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Motivation
• Our work is motivated by Doran-Morgan classi-

fication [8] of integral variations of Hodge struc-
ture which can underlie one-parameter families of
Calabi-Yau threefolds (with h2,1 = 1). They have
found 14 real / 23 integral variations that can under-
lie such families and have provided geometric exam-
ples realizing 13 real / 21 integral classes.

• Trying to obtain examples for “missing” classes by
mimicking other ones fails, the constructed Calabi-
Yau threefolds (realized as anticanonical hypersur-
faces or nef complete intersections in toric varieties)
have h2,1 = 3, but certain subfamilies formally give
the desired GKZ series.

• We had two models proposed for “the 14th case”
and were able to match them using fibrations by
M-polarized K3 surfaces. The behaviour of these fi-
brations led us to considering K3 fibrations of “the
23rd case” as well as of “regular” examples.

M-polarized K3 surfaces
Definition. Let M = H ⊕ E8 ⊕ E8, where H is the hy-
perbolic lattice. An M-polarization on a K3 surface X is a
primitive lattice embedding i : M ↪→ NS(X), such that the
image i(M) in the Néron-Severi lattice NS(X) contains a
pseudo-ample class (corresponding to an effective nef divi-
sor with positive self-intersection).
Theorem ([4, 7]). If X is an M-polarized K3 surface, then
1) X is isomorphic to the minimal resolution of a quartic

surface in P3 given by

y2zw− 4x3z + 3axzw2 + bzw3− 1
2
(dz2w2 + w4) = 0;

2) parameters a, b, and d in the above equation specify a
unique point (a, b, d) ∈WP(2, 3, 6) with d 6= 0;

3) X can be realized as an anticanonical surface in (a reso-
lution of) the toric Fano threefold polar to WP(1, 1, 4, 6);

4) X canonically corresponds to a pair of elliptic curves;
5) modular parameters of X and {E1, E2} are related by

π = j(E1)j(E2) =
a3

d , σ = j(E1) + j(E2) =
a3−b2+d

d ;

6) there are exactly two isomorphism classes of elliptic fibra-
tions with sections on X, both can be torically induced.

The 14th case
• To get an example for “the missing real class” one

may try to start with a complete intersection in
WP(1, 1, 1, 1, 4, 6), but it is not Fano and necessary
mirror construction is unclear. Kreuzer and Schei-
degger proposed a replacement: it leads to complete
intersections Y2 with h2,1(Y2) = 3 and h2,1

poly(Y2) = 2.
• Alternatively, one may try to start with a hypersur-

face in a fourfold fibered by WP(1, 1, 4, 6), prefer-
ably “torically balanced”, which is the case for
WP(1, 1, 2, 8, 12). This leads to hypersurfaces Z3
with h2,1(Z3) = 3 = h2,1

poly(Z3).
• Both models admit M-polarized K3 fibrations and

have one-parameter subfamilies Y1 and Z1 that for-
mally give the desired GKZ series. Using modular
parameters of K3 fibers Y2 can be “matched” with a
two-parameter subfamily Z2, while Z3 can be easily
compared to the work of Billo et. al. [1].

• We have determined singularities of (generic mem-
bers of) subfamilies using Sage [9] and Magma [3]:
– Y1 has two nodes;
– Z2 has an elliptic curve C of cA1 singular points;
– on Z1 the curve of singularities develops a node.

• It is obvious from the presence of singularities that Y2
is not isomorphic to Z2. However, extensively using
toric tools in Sage [2], we have found a contraction
morphism between these threefolds, which means
that full (smooth) families Y2 and Z3 are connected
via a geometric transition (of type III).

• The nodes of Y1 cannot be crepantly resolved, so
there is no geometric transition to Y2 through Y1.

• Modular parameters of fibers of Y2 are

π =
1

126α
· t
(t + 1)2,

σ = 1 +
β− 3 · 122β2

123α
· t
(t + 1)2,

where t is an affine coordinate on the base and α and
β are deformation parameters.

• The subfamily Y1 is determined by the condition
β = 0. Note that in this case σ = 1 and the image
curve of fibers in the moduli space of M-polarized K3
surfaces is fixed, only its parametrization depends
on the remaining parameter α.

The 23rd case
• An example for “the missing integral class” should

come from the mirror octic twin: a hypersurface in-
side the quotient by a finite group of WP(1, 1, 1, 1, 4),
obtained by considering its reflexive polytope in a
more coarse lattice (but not as coarse as for the po-
lar of this space). The corresponding anticanonical
hypersurfaces Z3 have h2,1(Z3) = 3 = h2,1

poly(Z3).
• One-parameter subfamily Z1 formally yields the de-

sired GKZ series, its generic members are smooth.
• There is a torically induced fibration by S-polarized

K3 surfaces, where S = H⊕ E7⊕ E7 is a sublattice of
M and N = H⊕ E8⊕ E7. Many properties of K3 sur-
faces with N and S polarization are similar to those
of M-polarized ones [5, 6]. In particular:
– they have the same normal forms with one extra

monomial cxz2w for N and two more beyond that
for S: exw3− f

2w4;
– the monomial coefficients specify a unique point
(K4, K6, K8, K10, K12) ∈WP(2, 3, 4, 5, 6) by
K4 = a, K6 = b, K8 = ce, K10 = c f + de, K12 = d f .

• Fiber parameters for Z3 are
K4 = 3αs, K6 = βs− 1

1728, K8 = 36αs2,
K10 = −12αs2, K12 = αs2, s = t + γ + t−1,

where t is an affine coordinate on the base and α, β,
γ are deformation parameters.

• The subfamily Z1 is determined by the conditions
β = γ = 0, leading to

s = t + t−1 and K6 = − 1
1728.

As we can see, the choice of the remaining parameter
α changes the image curve of fibers.

Hypersurfaces in WP’s.
• Four of the “known examples” of one-parameter

families of Calabi-Yau threefolds are realized as hy-
persurfaces in polars of weighted projective spaces,
all admitting M-polarized K3-fibrations. These po-
larizations may be enhanced to Mn = M⊕ 〈−2n〉.

• Due to the polarization enhancement, the image
curve of fibers in the moduli space of M-polarized
K3 surfaces must be the same throughout the family.

• For anticanonical hypersurfaces in the polar of P4

(fibered by the polar of P3) parameters of the M2-
polarized K3 fibers are given by

a = s + 1, b =
9
2

s− 1, d = s3, s = α
t5

(t + 1)4,

where t is an affine coordinate on the base and α is a
deformation parameter.

• For WP(1, 1, 1, 2, 5)◦ (fibered by WP(1, 1, 1, 3)◦) we
similarly get parameters of M1-polarized K3 fibers as

a = 1, b = s + 1, d = s2, s = α
t5

(t− 4)3,

where t is an affine coordinate on the base and α is a
deformation parameter.

References
[1] M. Billo, F. Denef, P. Fre, I. Pesando, W. Troost, A. van

Proeyen, D. Zanon, The rigid limit in Special Kahler geometry;
From K3-fibrations to Special Riemann surfaces: a detailed case
study, arXiv:hep-th/9803228v2

[2] V. Braun & A.Y. Novoseltsev, Toric varieties framework for Sage.
The Sage Development Team, 2011,
http://www.sagemath.org/doc/reference/sage/
schemes/generic/toric variety.html.

[3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I.
The user language., J. Symbolic Comput., 24(3-4):235-265, 1997.

[4] A. Clingher & C.F. Doran, Modular Invariants for Lattice Polar-
ized K3 Surfaces, 2006. arXiv:math/0602146

[5] A. Clingher & C.F. Doran, Lattice Polarized K3 Surfaces and
Siegel Modular Forms, 2010.
arXiv:1004.3503v1 [math.AG]

[6] A. Clingher & C.F. Doran, Note on a Geometric Isogeny of K3
Surfaces, 2010. arXiv:1004.3335v1 [math.AG]

[7] A. Clingher, C.F. Doran, J. Lewis, U. Whitcher, Normal
Forms, K3 Surface Moduli, and Modular Parametrizations, 2007.
arXiv:0712.1880

[8] C.F. Doran & J.W. Morgan, Mirror Symmetry and Integral Vari-
ations of Hodge Structure Underlying One Parameter Families of
Calabi-Yau Threefolds, arXiv:math/0505272v1 [math.AG]

[9] William A. Stein et al., Sage Mathematics Software (Version 4.7.1),
The Sage Development Team, 2011,
http://www.sagemath.org.

This poster was made using LATEX class files from Harvey Mudd College. Western Algebraic Geometry Symposium, Colorado State University, Fort Collins, Fall 2011.


