different settings. In [53],

Olsson gives a moduli interpretation to the normalization of the main component

of the toric Hilbert scheme. In [52], he isolates the normalization of the main

component of V. Alexeev’s compactification of the moduli space of principally

polarized abelian varieties given in [3]; he further constructs a moduli-theoretic

irreducible compactification of the moduli space of abelian varieties with higher

degree polarization. In [48], he gives an irreducible modular compactification of

the moduli space of polarized K3 surfaces.

Example: the toric Hilbert scheme

Our goal in this section is to explain the technique of isolating the main

component of a moduli space by following Olsson’s work [53]. We begin with

the definition of the toric Hilbert scheme. Let k be a field and let P and Q be

finitely-generated integral monoids with Q sharp and P gp and Qgp torsion-free.
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Fix a surjective morphism π : P → Q. This yields a closed immersion from

AQ := Spec k[Q] to AP := Spec k[Q], which is TQ-equivariant, where TQ (resp.

TP ) denotes the torus associated to Qgp (resp. P gp). Consider the functor H
whose S-valued points are diagrams

Z
i //

g
!!CCCCCCCCC AP,S

��

S

where i is a TQ-invariant closed immersion and for every q ∈ Qgp, the q-eigenspace

of g∗OZ is a finitely-presented projective OS-module of rank 1 if q ∈ Q and rank

0 otherwise. By [16, Thm 1.1], this functor is representable by a quasi-projective

scheme, which we call the toric Hilbert scheme.

Given a closed subscheme Z of AP,S as above, we can move Z by the action of

TP on AP,S . This yields an action of TP on H. Since Z is TQ-invariant, this action

factors through TK = TP /TQ, where K denotes the kernel of πgp. We therefore

obtain a map

TK −→ H

by letting u ∈ TK act on the distinguished point of H(k) given by the closed

immersion AQ → AP . By [6, 3.6(2)], this map is an open immersion. Therefore

the normalization S of the scheme-theoretic closure of its image is a normal toric

variety, and hence carries a natural fs log structureMS which makes it log smooth

over Spec k (endowed with the trivial log structure). The goal of [53] is to give a

moduli-theoretic interpretation of (S,MS).

Consider the functor Hlog on the category of fs log schemes over k whose

(S,MS)-valued points are given by diagrams

(Z,MZ)
i //

g
((RRRRRRRRRRRRR

(AP ,MAP
)× (S,MS)

��

(S,MS)

where the underlying maps on schemes defines a point of H(S), where g is log

smooth and integral, and where the map

P −→M(Z,MZ)/(S,MS) := coker(g∗MS →MZ)

induced by i factors through Q. The main theorem of [53] is then

Theorem 10.1 ([53, Thm 1.6]). The functor Hlog is representable by (S,MS).

We explain briefly how Olsson obtains a natural morphism

F : HS −→ Hlog
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which he then shows is an equivalence; here HS denotes the functor of points of

(S,MS). Olsson obtains F by showing that the pullback to S of the universal

family over H yields a point of Hlog(S,MS). Explicitly, if i : Z → AP × S is

the pullback of the universal family, he constructs a log structure on Z as follows.

Since S is a toric variety with torus TK , it can be covered by open affines of the

form Spec k[L] with L a submonoid of K whose associated group is K. Olsson

proves ([53, 2.4]) that over such an open affine, the closed immersion i is given by

Z ×S Spec k[L] = Spec k[EL] −→ Spec k[P ⊕ L] = AP × Spec k[L],

where EL is the image of P ⊕ L in P gp under the map (p, `) 7→ p+ `.

Example 10.2. Let π : N2 → N send e1 to 2 and e2 to 1. Then the kernel K of

πgp is all integer multiples of 2e2 − e1. Let L be the submonoid of K consisting

of the non-negative multiples of e1 − 2e2 and let M be the submonoid consiting of

the non-positive multiples. Then EL is generated by e1, e2, and 2e2 − e1; hence,

Spec k[EL] ' k[x, y, z]/(xy − z2).

We see that EM is freely generated by e2 and e1 − 2e2, so Spec k[EM ] ' A2
k.

We see then that Z ×S Spec k[L] carries a natural log structure. These log

structures glue to give a log structure on Z (by [53, Lemma 2.8]) which makes i a

closed immersion of log schemes. This therefore yields F above.

Example: moduli of K3 surfaces

In this section we discuss Olsson’s work [48] on the moduli of K3 surfaces.

Recall that a surface X/S is called K3 if for all geometric points s of S, the

canonical divisor KXs
is trivial and H1(Xs,OXs

) = 0. In his thesis, R. Friedman

constructs partial compactifications of the coarse space of the moduli of polarized

K3 surfaces over C. The key notion in his construction is that of a combinatorial

K3 surface, which we now recall (see [11, p.2]).

Definition 10.3. If k is an algebraically closed field, then a combinatorial K3 surface

over S = Spec k is a k-scheme X with normal crossings (see Section 5) which is

d-semistable, has trivial dualizing sheaf, and satisfies one of the following: X is a

smooth K3 surface, X is a chain of elliptic ruled surfaces with rational surfaces on

either end, or X is a union of rational surfaces where the double curves on each

component form a cycle of rational curves with the dual graph of X a trianglulation

of S2.

In light of the d-semistability condition and our discussion in Section 5, we

should expect to be able to “explain” Friedman’s moduli from the point of view

of log geometry. With this in mind, we give the following definition of a log K3

surface (see [48, Def 5.1]).



50 Logarithmic Geometry and Moduli

Definition 10.4. A morphism f : X → S of log algebraic spaces is a log K3 surface

if f is log smooth and integral, f is proper, the cokernel of f∗MS → MX in

the category of integral sheaves of monoids is a sheaf of groups, and for every

geometric point s of S, we have Ω2
Xs/s

= OXs
, H1(OXs

) = 0, and Xs is a normal

crossing variety. The log K3 surface is called stable if it has no infinitesimal

automorphisms.

As explained in [48, Rmk 5.3], if X/S is a log K3 surface, then for every

geometric point s of S, the fiber Xs is a combinatorial K3 surface.

Now that we have a definition of log K3 surfaces, we discuss the logarithmic

counterpart to the polarization. In order to ease the exposition, in what follows we

will always assume that our log K3 surfaces satisfy the technical special condition

defined in [48, Def 2.7]. Olsson introduces a notion of logarithmic Picard functor

which generalizes the usual Picard functor in the case of trivial log structure (see

Definition 4.5 and Corollary 5.6 of [48]):

Definition 10.5. If X/S is a log K3 surface, then the log Picard functor Pic(X/S)

is the sheafification of the presheaf associating to any S-scheme T the isomorphism

classes of Mgp
XT

-torsors on XT ,ét.

A polarization on a log K3 surface X/S is then defined to be ([48, Def 5.7])

a morphism λ : S → Pic(X/S) such that on each geometric fiber Xs, there is a

line bundle L which lifts λs to H1(Xs,O∗Xs
) and satisfies the following. There is

some N > 0 such that LN is generated by global sections and the map defined by

LN only contracts finitely many curves to points.

With these definitions in place, Olsson fixes a positive integer k and considers

the stack M2k/Q whose fiber over T is the groupoid of triples (MT , X/(T ,MT ), λ)

where MT is a log structure on T and (X/(T ,MT ), λ) is a stable polarized log

K3 surface such that λ2
t = 2k for every geometric point t of T . Note that M2k

carries a natural log structure given by base log structure MT in each fiber. One

of the main results of [48] is then:

Theorem 10.6 ([48, Thm 6.2]). The stack M2k is smooth, log smooth, Deligne-

Mumford, and contains an open substack Msm
2k parameterizing polarized K3 sur-

faces in the classical sense. The compliment of Msm
2k in M2k is a smooth divisor

and the induced log structure agrees with the natural one on M2k.

11. Twisted curves and log twisted curves

Twisted curves are a central object in the theory of twisted stable maps [2,

5, 1]: in order to have a complete moduli space of stable maps C → X of type

Γ, where X is a proper tame stack with projective coarse moduli space and Γ =

(g, n, β) are the relevant discrete data, one must allow the curve C itself to be a

certain type of stack, called twisted curve.
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The original treatments of twisted curves relied on ad-hoc methods. The

more recent approach of [1] relies on a method introduced in [51], which uses a

construction with logarithmic structures.

Twisted curves

For simplicity we will stick with the case of Deligne–Mumford stacks.

First consider the geometric objects: fix an algebraically closed field k.

Definition 11.1. A twisted curve over k is a tame, purely 1-dimensional Deligne–

Mumford stack C/k, with at most nodes as singularities, satisfying the following

conditions:

(1) Let π : C → C be the morphism to the coarse moduli space. Then Csm =

π−1Csm, and π : C → C is an isomorphism over a dense open subset of C.

(2) Consider a node x̄→ C, where the strictly henselian local ring OC,x̄ is the

strict henselization of k[x, y]/(xy). Then

C ×C SpecOC,x̄ '
[
SpecOC,x̄[z, w]/(zw, zm − x,wm − y)

/
µm

]
,

where ζ ∈ µm acts by (z, w) 7→ (ζz, ζ−1w).

An action such as (2) above is called balanced - it is crucial to our discus-

sion of log structures below. Note that C may have a stack structure at isolated

smooth points as well - such points will behave like [A1/µa], where µa acts by

multiplication.

Over a general base S twisted curves are detected by their geometric fibers:

a twisted curve C → S is a flat, tame Deligne–Mumford stack locally of finite

presentation, all of whose geometric fibers are twisted curves as in the definition

above.

The genus of C is simply the genus of C. One typically needs to consider

n-pointed twisted curves, where the markings are described in families as follows:

Definition 11.2. An n-pointed twisted curve C/S marked by disjoint closed sub-

stacks {Σi}ni=1 in C is assumed to satisfy the following:

(1) the Σi are contained in the smooth locus Csm,

(2) each Σi is a tame étale gerbe over S, and

(3) Cgen := Csm r ∪iΣi −→ C is an open embedding.

Remark 11.3. When S = Spec k where k = k̄, then Σi = Bµai , and moreover ai
is locally constant in families.

Remark 11.4. When (C/S, {Σi}) is an n-pointed twisted curve, then the coarse

moduli space of Σi is isomorphic to S. This means that the composite morphism

Σi → C → C factors through a section pi : S → C. It follows that (C, {pi}) is an

n-pointed curve in the usual sense. This gives a functor

(C/S, {Σi}) 7→ (C, {pi})
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One can ask oneself: what does one need in order to recover a twisted n-

pointed curve (C/S, {Σi}) from a usual n-pointed curve (C, {pi})? In other words,

can we enrich the functor above to something like

(C/S, {Σi}) 7→ (C, {pi}) + ?

which is nice and explicit and actually an equivalence of categories?

The stack structure at the marking definitely needs the data of the integers

ai, but in fact this is all that is necessary for the markings: near pi, the curve C is

canonically isomorphic to the root stack C( ai
√
pi). If x is a local generator of the

ideal of pi, then Zariski locally we have

C '
[
SpecOC [z]/(zai − x)

/
µai

]
.

The story is a bit more interesting at a node. It has to be - a twisted curve

C with a node of index m > 1 has “ghost” automorphisms in µm which are not

detectible on the coarse curve C: using the local coordinates given in Definition

11.1 (2), the µm action

(z, w) 7→ (ζz, w)

on SpecOC,x̄[z, w]/(zw, zm − x,wm − y) commutes with the action defining the

quotient stack. It therefore descends to a nontrivial action on C which becomes

trivial on the coarse moduli space C.

Log twisted curves

Let X be a Deligne–Mumford stack. Recall from Definition 2.16 that a fine

log structure M on X is said to be locally free if for every geometric point x̄→ X

we have that the characteristic sheaf M x̄ is isomorphic to Nr for some r.

In this situation we say that a morphism of sheaves of monoids M → M ′ is

simple if for every geometric point x̄→ X we can identify the map as the diagonal

map

M x̄
//

'
��

M
′
x̄

'
��

Nr
(m1,...,mr)

// Nr

where all mi are prime to the characteristic of the field.

Definition 11.5. An n-pointed log twisted curve over S is the data

(C/S, {σi, ai}, ` : MS →M ′S)

where

• (C, {σi})/S is an n-pointed nodal curve.

• MS is the canonical log structure coming from the family (C,MC) →
(S,MS) (see section 4).
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• ai : S → Z>0 are locally constant, with ai(s) invertible in the residue field

k(s).

• ` : MS →M ′S is a simple morphism.

And we have the following:

Theorem 11.6 ([51, Theorem 1.8]). The fibered category of n-pointed twisted

curves is naturally equivalent to the stack of n-pointed log twisted curves.

The picture is as follows: we have already noted that we can replace a marking

pi by a stacky marking just using the data ai. Now the j-th node which looks like

SpecOS [x, y]/(xy−t) needs to be replaced by
[
SpecOS [z, w]/(zw − t1/mj )

/
µmj

]
,

and the data is encoding by deviding the j-th generator of Nr by mj .

Remark 11.7. We can decompose the stack according to ai:∐
a
Mtw

g,n,a = Mtw
g,n

��

= stack of n-pointed twisted curves

Sg,n = stack of n-pointed nodal curves

and it can be deduced form the theorem that Mtw
g,n,a is obtained from Sg,n using

a root construction applied to the boundary divisor of Sg,n, see [51, Remark 1.10].

In fact we have to apply all possible roots, accounting for all possible twisting

of nodes, and glue together, so Mtw
g,n,a is highly non-separated.

Below we sketch the main ideas in proving this. We stress that the assumption

that our twisted curves are balanced is crucial - the case of unbalanced curves has

not been treated.

From twisted curves to log twisted curves

Fix a twisted curve f : C → S.

We can follow F. Kato [26], giving log structures on nodal curves: consider

all possible triples

(MS ,MC , f
[ : f−1MS →MC)

such that

(1) (C,MC)→ (S,MS) is log smooth;

(2) MC ,MS are locally free; and

(3) for all geometric points x̄→ C mapping to nodes we have

MC,x̄
∼ // Nr−1 ⊕ N2

MS,f(x̄)
∼ //

OO

Nr−1 ⊕ N

id⊕∆

OO
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If S = Spec k we get a natural map

Nnumber of nodes →MS .

We say that (MC ,MS , f
[) is special if for every geometric point s̄→ S this map is

an isomorphism.

A result [51, Theorem 3.6] analogous to F. Kato’s [26, Theorem 2.1] says that

there is a unique special triple (MC ,M
′
S , f

[) associated to f : C → S. Analyzing

the coarse moduli space we obtain a unique diagram

(C,MC) //

��

(C,MC)

��

(S,M ′S)
(id,`)

// (S,MS)

where ` : MS →M ′S is simple. In particular we obtain a log twisted curve

(C/S, {σi, ai}ni=1, ` : MS →M ′S)

From log twisted curves to twisted curves

Now we fix a log twisted curve (C/S, {σi, ai}ni=1, ` : MS →M ′S). In particular

we have the log smooth curve

(C,MC)→ (S,MS)

which is the coarse moduli space of a putative twisted curve. We want to describe

C/C as the stack parametrizing natural objects over T → C. Here it is! If we

denote the relevant maps as follows

T
s //

h ��
??????? C

��

S,

then C is the groupoid of diagrams

h∗MS
` //

��

H∗M ′S

��

s∗MC
k // M ′C ,

where

(1) k is simple and for every geometric point t̄→ T the map M
′
S,t̄ →M

′
C,t̄ is

either an isomorphism (at a general point), or of the form

Nr � � (id,0)
// Nr ⊕ N
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(at a marked point), or

Nr−1 ⊕ N � � (id,∆)
// Nr−1 ⊕ N2

(at a node).

(2) for all i and geometric point t̄→ T with s(t̄) ⊂ σi(S) ⊂ C the group

Coker(M
gp

C,t̄ →M ′
gp

C,t̄)

is cyclic of order ai.

12. Log stable maps

From curves to maps and expansions

Curves In section 4 we discussed how prestable curves can be encoded as log

smooth curves, and how in particular the stack of Deligne–Mumford stable curves

can be interpreted as a logarithmic stack, representing log smooth stable curves

over the category of fine and saturated log schemes. Stability in this situation

just means that Ω1
(C,MC) is an ample line bundle. This is the same as saying that

ωC(D) is ample, where D is the divisor of markings.

Maps Kontsevich [35] introduced the moduli of stable maps of prestable curves

into a projective target variety X. This is a proper Deligne–Mumford stack

MΓ(X) having projective coarse moduli space, where Γ = (g, n, β) is the rele-

vant numerical data: genus, number of markings and homology class of the image

curve. It parametrizes maps f : C → X, where this time stability means that ωC
is f -ample.

Kontsevich’s moduli space has the property that it carries a perfect relative

obstruction theory giving rise to a virtual fundamental class [MΓ(X)]vir, see [40,

4]. This is a key ingredient in defining Gromov–Witten invariants, with their

applications in enumerative geometry and theoretical physics. The simplest GW

invariants are

〈γ1 · · · γn〉 :=

∫
[MΓ(X)]vir

e∗1γ1 · · · e∗nγn,

where γi ∈ H∗(X,Q) and ei : MΓ(X) → X are the natural evaluation maps at

the n markings.

So far no logarithmic structures are necessary.

Degenerations Among the methods of computing GW invariants, the degen-

eration formula is among the most powerful ones. It was introduced by A.-M. Li

and Y. Ruan in symplectic geometry [37], see also Ionel-Parker [21, 22]. For our

purposes, Jun Li’s treatment in algebraic geometry [38, 39] is most relevant.

We are interested in the invariants of the smooth projective variety X. Since

these are deformation invariant, it is natural to consider a degeneration of X, with

smooth total space, into a union X0 = Y1tDY2 of two smooth varieties Yi meeting
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transversally along a smooth divisor D. One wants to show that invariants of X

coincide with suitably defined invariants of X0, and these in turn can be computed

in terms of appropriately defined invariants of Yi relative to D.

This is where logarithmic structures begin to show up, but there is still some

way to go.

Perfect obstruction and Li’s approach The difficulty with the degeneration

is precisely the fact that the variety X0 is singular, and therefore the natural

obstruction theory on the moduli space of stable maps is not perfect in general.

A similar situation occurs when considering the pair (Yi, D), but we will not get

into this discussion.

The problem occurs when a component of the source curve C maps entirely

into D.

Jun Li’s approach uses expanded degenerations. There are similar ideas in

[37], but the symplectic approach builds in deformations of Cauchy-Riemann equa-

tions and has, at least on the surface, a significantly different flavor.

The idea is, that just as in stable pointed curves, if a marking travels to-

wards a node one sprouts a new component of the curve, Jun Li says that when a

component of C travels into D we can let X0 sprout a new component.

Expansions Here is how the new component looks like. Denote by ND⊂Yi the

normal bundle of D in Yi. Since the total space is smooth, we have ND⊂Y1
∼=

N∨D⊂Y2
. Let P = ProjD(1D ⊕ ND⊂Y1

). We have P ∼= ProjD(ND⊂Y2
⊕ 1D) so

we can denote by D+ and D− the smooth divisors in P which correspond to the

normal bundle ND⊂Y1 and ND⊂Y2 respectively. Note that the divisor D+ and D−

are canonically isomorphic to D.

We now glue things up. Let Pi for i ∈ N be copies of P. We can glue Y1 and

P1 along D and D− respectively, Pi and Pi+1 along D+ and D− respectively, and

Pn and Y2 along D+ and D respectively. We denote the resulting gluing by

(12.1) X0[n] = Y1

⊔
D1

P1

⊔
D2

· · ·
⊔
Dn

Pn
⊔
Dn+1

Y2,

where D1, · · · , Dn+1 are the disjoint singular loci of X0[n].

Such a beast is known as an expanded degeneration, or by the more folksy

name an n-accordion.

This led Jun Li to define degeneration stable maps with target X0 as nonde-

generate maps C → X0[n]: a map is nondegenerate if no component of C maps

into any of the Di.

Predeformability But here Jun Li meets another phenomenon, already present

in the space of admissible covers of Harris–Mumford [17]: nondegenerate maps to

C → X0[n] have many redundant components which have nothing to do with maps

to the generic fiber X. Near a singular point of X0[n] which looks like {xy = 0},
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a curve map locally deforms to a smoothing of X0 if and only if the curve looks

like {uv = 0}, and the map given by x = um, y = vm. Such nice maps are

called predeformable. But predeformable maps are clearly not open in the space

of maps - they are actually closed among nondegenerate maps. This means that

the restricted obstruction theory on them is “wrong” - definitely not perfect

Of course the virtual fundamental class of Gromov–Witten theory has no

problem dealing with the total moduli space with its extra components, but these

extra components do get in the way of decomposing invariants of X0 in terms of

(Yi, D). So we really do want to stick by predeformable maps.

Logarithmic methods: from Jun Li to Bumsig Kim

Predeformable deformations At this point Jun Li’s reasoning arrives at a

point where a new obstruction theory on predeformable maps is needed. Having

read this chapter, the reader will immediately recognize that

(1) nodal curves are log-smooth,

(2) n-accordions are d-semistable and admit a canonical log-smooth structure,

and

(3) predeformble maps can be viewed as log maps from the log-smooth curve

to the d-semistable target.

Jun Li also recognized this fact, as did Shin Mochizuki before him [42] when

he in his turn revisited the space of admissible covers of Harris–Mumford. What he

lacked at the time was a formalism for logarithmic deformation theory of singular

spaces, such as the moduli space itself: a perfect obstruction theory is a two-

term complex mapping to the cotangent complex of the moduli space, but the

moduli space is, as usual highly singular, even taking its logarithmic structure

into account.

So Jun Li resorted to an ad-hoc construction of his perfect obstruction theory.

This is the most difficult part of his work.

In section 7 we saw how log deformation theory works in the necessary gen-

erality. This is where Bumsig Kim’s paper [33] comes in: he provides a correct

formalism for nondegenerate logarithmic stable maps into expanded degenerations,

and shows that it carries a perfect obstruction theory. The degeneration formula

in this formalism has been worked out by one of us (Q. Chen), and should appear

as part of a larger project indicated below.

One aspect that deserves mention is Kim’s notion of minimal log strutures

on maps. Recall that the log stack Mg,n can be constructed as a stack over the

category of fine saturated log schemes, whose objects over S = (S,M) are log

smooth stable pointed curves over S. But in order to exhibit the underlying stack,

one needs to use the canonical log structure on S, which is initial among all possible

ones carrying the log smooth curve.



58 Logarithmic Geometry and Moduli

Kim describes his stack similarly - given a predeformable map C → X of

underlying schemes over S, it amounts to describing what he calls minimal log

structure S on S carrying a log map C → X. Kim does this by explicitly describing

the combinatorial structure of such log structures.

Unexpanded log maps: from Siebert into the future

A very different approach was proposed in a 2001 lecture by Bernd Siebert,

but lay dormant for almost a decade.

The point is this. If one embraces logarithmic structures, and logarithmic

maps from log smooth curves to some logarithmic scheme, then expansions are

no longer necessary. Defined correctly, the space of log maps automatically has a

perfect log-obstruction theory, which in view of sections 6 and 7 can be viewed as

an obstruction theory relative to the stack LOG. This automatically results in a

virtual fundamental class.

With this way of thinking, one can consider much more general logarithmic

stable maps, gaining access to invariants of much more general degenerations of

varieties. This has been a desired goal for a number of years.

So what is the correct definition? Consider a fine and saturated log scheme

X. Following the work of F. Kato [26] as discussed in section 4, one comes up

with a definition of a category MΓ(X) fibered over the category LSchfs of fine

and saturated log schemes: an object over a fine saturated log scheme S is a log

smooth curve C → S and a log map f : C → X. We further require it to be stable:

the line bundle of logarithmic differentials Ω1
C/S is required to be f -ample. This

is tantamount to requiring the map of underlying schemes to be a stable map.

So the main claim is: MΓ(X) is represented by a logarithmic Deligne–

Mumford stack with projective coarse moduli space. In fact this stack is proper

and quasi-finite over the usual stack of stable maps MΓ(X) of the underlying

scheme. As in the discussion of Kim’s work, the underlying stack can be viewed

as a moduli of log maps with minimal log structure.

This is the subject of current work - of Gross and Siebert on the one hand

and of two of us (mainly Chen, and to a lesser extent Abramovich) on the other,

so it would not be appropriate to get into details until definite results appear.

Let us instead put this in a larger context. Consider logarithmic schemes

Z → B and X, and assume we are given a morphism of underlying schemes

f : Z → X. We can define a category Liftf fibered over LSchfs whose objects

over a fine saturated log B-scheme S → B are lifts fS : ZS → X of the morphism

of underlying schemes f
S

: ZS → X.

One can ask the following general questions:

Question 12.2. (1) Under what conditions is Liftf a log stack locally of finite

type over B?

(2) What natural numerical data cut out a substack of finite type?
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(3) Under what conditions is the result proper?

We want to stress our belief that this question is natural, important and

quite tractable. For instance, the case where B = SpecC with trivial structure

and Z = X = Spec(N → C) the result is a countable union of components. It

is similar in nature to an inertia stack. The more general case where B = X,

Z = X × Spec(N → C) and f is the diagonal, is the relevant analogue of the

inertia stack of X. It is important for Gromov–Witten theory - up to C∗ action the

result is the natural target for evaluation maps associated to log smooth curves.

Its components account for the contact orders of relative stable maps. Further

examples of a similar nature govern gluing of nodes of log-smooth curves.
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