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Abstract. This article is based in part on lecture notes prepared for the sum-

mer school “The Geometry, Topology and Physics of Moduli Spaces of Higgs
Bundles” at the Institute for Mathematical Sciences at the National University

of Singapore in July of 2014. The aim is to provide a brief introduction to

algebraic stacks, and then to give several constructions of the moduli stack of
Higgs bundles on algebraic curves. The first construction is via a “bootstrap”

method from the algebraic stack of vector bundles on an algebraic curve. This

construction is motivated in part by Nitsure’s GIT construction of a projective
moduli space of semi-stable Higgs bundles, and we describe the relationship

between Nitsure’s moduli space and the algebraic stacks constructed here. The

third approach is via deformation theory, where we directly construct the stack
of Higgs bundles using Artin’s criterion.
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Introduction

Stacks have been used widely by algebraic geometers since the 1960s for studying
parameter spaces for algebraic and geometric objects [DM69]. Their popularity is
growing in other areas as well (e.g., [MLM94]). Nevertheless, despite their utility,
and their having been around for many years, stacks still do not seem to be as
popular as might be expected. Of course, echoing the introduction of [Fan01],
this may have something to do with the technical nature of the topic, which may
dissuade the uninitiated, particularly when there may be less technical methods
available that can be used instead. To capture a common sentiment, it is hard to
improve on the following excerpt from Harris–Morrison [HM98, 3.D], which serves
as an introduction to their section on stacks:

‘Of course, here I’m working with the moduli stack rather
than with the moduli space. For those of you who aren’t
familiar with stacks, don’t worry: basically, all it means
is that I’m allowed to pretend that the moduli space is
smooth and there’s a universal family over it.’

Who hasn’t heard these words, or their equivalent spoken at a
talk? And who hasn’t fantasized about grabbing the speaker by the
lapels and shaking him until he says what – exactly – he means by
them?

At the same time, the reason stacks are used as widely as they are is that they
really are a natural language for talking about parameterization. While there is no
doubt a great deal of technical background that goes into the set-up, the pay-off
is that once this foundation has been laid, stacks provide a clean, unified language
for discussing what otherwise may require many caveats and special cases.

Our goal here is to give a brief introduction to algebraic stacks, with a view
towards defining the moduli stack of Higgs bundles. We have tried to provide
enough motivation for stacks that the reader is inclined to proceed to the definitions,
and a sufficiently streamlined presentation of the definitions that the reader does
not immediately stop at that point! In the end, we hope the reader has a good
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sense of what the moduli stack of Higgs bundles is, why it is an algebraic stack, and
how the stack relates to the quasi-projective variety of Higgs bundles constructed
by Nitsure [Nit91].

Due to the authors’ backgrounds, for precise statements, the topic will be treated
in the language algebraic geometry, i.e., schemes. However, the aim is to have a
presentation that is accessible to those in other fields, as well, particularly complex
geometers, and most of the presentation can be made replacing the word “scheme”
with the words “complex analytic space” (or even “manifold”) and “étale cover”
with “open cover”. This is certainly the case up though, and including, the def-
inition of a stack in §3. The one possible exception to this rule is the topic of
algebraic stacks §6, for which definitions in the literature are really geared towards
the category of schemes. In order to make our presentation as accessible as pos-
sible, in §5 and §6 we provide definitions of algebraic stacks that makes sense for
any presite; in particular, the definition gives a notion of an “algebraic” stack in
the category of complex analytic spaces. There are other notions of analytic stacks
in the literature, but for concision, we do not pursue the connection between the
definitions.

The final section of this survey (§10) studies algebraic stacks infinitesimally,
with the double purpose of giving modular meaning to infinitesimal motion in an
algebraic stack and introducing Artin’s criterion as a means to prove stacks are
algebraic. Higgs bundles are treated as an extended example, and along they way
we give cohomological interpretations of the tangent bundles of the moduli stacks
of curves, vector bundles, and morphisms between them. In the end we obtain a
direct proof of the algebraicity of the stack of Higgs bundles, complementing the
one based on established general algebraicity results given earlier.

While these notes are meant to be somewhat self contained, in the sense that
essentially all relevant definitions are included, and all results are referenced to the
literature, these notes are by no means comprehensive. There are now a number
of introductions to the topic of algebraic stacks that have appeared recently (and
even more are in preparation), and these notes are inspired by various parts of those
treatments. While the following list is not exhaustive, it provides a brief summary
of some of the other resources available. To begin, we direct the reader to the now
classic, concise introduction by Fantechi [Fan01]. The reader may very well want
to read that ten page introduction before this one. A more detailed introduction
to Deligne–Mumford stacks is given in the book [BCE+14]. The book [FGI+05]
provides another detailed introduction, with less emphasis on the algebraic property
of algebraic stacks. The book [LMB00] provides a concise, detailed, but perhaps
less widely accessible introduction to the topic. There is also the comprehensive
treatise [Sta15], which has a complete treatment of all of the details. The reader
who would like to follow the early development of the subject might want to consult
[Gir71], [Mum65], [DM69], [sga72b, Exp. II], [sga73, Exp. XVII, XVIII], [Knu71],
and [Art74].

Notation. We denote by S the category of schemes over a fixed base, which the
reader may feel free to assume is SpecC, where C is the field of complex numbers.
All schemes will be members of this category. Until we discuss algebraic stacks,
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one could even take S to be the category of complex analytic spaces, or any other
reasonable category of “spaces” with which one would like to work.

Our convention is generally to use roman letters for schemes (e.g., M), script
letters for functors to sets (e.g., M ), and calligraphic letters for categories fibered
in groupoids; (e.g.,M). We will typically use sans serif letters for various standard
categories (e.g., M).

1. Moduli problems as functors

When one wants to parameterize some kind of algebraic or geometric objects, one
says one has a moduli problem. The goal is to find another geometric object, called
a moduli space, that parameterizes the objects of interest. One of the most natural
ways to phrase a moduli problem is in terms of the corresponding moduli functor.
From this perspective, the hope is that the moduli functor will be representable
by a geometric object, which will be the moduli space. In fact, it is possible to
say a great deal about the moduli space purely in terms of the moduli functor,
without even knowing the moduli space exists! For example, the tangent space can
be computed by evaluating the moduli functor on the spectrum of the ring of dual
numbers (§1.3).

We make this precise in what follows. The best way to get a feel for this is
through examples. For this reason, in this section we start by considering the
familiar problems of parameterizing linear subspaces of a fixed vector space, and of
parameterizing Riemann surfaces of a fixed genus.

1.1. Grassmannians. We expect this example is familiar to most of the readers,
and the aim will be to motivate an approach to these types of problems, which
we will continue to use throughout. We direct the reader to [GH94, Ch.1,§5] for
details.

In this section we explicitly take S to be the category of C-schemes, or the
category of analytic spaces, for simplicity; a “scheme” refers to a member of this
category. For an object S of S, we adopt the notation CnS := Cn × S for the trivial
vector bundle of rank n over S.

Recall that Grassmannians arise from the moduli problem that consists of pa-
rameterizing r-dimensional complex subspaces of Cn.

There is clearly a set of such spaces

G(r, n) := {W ⊆lin Cn : dimW = r}.

In fact, one can easily put a “natural” complex structure on G(r, n) that makes this
set into a smooth complex projective variety of dimension r(n − r), which we call
the Grassmannian. Of key importance from our perspective is the fact that there
is a rank r vector bundle U over G(r, n), and an inclusion of vector bundles:

0→ U→ CnG(r,n)

such that for any C-scheme S and any inclusion of vector bundles F ↪→ CnS over S
with rankF = r, there is a unique C-morphism

f : S → G(r, n)
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such that the inclusion F ↪→ CnS is isomorphic to the pullback of the inclusion
U ↪→ CnG(r,n) by f . Diagramatically:

F

��

� t

''

// U � x

**

��

CnS //

��

CnG(r,n)

xx

S
f

∃!
// G(r, n)

Set theoretically, we define U by setting the fiber of U over a point [W ] ∈ G(r, n)
corresponding to a subspace W ⊆ Cn to be the subspace W itself; i.e., we have
U[W ] = W ↪→ Cn = (CnG(r,n))[W ]. The bundle U is called the universal subbundle.

In fact, the topology and geometry of G(r, n), as well as the vector bundle struc-
ture on U, are all encoded in the universal property. To see the topology, consider
a linear projection p : Cn → Cr. If S is any scheme and F ↪→ CnS is a rank r vector
subbundle, then for a general projection p, denoting by pS the induced morphism

pS : CnS → CrS , then the composition pF : F → CnS
pS→ CrS is an isomorphism over

a nonempty open subset Sp ⊆ S. Choosing appropriate projections, these open
subsets cover S. This applies in particular to the Grassmannian itself, so that we
obtain an open cover of G(r, n) by subsets Up where pU

∣∣
Up

: U
∣∣
Up
→ CrUp is an iso-

morphism. Moreover, we can easily see that locally, after trivializing U, a point of
Up may be identified with a section of the projection p : Cn → Cr; or more precisely,
a map S → Up may be identified with a section of pS : CnS → CrS . Consequently,
one can check from the universal property that Up must be isomorphic to the space

of sections of the projection, which is isomorphic to HomC(Cr,Cn−r) = C(n−r)×r,
the space of (n − r) × r complex matrices. This of course agrees with the stan-
dard method of constructing charts for the Grassmanian by choosing bases for the
subvector space, and performing row reduction. We also have the identification
pU
∣∣
Up

: UUp → CrUp , which gives the vector bundle structure on U.

The take-away from this discussion is that there is an identification of families
(up to isomorphism) of r-dimensional subspaces of Cn parameterized by S, with
morphisms of C-schemes S into G(r, n) and, moreover, that we can understand
everything about G(r, n) in terms of this identification. As perverse as it might
seem, we could throw away the topological space and sheaf of rings and consider
instead the Grassmannian functor :

G (r, n) : Sop → (Set)

G (r, n)(S) :=

{
(F, i)

∣∣∣∣∣ F is a vector bundle on S

i : F ↪→ CnS is a linear inclusion

}/
∼

where two inclusions of vector bundles F ↪→ S × Cn and F′ ↪→ S × Cn over S are
equivalent if there is a commutative diagram of the form

F � � //

∼ ��

CnS

F′ � � // CnS .

The functor G (r, n) acts on morphisms in the following way. Associated to a mor-
phism f : S′ → S, we have

f∗ : G (r, n)(S)→ G (r, n)(S′)
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taking the class of the inclusion F ↪→ S×Cn to the class of the inclusion F′ ↪→ S′×Cn
defined via pullback diagrams:

F′ : f∗F

��

� u

((

// F � t

''

��

CnS′ Cnf
//

}}

CnS .
}}

S′
f

// S

Here f∗F is the pullback of F to S′ via f and Cnf is the canonical morphism CnS′ =

Cn × S′ id×f−−−→ Cn × S = CnS .
The assertion that there is an identification of families (up to isomorphism) of

r-dimensional subspaces of Cn parameterized by S, with morphisms of schemes S
into G(r, n), can be formulated precisely as an isomorphism of functors

HomS

(
−, G(r, n)

)
// G (r, n)(

f : S → G(r, n)
) � // f∗

(
U ↪→ CnG(r,n)

)
.

(1.1)

In other words, the Grassmannian functor is representable by the Grassmannian
scheme. We also say that the Grassmannian is a fine moduli space for the Grass-
mannian functor.

Our previous extraction of the geometric structure of G(r, n) from the universal
property, in other words, from the functor G (r, n), is a manifestation of the general
principle encoded in Yoneda’s lemma (stated below). Indeed, if there is another
space G(r, n)′ such that

HomS

(
−, G(r, n)′

) ∼= G (r, n),

then

HomS

(
−, G(r, n)′

) ∼= HomS

(
−, G(r, n)

)
,

and one may use Yoneda’s lemma to conclude that G(r, n) ∼= G(r, n)′.

Lemma 1.1 (Yoneda). Let S be a category. There is a fully faithful functor

h : S→ Fun
(
Sop, (Set)

)
S 7→ hS := HomS(−, S)

(S
φ→ S′) 7→ (hS

φ∗−→ hS′),

which identifies S with a full subcategory of the category of functors Fun
(
Sop, (Set)

)
.

In particular, for each S ∈ Ob(S), the map

HomFun(Sop,(Set))(hS ,F )→ F (S)

(η : hS → F ) 7→ η(S)(idS)

is a bijection.

This is best worked through on one’s own, preferably in private. Nevertheless, in
the spirit of completeness that inspires these notes, we refer the reader to [FGI+05,
Ch.2, §2.1] or [GD71a, Ch. 0, §1.1] for more details.

Definition 1.2 (Representable functor). A functor isomorphic to one of the form
HomS(−, S) for some S in S is called a representable functor.
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Remark 1.3. Due to the Yoneda Lemma, we will often write S in place of hS or
HomS(−, S).

Remark 1.4. Note that under the identification of (1.1), the identity map idG(r,n) ∈
HomS

(
G(r, n), G(r, n)

)
is sent to the class of the inclusion of the universal subbundle

U ↪→ CnG(r,n) in G (r, n)
(
G(r, n)

)
.

Summarizing the discussion above, the fact that the Grassmannian functor is
representable is equivalent to the fact that there is a universal family, U, of dimen-
sion r-subspaces of Cn, parameterized by the Grassmannian G(r, n), such that any
other family of dimension r-subspaces of Cn is obtained from this universal family
via pullback along a (unique) map to the Grassmannian.

Remark 1.5. This whole construction could have been dualized, considering instead
r-dimensional quotients of the dual vector space (Cn)∨. The problem is clearly
equivalent, but this dual formulation is more obviously related to the Quot scheme
we will discuss later. We leave it to the reader to make this comparison when the
Quot scheme is introduced.

1.2. Moduli of Riemann surfaces. The example of the Grassmannian gives a
moduli space that is representable by a projective variety. Another accessible exam-
ple of a moduli problem that on the other hand captures the complications leading
to the development of stacks is that of parameterizing Riemann surfaces.

We will work in this section with the algebraic analogues of compact Riemann
surfaces of genus g; i.e., smooth proper complex algebraic curves of genus g. Our
moduli problem is that of parameterizing all such curves up to isomorphism. Moti-
vated by the discussion of the Grassmannian, we make this more precise by defining
a moduli functor. To do this, we define a relative curve of genus g to be a surjective
morphism of schemes π : X → S such that

• π is smooth,
• π is proper,
• every geometric fiber is curve of genus g.

Recall that if X and S are smooth, then π : X → S is smooth if and only the
differential is everywhere surjective. In other words, this includes the analogues
of surjective morphisms of smooth complex manifolds, with surjective differential,
where every (set theoretic) fiber is a compact Riemann surface of genus g.

We now define the moduli functor of genus g curves as:

Mg : Sop → (Set)

Mg(S) := {π : X → S, a relative curve of genus g}/ ∼

where two relative curves π : X → S and π′ : X ′ → S are equivalent if there is a
commutative diagram (1.2), in which the upper horizontal arrow is an isomorphism:

(1.2)

X ′
∼ //

π′

��

X

π

��

S S.

The functor Mg acts on morphisms in the following way. Associated to a morphism
f : S′ → S, we have

f∗ : Mg(S)→Mg(S
′)
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defined via pullback diagrams; in other words, given [π : X → S] ∈ Mg(S), we
define f∗[π : X → S] as the class of the curve π′ : X ′ → S′, defined by the fiber
product diagram:

X ′ //

π′

��

X

π

��

S′
f
// S.

Example 1.6 (Isotrivial family). Consider the relative curve π : X → S = C∗ of
genus 1 given by the equation

y2 = x3 + t, t 6= 0.

Here X is the projective completion of {(x, y, t) : y2 − x3 − t = 0} in P2
C, and the

map π : X → S is induced by (x, y, t) 7→ t. It turns out this family is isotrivial (i.e.,
all of the fibers are abstractly isomorphic); this can be seen quickly by confirming
that the j-invariant of each fiber is 0, or simply writing down the isomorphism
(x, y, t) 7→ (λ−2x, λ−3y, 1), where λ6 = t, between Xt and X1. One can also
show that this family is not equivalent to a trivial family; i.e., not isomorphic to
S×X1. One way to see this is to check that the monodromy action of π1(C∗, 1) on
H1(X1,C) is nontrivial (see e.g., [CM13, §4.1.2]), and therefore, that X/S is not a
trivial family. Another way to see this is to observe that the explicit isomorphism
given above trivializes X over the pullback via C∗ → C∗ : λ 7→ λ6. We can therefore
characterizeX as the quotient ofX1×C∗ by the action ζ.(x, y, λ) = (ζ−2x, ζ−3y, ζλ)
of a 6-th root of unity ζ ∈ µ6. The étale sheaf on S of isomorphisms between X
and the X1 × S is a torsor under the automorphism group of X1, which is µ6. It
is therefore classified by an element of H1(S, µ6) = Hom(µ6, µ6) = Z/6Z, which
one can check is 1. Since this corresponds to a nontrivial torsor, X/S is not a
trivial family. One can generalize this example to show that for every g, there exist
isotrivial, but nontrivial families of curves (see Example A.4).

Proposition 1.7. The functor Mg is not representable.

Proof. See e.g. [HM98] for more details. The main point is that if Mg were
representable, then every isotrivial family of curves would be equivalent to a trivial
family, which we have just seen is not the case.

To this end, suppose that Mg = HomS(−,Mg) for some scheme Mg. Let Cg →
Mg be the family of curves corresponding to the identity morphism idMg

. Now
let π : X → S be an isotrivial family of curves over a connected base S, that is
not equivalent to S × Xs for any s ∈ S, with s = SpecC (here Xs is the fiber
of X/S; see e.g., Examples 1.6 and A.4). The curve Xs → s corresponds to an
element of Mg(SpecC) = HomS(SpecC,Mg); i.e., the isomorphism class of the
curve corresponds to a point, say [Xs] ∈ Mg. Similarly, the family π : X → S
corresponds to a morphism f : S → Mg. Since every fiber of π : X → S is
isomorphic to [Xs], the image of S under f must be the point [Xs]. By definition
of the representability of the functor, we must then have that the pullback of the
universal family Cg →Mg along f , i.e., Xs × S, is equivalent to π : X → S, which
we assumed was not the case. �

Remark 1.8. While the functor Mg is not representable, it does admit a coarse
moduli space. In other words, there is a quasi-projective varietyMg and a morphism
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Φ : Mg → Mg (here we are using the convention mentioned in Remark 1.3 of
denoting a scheme and its associated functor with the same letter) such that:

(1) for any scheme S and any morphism Ψ : Mg → S, there is a unique
morphism η : Mg → S such that the following diagram commutes:

Mg
Φ //

Ψ

��

Mg

∃!

η

}}
S

(2) Φ is a bijection when evaluated on any algebraically closed field.

A scheme representing a functor, i.e., a fine moduli space, is clearly a coarse moduli
space. For many moduli functors that we consider, we will be able to find a scheme
satisfying the first condition above; however, when the automorphisms of our ob-
jects are positive dimensional, it will not in general be possible to find a scheme
satisfying the second condition, as well.

For brevity (or at least for lesser verbosity), we have not included a discussion
of coarse moduli spaces. The interested reader may consult [HM98, Def. 1.3], or
[Alp13, Def. 4.1].

There was not anything special about curves in Proposition 1.7: all we needed
was an isotrivial family that was nontrivial. In fact, nontrivial automorphism groups
almost always give rise to nontrivial isotrivial families (see Corollary A.7) so we
conclude that moduli problems involving objects with nontrivial automorphisms
will almost never be representable by genuine spaces. Since most moduli problems
of interest involve objects with nontrivial automorphisms, this means fine moduli
spaces almost never exist ; i.e., moduli problems are almost never representable by
schemes.

There are a few ways one might try to go around this problem: one could rigidify
the problem by imposing additional structure in the hopes of eliminating nontrivial
automorphisms; one could give up on the idea of a fine moduli space and settle
for a coarse moduli space that at least gets the points right, even if it botches the
universal property (see Remark 1.8).

Stacks do not go around the problem of isomorphisms so much as they go through
it. By remembering how objects are equivalent, as opposed to merely that they are
equivalent, we can eliminate the issue that is responsible for Proposition 1.7. The
price we must pay is to enlarge the class of objects we are willing to call spaces
and sacrifice some of our geometric intuition. What we hope to illustrate in these
notes is that the cost in geometric intuition is less than one might first expect,
and that the payoff in newly available moduli spaces more than compensates for it.
Indeed, stacks will allow us to bring our intuition about geometric families to bear
on the geometry of their moduli spaces, giving us a new—and, we would argue,
more powerful—sort of intuition to replace what we have sacrified.

1.3. The tangent space of a moduli functor. Because of Yoneda’s lemma, a
fine moduli space is uniquely characterized by the functor it represents. In particu-
lar, the tangent space to a moduli space at a point can be determined directly from
the moduli functor, without even knowing that the moduli space is representable!
This is not merely a formal convenience: the tangent space is an essential tool in
proving that moduli functors are representable (see §10).
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As an example of the definition, we compute the tangent space of the Grass-
mannian. The same calculation actually computes the tangent space of the Quot
scheme, as well (see also [FGI+05, §6.4]). Notice that we do not make use anywhere
of the representability of the Grassmannian in this calculation. Further examples
will appear in §10.1.

We have already seen on p.6 how the cover of G(r, n) by open subsets Up asso-
ciated to projections p : Cn → Cr is visible from the functor G (r, n). From this,
near a point of the Grassmannian W ↪→ Cn, we get a local identification of G (r, n)
with the functor represented by HomC(Cr,Cn−r) = Hom(W,Cn/W ). Since this
is a vector space, this gives a local identification of the tangent space TG (r,n),W

with Hom(W,Cn/W ). As is well known, this identification can be made globally.
Rather than verify the compatibility of this identification with gluing, which would
require us to use the fact that G (r, n) is a sheaf, we will arrive at it via a global
construction working directly from the definition of G (r, n).

Definition 1.9 (Ring of dual numbers). The ring of dual numbers (over C) is
D = C[ε]/(ε2). For any scheme S over C, we write S[ε] for S × SpecD.

Definition 1.10 (Tangent space to a moduli functor). If F : Sop → (Set) is a
functor, the tangent bundle to F is the following functor:

TF : Sop → (Set)

TF (S) = F
(
S[ε]

)
Reduction modulo ε gives a map D → C and therefore a closed embedding

S → S[ε] for any scheme S. This induces natural functions

TF (S) = F
(
S[ε]

)
→ F (S)

and therefore a natural transformation

TF → F .

We allow ourselves the following notational shortcut, which some may feel is abu-
sive: When ξ ∈ F (S), in other words, when (S, ξ) is an S-point of F , we write
TF (S, ξ) or TF (ξ) for the fiber of TF (S) over ξ ∈ F (S).

For instance, if we have F = HomS(−,M) for some complex manifold M , and
ξ : SpecC → M is a point of M , then TF (ξ) = TM (ξ), the holomorphic tangent
space to M at x.

Warning 1.11. The tangent space to an arbitrary functor F may not be at all
well-behaved! For example TF (ξ) might not even be a vector space. When trying
to characterize the functors that are representable by schemes (or algebraic spaces
or algebraic stacks) one of the first axioms we impose is that F should behave
infinitesimally like a scheme, and in particular that its tangent spaces should be
vector spaces (see §10).

1.3.1. Tangent space to the Grassmannian. Suppose that S is a scheme and F ↪→ CnS
is an S-point of G (r, n). Denote by F the sheaf of regular sections of F. Note that
F is a quasicoherent locally free sheaf of rank r, and recall that F can be recovered
from F , either from transition functions, or directly as

F = SpecS(Sym• F∨),

where F∨ = HomOS (F,OS) is the sheaf of sections of the dual vector bundle
F∨ = HomS(F,CS). By definition, TG (r,n)(S,F) is the set of isomorphism classes



12 CASALAINA-MARTIN AND WISE

of extensions of F to a vector subbundle F1 ⊆ CnS[ε]. Because vector bundles are

determined by their sheaves of sections, deforming F is the same as finding a locally
free deformation F to S[ε]. One can easily check by dualizing that this is equivalent
to finding a locally free deformation of F∨ to S[ε].

Since F ↪→ CnS , we have a quotient OnS → F∨ by duality. We write E∨ for the
kernel of this quotient. To find a locally free deformation of F∨ to S[ε] is the same
as to complete the diagram below with a locally free OS[ε]-module F∨1 :

(1.3) OnS[ε]
//

��

F∨1

��

// 0

0 // E∨ // OnS // F∨ // 0.

Since F∨1 is locally free, tensoring the exact sequence

(1.4) 0→ εOS → OS [ε]→ OS → 0

with F∨1 we see that the kernel of F∨1 → F∨ is εF∨1 ' F∨. Note, moreover, that a
short computation shows that any quasicoherent sheaf F∨1 fitting into the diagram
(1.3) above with εF∨1 ' F∨ will be locally free, because a local basis for F∨ can be
lifted via the projection F∨1 → F∨ to a basis for F∨1 . This can also be seen using
the infinitesimal criterion for flatness [Eis95, Ex. 6.5].

Therefore our problem is, equivalently, to complete the diagram below with
OS[ε]-modules E∨1 and F∨1 , so that the middle row is a short exact sequence, and
the vertical arrows are those induced from (1.4):

(1.5)

0

��

0

��

0

��

0 // εE∨ //

��

εOnS //

��

εF∨ //

��

0

0 // E∨1 //

��

OnS[ε]
//

��

F∨1

��

// 0

0 // E∨ // OnS // F∨ // 0.

0
��

0
��

0
��

In particular, all rows and columns above are short exact sequences.
Since εE∨ necessarily maps to zero in F∨1 , to produce a quotient F∨1 of OnS[ε]

lifting the quotient F∨ of OnS , it is equivalent to produce a quotient of OnS[ε]/εE
∨.

We are therefore trying to complete the diagram below:

0 // E∨1 /εE
∨ // OnS[ε]/εE

∨ //

��

F∨1

��

// 0

0 // E∨ // OnS // F∨ // 0.
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But note that E∨1 /εE
∨ projects isomorphically to E∨. Therefore TG (r,n)(S, F ) is

isomorphic to the set of lifts of the following diagram:

OnS[ε]/εE
∨

��

E∨

::

// OnS .

We have one canonical lift by composing the inclusion E∨ ↪→ OnS with the section
OnS → OnS[ε]. (Note that this is not an OS[ε] homomorphism until it is restricted

to E∨.) An easy diagram chase in (1.5) shows that the difference between any two
lifts is a homomorphism E∨ → F∨, so we get a canonical bijection:

TG (r,n)(S,F) = HomOS (E∨, F∨) = HomOS (F,E) = HomS(F,E)

where E = SpecS(Sym•E∨) is the quotient of the trivial vector bundle CnS by the
subbundle F.

2. Moduli functors as categories fibered in groupoids

As nontrivial automorphisms tend to preclude the representability of a moduli
problem (by a scheme), one plausible way to proceed is to account for these au-
tomorphisms by retaining them in the definition of the moduli functor. We are
led to consider functors valued in groupoids (categories in which all morphisms are
isomorphisms), rather than in sets, and immediately find ourselves in a morass of
technicalities (see §2.1). In our judgment, a more elegant solution can be found in
the notion of a category fibered in groupoids (see Remark 2.4 for the reasoning that
motivates our point of view). In §2.1 we briefly discuss functors valued in group-
oids, with the primary objective of convincing the reader that another approach
would be preferable. We then introduce categories fibered in groupoids in §2.2.

2.1. (Lax 2-)Functors to groupoids. Instead of studying a moduli problem by
defining a functor whose value on a scheme is the set of isomorphism classes of
families over that scheme, we try to define one whose value is the category of
families parameterized by that scheme, with morphisms being isomorphisms of
families. Contrary to the set of isomorphism classes, the category explicitly allows
two families to be isomorphic in more than one way.

Definition 2.1 (Groupoid). A groupoid is a category in which all morphisms are
isomorphisms.

Remark 2.2. In the literature, in the definition of a groupoid, it is common to
require the additional condition that the category be small (the class of objects
is a set). This is not required for our treatment, and so we drop the condition
since almost every category we will consider will not be small. For instance, the
category of sets with one element is obviously not small (for every set E there is
a one element set {E}), and one can immediately generalize this to examples we
consider here. However, the groupoids we study will usually be essentially small,
meaning they are equivalent to small categories, so none of the pathologies that
compel one to include a hypothesis of smallness will trouble us.

One way to avoid worrying about small categories (or at least, to transfer the
worry to somewhere else) is to introduce Grothendieck universes. Essentially, one
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assumes axiomatically that there are very large sets, called universes, that are large
enough to ‘do set theory’ within. All objects of interest occur within the universe,
but one can still use set-theoretic language to speak about the universe itself. For
example, the collection of all 1-element sets within the universe does form a set,
namely one in bijection with the universe itself.

Ultimately, these considerations are technical from our perspective, and we will
remain silent about them in the sequel. One may consult [Sta15, Tag 0007] for yet
another way around these technical issues.

Continuing on, at first glance, it seems that we want a “functor” to the category
of groupoids:

M : Sop → (Groupoid).

Making this precise leads to the morass of technicalities aluded to above. The issue
here is the assignment for morphisms. In our examples, we pulled back families
along morphisms. The fact that pullbacks are only defined up to isomorphism,
albeit a canonical one, means that one does not have an equality of g∗f∗ with
(fg)∗ but only an isomorphism between them. One then has not one but two ways
of identifying h∗g∗f∗ ' (fgh)∗ and one must require these be the same.

Example 2.3. Here is how this plays out for the moduli of curves: Let

ML2
g : Sop → (Groupoid)

be the moduli functor in groupoids for curves of genus g; by definition ML2
g (S) is

the category of families of curves over S, with S-isomorphisms as the morphisms. If
T → S is a morphism of schemes we obtain a functor ML2

g (S)→ML2
g (T ) sending

C to C ×S T . If we have a pair of morphisms U → T → S then we obtain two maps
ML2

g (S) → ML2
g (U), one sending C to (C ×S T )×T U and the other sending C

to C ×S U . These are canonically isomorphic, but they are not equal! Do we have
to keep track of this canonical isomorphism, as well as the compatibilities it must
satisfy when we encounter a sequence V → U → T → S? The concept we need
here is of course the ‘lax 2-functor’ (§2.1).

Pursuing this line of reasoning, one ultimately arrives at the definition of a
pseudo-functor or lax 2-functor. However, just to define lax 2-functors is an un-
pleasant task, with little to do with the geometry that ultimately motivates us. (The
reader who desires one may find a definition in [FGI+05, §3.1.2].) Fortunately, we
will not have to think too hard about lax 2-functors because Grothendieck has sup-
plied a more elegant solution: categories fibered in groupoids. The fundamental
observation is that the pullbacks we need are canonically isomorphic because they
satisfy universal properties that are literally the same. If we keep track of universal
properties rather than the objects possessing them, we arrive at a more efficient
definition.

Remark 2.4. According to the philosphy behind categories fibered in groupoids,
the mistake in Example 2.3 was to choose a fiber product C ×S T . We were then
forced to carry it around and keep track of the compatibilities that it obviously
satisfies. The category fibered in groupoids posits only that an object satisfying
the universal property of the fiber product exists, i.e., that there is some cartesian
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diagram (2.1),

(2.1)

D //

��

C

��

T // S

without actually specifying a construction of one.

2.2. Categories fibered in groupoids. From our perspective, the motivation
for a category fibered in groupoids is to avoid the technical complications of the
definition of a lax 2-functor by essentially clumping all of the groupiods of interest
into one large category over the category of schemes; the issues we ran into defining
the lax 2-functor on morphisms are avoided by using the universal properties of
fibered products in our category. We now make this precise. Temporarily, we let S
denote any category.

Definition 2.5. A category over S is a pair (M, π) consisting of a category M
together with a covariant functor π : M → S. If S is an object of S, the fiber of
M over S, denoted MS or M(S) is defined to be the subcategory consisting of all
objects over S, and all morphisms over the identity of S. An object X in M is
said to lie over S if it is in MS . A morphism f̃ : X ′ → X in M is said to lie over
a morphism f : S′ → S if π(f̃) = f . A morphism between categories (M, π) and
(M′, π′) over S is a functor F :M→M′ such that π′ ◦ F = π.

We indicate objects and morphisms lying above other objects and morphisms in
diagrams like this:

(2.2) M

π

��

X ′
f̃
//

_

��

X_

��

S S′
f
// S.

A fibered category is essentially one for which “pullback diagrams” exist. Keep-
ing in mind the definition of a fibered product, a quick glance at (2.3) should make
clear the meaning of a pullback diagram in this setting.

Definition 2.6 (Cartesian morphism). Let (M, π) be a category over S. A mor-

phism f̃ : X ′ → X in M is cartesian if the following condition holds. Denote by
f : S′ → S the morphism π(f̃) in S (as in (2.2)). Given any morphism g : S′′ → S′

in S, and any morphism f̃ ◦ g : X ′′ → X in M lying over f ◦ g, there is a unique

morphism g̃ : X ′′ → X ′ inM lying over g such that f̃ ◦ g = f̃ ◦ g̃. Pictorially, every
diagram (2.3) has a unique completion:

(2.3) X ′′
f̃◦g

##

_

�� ∃!

g̃

!!

S′′

g
%%

f◦g

##

X ′
f̃
//

_

��

X_

��

S′
f
// S.
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Definition 2.7 (Fibered category). A category (M, π) over S is said to be fibered
over S if for any morphism f : S′ → S in S and any object X of M lying over S,
there exists a cartesian morphism f̃ : X ′ → X in M lying over f .

Definition 2.8 (Category fibered in groupoids (CFG)). A category (M, π) over
S is said to be fibered in groupoids if it is fibered over S, and for every S in S, we
have that M(S) is a groupoid.

Remark 2.9. Categories fibered in groupoids are typically introduced as fibered
categories in which all morphisms are cartesian [SGA03, Exp. VI, §6, Remarques],
[FGI+05, Def. 3.21], or equivalently, a fibered category where the fibers are all
groupoids. In examples, as we have seen here, where we define all morphisms via
fibered product diagrams, and pullbacks, one is led naturally to this definition.
The added generality of fibered categories (not neccesarily fibered in groupoids)
is important in order to formulate faithfully flat descent efficiently [Gro95b, §B.3],
[SGA03, Exp. VIII], [FGI+05, §4.2]. However, it is not particularly relevant to the
study of moduli problems that is our focus here.

Fibered categories were originally defined in [Gro95b, §A.1.a, Def. 1.1] to be what
we would call lax 2-functors (albeit valued in categories rather than in groupoids),
and what others call pseudo-functors [SGA03, Exp. VI, §8], [FGI+05, Def. 3.10].
The definition of a fibered category given in [SGA03, Exp. VI, Def. 6.1], is equiva-
lent to the slightly different formulation in [FGI+05, Def. 3.5]. Lax 2-functors are
equivalent (we do not attempt to say precisely in what sense) to fibered categories
with cleavage [SGA03, Exp. VI, §7–8], [FGI+05, Def. 3.9, §3.1.3].

Remark 2.10. The notation M(S) for π−1(S) is meant to be suggestive of the
relationship between categories fibered in groupoids and functors valued in group-
oids. Indeed, one may construct an equivalence between the notions such that the
groupoid-valued functor associated to M has value M(S) on S ∈ S.

Example 2.11 (CFG associated to a presheaf). Let F : Sop → (Set) be a functor
in sets. One obtains a CFG π : F → S in the following way. For each S ∈ Ob(S),
let FS = F (S). Let S, S′ ∈ Ob(S) and suppose that XS ∈ FS and XS′ ∈ FS′ .
Then we assign a morphism XS′ → XS in F if there is a morphism f : S′ → S in
S, and F (f)(XS) = X ′S . The functor π : F → S is given by sending XS to S, and
similarly for morphisms.

It is not difficult to generalize this construction to yield a CFG associated to a
lax 2-functor [FGI+05, §3.1.3], provided that one has first given a precise definition
of the latter.

Example 2.12 (CFG associated to an object of S). Let S be in S. The slice
category S/S is the CFG defined to have objects that are pairs (S′, f) where S′ ∈ S
and f : S′ → S is a morphism. A morphism (S′, f) → (S′′, g) is a morphism
h : S′ → S′′ such that gh = f :

S′
h //

f %%

S′′

gxx
S

The projection π : S/S → S is π(S′, f) = S′. A CFG equivalent to one of the form
S/S for some S in S is said to be representable by S.
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Remark 2.13 (Agreement of CFGs for S and hS). For any S ∈ Ob(S), we can assign
the functor hS , and the category fibered in groupoids associated to hS . This agrees
with the CFG S/S.

Example 2.14 (The CFG (sieve) associated to a family of maps). Given a collec-
tion of morphisms R = {Si → S} in S, we define an associated full sub-CFG of
S/S, which will also be denoted by R. The objects of R are the objects S′ → S of
S/S that factor through one of the Si → S. Sub-CFGs of representable CFGs (i.e.,
a sub-CFGs of S/S for some S in S) are known as sieves.

To give the full statement of the Yoneda lemma for CFGs we need another
definition. The correct language for discussing this is that of the 2-category of
CFGs over S. We postpone this more technical discussion until later (§4). Here we
give a working definition that suffices for our purposes.

Definition 2.15. Let pM : M → S and pN : N → S be CFGs over S. There
is a category HomCFG/S(M,N ) with objects being morphisms M → N of fibered
categories over S and morphisms being natural isomorphisms.

Lemma 2.16 (2-Yoneda [FGI+05, §3.6.2]). Let S be a category, and let S ∈ Ob(S).
For any fibered category π :M→ S the natural transformation

HomCFG/S(S/S,M)→M(S)

F 7→ F (S
idS−−→ S)

(defined similarly for morphisms) is an equivalence of categories.

Convention 2.17. In view of the 2-Yoneda lemma, we may introduce the following
notation: Suppose that S ∈ S and that M is a CFG over S. We write X : S →M
to mean X ∈ HomCFG/S(S/S,M). By the Yoneda lemma, this is the same as
specifying an object of M(S), and we frequently do not distinguish notationally
between X : S →M and X ∈M(S).

Corollary 2.18 ([FGI+05, §3.6]). Let S be a small category, and let S, S′ ∈ Ob(S).
The map

HomS(S′, S)→ Ob
(
HomCFG/S(S/S′,S/S)

)
obtained by post-composition of arrows (e.g., a morphism f : S′ → S is sent to
the functor that assigns to an arrow (g : S′′ → S′) ∈ Ob(S/S′), the composition
(f ◦ g : S′′ → S) ∈ Ob(S/S)) is a bijection.

Remark 2.19. Let M ,N : Sop → (Set) be two functors. LetM,N be the associated
categories fibered in groupoids over S. In a similar way, there is a bijection

HomFun(Sop,(Set))(M ,N )→ Ob
(
HomCFG/S(M,N )

)
.

We delay introducing the notion of 2-categories until later (§4), but the consequence
of the 2-Yoneda Lemma, and this observation, is that the category S, and the
category of functors Fun(Sop, (Set)) can be viewed as full 2-subcategories of the
2-category of CFGs over S. Consequently, we will frequently identify objects S of
S, and functors to sets M : Sop → (Set) with their associated CFGs, S/S, and M,
respectively.
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2.2.1. The Grassmannian as a category fibered in groupoids. For this section, let S
be the category of schemes over C. The Grassmannian CFG

π : G(r, n)→ S

is defined as follows. Objects of G(r, n) are pairs (S,F) where S is a scheme and
F ↪→ CnS is a vector subbundle of rank r. Morphisms in G(r, n) are defined via
pullback. More precisely, a morphism (S′,F′)→ (S,F) is a diagram

F′

��

� u

((

// F � t

''

��

CnS′ Cnf
//

}}

CnS
~~

S′
f

// S

where f : S′ → S is a morphism in S and the rectangles are all cartesian. The map
π : G(r, n)→ S is the forgetful functor π(S,F) = S.

Remark 2.20. To dispel any confusion that may arise from the notation in Example
2.11, we emphasize that the CFG associated to the functor G (r, n) is equivalent to
G(r, n). The former is fibered in sets whereas the latter is fibered in groupoids that
are equivalent, but not isomorphic, to sets. We use the two notations to emphasize
that one is a CFG and one is a functor.

2.2.2. The CFG of curves of genus g. Again we take S to be the category of schemes
over C. We define the CFG of genus g curves

π :Mg → S

in the following way. Objects of Mg are pairs (S,X) where X → S is a relative
curve of genus g (see §1.2). Morphisms in Mg are defined via pullback. More
precisely, a morphism from (S′, X ′)→ (S,X) is a cartesian diagram

X ′ //

��

X

��

S′
f
// S

where f : S′ → S is a morphism in S. The map π :Mg → S is π(S,X) = S.

Remark 2.21. We emphasize that the CFG associated to the functor Mg is not
equivalent to Mg. The former is fibered in sets whereas the latter is fibered in
groupoids that are not equivalent to sets.

3. Stacks

Stacks are the categories fibered in groupoids that respect topology, in the sense
that compatible locally defined morphisms into a stack can be glued together into
global morphisms. This is the most basic requirement a category fibered in group-
oids must satisfy in order to be studied geometrically.

As usual, algebraic geometry introduces a troublesome technicality here: the
Zariski topology is much too coarse to do much interesting gluing. Indeed, suppose
that F is a CFG that ‘deserves to be studied geometrically’ and consider a scheme
S with a free action of G = Z/2Z and a ξ ∈ F(S) that is equivariant with respect to
the G-action. If F were a stack in the complex analytic topology, we could descend
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ξ to an element of F(S/G) because S → S/G is a covering space, an in particular
a local homeomorphism, hence a cover in the analytic topology. There is no such
luck in the Zariski topology, where S → S/G may fail to be a local homeomorphism
and may therefore also fail to be a cover in the Zariski topology.

It is important to be able to do this kind of descent, so one must introduce an
abstract replacement for the concept of a topology, called a Grothendieck topology.
The essence of the definition is to isolate exactly the aspects of topology that are
necessary to speak about gluing. It is possible to express the sheaf conditions
without ever making reference to points, or even to open sets. All that is needed
is the concept of a cover. Grothendieck’s definition actually goes further, replacing
even the concept of a cover with the abstract notion of a sieve. Even though
topologies afford a few pleasant properties that pretopologies do not (see §A.3
for more details), we will primarily limit our discussion to pretopologies in this
introduction.

Remark 3.1. Lest it appear genuinely pointless to remove the points from topology,
consider the vast expansion of settings that can be considered topologically by way
of Grothendieck topologies. To take just one, Quillen [Qui67] and Rim [sga72a,
Exp. VI] were able to understand extensions of commutative rings—that is, defor-
mations of affine schemes—by putting a Grothendieck topology on the category
of commutative rings (see [Gai97, Wis12, Wis15] for further developments of this
idea).

We begin this section by reviewing the definition of a Grothendieck pretopol-
ogy, using sheaves on a topological space as our motivation. We then define the
isomorphism presheaf, and descent data, and finally, we give the definition of a
stack.

3.1. Sheaves and pretopologies. We take as motivation for Grothendieck pre-
topologies the definition of a sheaf on a topological space.

3.1.1. Sheaves on a topological space. Let X be a topological space. For any open
subsets U ′ ⊆ U of X, let ιU ′,U denote the inclusion of U ′ inside of U . Define the
category of open sets on X, OX , with the following objects and morphisms:

ObjOX = {U ⊆ X : U open}

HomOX (U ′, U) =

{
{ιU ′,U} U ′ ⊆ U
∅ else

A presheaf (of sets) is a functor

F : Oop
X → (Set).

Given a ∈ F (U), and a subset ιU ′,U : U ′ ⊆ U , we denote by a|U ′ , or ι∗U ′,U (a), the

image of a under the map F (ιU ′,U ) : F (U)→ F (U ′).
A presheaf is:

(1) separated if, given an open cover {Ui → U} and two sections a and b in
F (U) such that a|Ui = b|Ui in F (Ui) for all i, one has a = b.

(2) a sheaf if, given an open cover {Ui → U} with intersections Uij = Ui ∩Uj ,
and elements ai ∈ F (Ui) for all i, satisfying ai

∣∣
Uij

= aj
∣∣
Uij

for all i and j,

there is a unique a ∈ F (U) such that a
∣∣
Ui

= ai for all i.
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A morphism of presheaves, separated presheaves, or sheaves is a natural trans-
formation of functors.

Now, to motivate the definition of a pretopology, a presite, and a sheaf on a
presite, we rephrase this definition in the language of equalizers. Recall that if U ′

and U ′′ are open subsets of U , then U ′ ∩ U ′′ = U ′ ×U U ′′. Given any open cover
U = {Ui → U}, denote by F (U) the equalizer of diagram (3.1):

(3.1)
∏
i

F (Ui)
pr∗2

//

pr∗1 //
∏
i,j

F (Ui×
U
Uj).

Recall that the equalizer is the categorical limit for morphisms into the diagram;
in other words, we obtain a diagram

F (U) //
∏
i F (Ui)

pr∗2

//

pr∗1 // ∏
ij F (Ui ×U Uj),

and the arrow on the left is universal (terminal) for morphisms into (3.1). The
natural map on the left in the diagram below is induced by the restriction maps:

F (U) //
∏
i F (Ui)

pr∗2

//

pr∗1 // ∏
ij F (Ui ×U Uj).

By the universal property of the equalizer, this induces a map:

F (U)→ F (U)

The sheaf conditions have the following translations into the language of equalizers.

Lemma 3.2 ([FGI+05, Cor. 2.40]). Let F : Oop
X → (Set) be a presheaf.

(1) F is separated if and only if F (U)→ F (U) is injective.
(2) F is a sheaf if and only if F (U)→ F (U) is a bijection.

The main takeaway from this discussion is that we can repackage the sheaf
condition in terms of fibered products and equalizers. This provides the motivation
for a Grothendieck pretopology, and a sheaf on a presite.

3.1.2. Pretopologies. Temporarily denote by S any category. A Grothendieck pre-
topology T on S consists of the following data: for each object S in S, a collection
of families of maps {Sα → S}, called covers of S in T (or covering families in
T ), such that:

(PT 0) For all objects S in S, and for all morphisms Sα → S which appear in some
covering family of S, and for all morphisms S′ → S, the fibered product
Sα ×S S′ exists.

(PT 1) For all objects S in S, all morphisms S′ → S, and all covering families
{Sα → S}, the family {Sα ×S S′ → S′} is a covering family.

(PT 2) If {Sα → S} is a covering family, and if for all α, {Sβα → Sα} is a covering
family, then the family of composites {Sβα → Sα → S} is a covering family.

(PT 3) If S′ → S is an isomorphism, then it is a covering family.

Example 3.3. Let X be a topological space. The category OX together with open
covers is a Grothendieck pretopology.
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Example 3.4. Let X be a topological space, define a category S to have as objects
P(X), the set of all subsets of X, and as morphisms the inclusions. We give every
subset S ⊆ X the induced topology. Then the collection of all open covers of
subsets of X gives a Grothendieck pretopology on S. Indeed, (PT0) is satisfied,
since the fibered product is given by intersection. (PT1) holds since we are giving
every subset the induced topology, so an open cover of a superset gives an open
cover of a subset. (PT2) holds since refinements of open covers are open covers.
(PT3) holds since isomorphisms are equalities.

Example 3.5. Let π : X → S be a CFG over a category S equipped with a
Grothendieck pretopology. Call a family of maps {Xi → X} in X covering if
{π(Xi)→ π(X)} is covering in S. Then this determines a Grothendieck pretopology
on X . To verify this, it may be helpful to observe that the induced morphism of
CFGs X/X → S/π(X) is an equivalence of categories; indeed, by the definition, X
being a CFG implies the morphism is essentially surjective, and fully faithful.

Definition 3.6 (Presite). A pair (S,T ) consisting of a category S together with a
Grothendieck pretopology T is called a presite. Often T is left tacit and one uses
S to stand for both the presite and its underlying category of objects.

Example 3.7 (Covers in the étale pretopology). The primary example of a Groth-
endieck pretopology that we will use is the étale pretopology on the category of
schemes. We denote the associated presite by Set. Covers in Set are collections of
jointly surjective étale morphisms. Recall that étale morphisms are the algebro-
geometric analogue of local isomorphisms in the complex analytic category.

Given a pretopology on S and a scheme S in S, we obtain the category S/S,
and an induced pretopology defined in the obvious way. For instance, (S/S)et has
covers given by jointly surjective étale morphisms in that category.

Remark 3.8 (Analytic category). Readers who prefer working in the analytic cate-
gory, should feel free to take S to be the category of complex analytic spaces, and
to work with the pretopology T generated by the usual open covers of complex an-
alytic spaces, in the analytic topology. In fact, one could as easily take S to be the
category of complex manifolds, with smooth morphisms (so that fibered products
remain in the category), and work with the pretopology T generated by the usual
open covers of complex manifolds.

Example 3.9 (Standard pretopologies on schemes). The most commonly used
Grothendieck pretopologies on the category of schemes are the:

• Zariski pretopology,
• étale pretopology,
• faithfully flat finite presentation (fppf) pretopology,
• faithfully flat quasi compact (fpqc) pretopology.

Each of these pretopologies is a refinement of the one preceding it. We will write
S

Zar
, S

et
, etc., for the respective presites. The Zariski pretopology (covers by Zariski

open sets) is too coarse for most of the applications we have in mind. For simplicity,
we will work almost exclusively with the étale pretopology.

3.1.3. Sheaves on a presite. The definition of a pretopology is exactly set up to
allow us to make a definition of a sheaf following our discussion of sheaves on
topological spaces. A presheaf (of sets) on S is just a functor

F : Sop → (Set).
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Given any cover R = {Si → S}, denote by F (R) = F ({Si → S}) the equalizer
of the diagram ∏

i F (Si)
pr∗2

//

pr∗1 // ∏
ij F (Si ×S Sj).

As before, there is a natural map

F (S)→ F (R).

Following Lemma 3.2, we make the following definition:

Definition 3.10 (Sheaf on a site). Let F be a presheaf on a presite (S,T ).

(1) F is separated if F (S) → F (R) is an injection for every covering family
R of every object S of S.

(2) F is a sheaf if F (S)→ F (R) is a bijection for every covering family R of
every object S of S.

Remark 3.11. On occasion we will be more precise about how fine a pretopology
can be used to obtain a given statement. For instance, we may specify that a
presheaf is a sheaf with respect to the fpqc pretopology, which implies it is also a
sheaf with respect to all of the other pretopologies mentioned above.

Definition 3.12 (Subcanonical presite). A pretopology T on a category S is called
subcanonical if every representable functor on S is a sheaf with respect to T . A
presite (S,T ) is called subcanonical if T is subcanonical.

Theorem 3.13 (Grothendieck [FGI+05, Thm. 2.55]). Let S be a scheme. The
presite (S/S)

fpqc
is subcanonical; in particular (S/S)et is subcanonical.

3.2. The isomorphism presheaf. Let π :M→ S be a CFG. If we view M as a
space, as is our intention, and view an object X ∈ M(S) as a map S → M then
we expect that morphisms into M that agree locally should agree globally. The
only proviso is that because two maps into M can agree with one another in more
than one way, we must interpret local agreement of X and Y to include not only
choices of local isomorphisms between X and Y over a cover, but also compatibility
of these choices on the overlaps in the cover.

In order to state this condition precisely, we introduce the presheaf of witnesses
to the agreement of objects of M. The condition we want to impose is that this
presheaf be a sheaf.

Definition 3.14 (Isomorphism presheaf). Let π : M→ S be a CFG. Given S in
S, and X,Y ∈M(S), we obtain a presheaf

IsomM(X,Y ) : (S/S)op → (Set)

in the following way. For every object (S′ → S) in S/S, we set

IsomM(X,Y )(S′ → S) := IsomM(S′)(X
∣∣
S′
, Y
∣∣
S′

)

Thus IsomM(X,Y )(S′ → S) consists of all isomorphisms α : X
∣∣
S′
→ Y

∣∣
S′

in M
that lie over the identity idS′ in S. The assignment for morphisms is left to the
reader (see [FGI+05, p.62]).

Remark 3.15. An observant reader will note that the restrictions in the definition
of IsomM(X,Y ) depend, albeit only up to a canonical isomorphism, on a choice of
inverse to the functor Hom(S,M)→M(S), as guaranteed by the Yoneda lemma.



STACKS AND HIGGS BUNDLES 23

Remark 3.16. Concretely, to say that isomorphisms form a sheaf means the fol-
lowing. Given a cover {Si → S} in the pretopology on S, and any collection of
isomorphisms αi : X|Si → Y |Si over the identity on Si such that αi|Sij = αj |Sij ,
there is a unique isomorphism α : X → Y such that α|Si = αi. Here we are using
the shorthand Sij := Si ×S Sj .

Definition 3.17 (Prestack). A CFGM→ S such that for every S in S, and every
X,Y in M(S), the presheaf IsomM(X,Y ) is a sheaf, is called a prestack. We will
also say that isomorphisms are a sheaf.

Remark 3.18. The notation would be more consistent with sheaf notation (see
Proposition 3.32) if we called categories fibered in groupoids (or fibered categories)
‘prestacks’ and called prestacks ‘separated prestacks’. But we will keep to tradition.

It is typically very easy to prove that a category fibered in groupoids arising
from a moduli problem is a prestack in a subcanonical topology. This is because an
object Y ∈ M(S) is usually representable by a scheme, perhaps with some extra
structure or properties, and descending local isomorphisms between X ∈ M(S)
and Y amounts to descending locally defined morphisms from X to Y , which is
automatic because Y represents a sheaf in any subcanonical topology!

Example 3.19. Let us see how this works concretely in the example of Mg. Let
S be a scheme in S, and let X → S and Y → S be relative curves of genus g.
Suppose that there exists an étale cover {Si → S} so that for each Si there are
Si-isomorphisms αi : XSi → YSi such that αi|Sij = αj |Sij (using the shorthand
Sij = Si×S Sj). These correspond by the universal property of fiber product to
morphisms XSi → Y and XSij → Y satisfying the same compatibility condition.
As Y represents a sheaf and {XSi → X} is a cover of X in the pretopology, these
glue to a morphism α : X → Y such that α

∣∣
Si

= αSi . To check that this is in fact

a morphism over S, note that the commutativity of the diagrams (3.2)

(3.2)

XSi
//

��

Y

��

Si // S

for all i implies the commutativity of diagram (3.3),

(3.3)
X

α //

##

Y

{{
S

this time because morphisms into S are a sheaf.

In order to make a precise general statement along these lines, we make a very
general definition:

Definition 3.20 (Stable class of arrows [FGI+05, Def. 3.16, p.48]). A class of
arrows P in a category S is stable (under base change) if morphisms in P can be
pulled back via arbitrary morphisms in S, and the result of any such pullback is
also in P.

Example 3.21 (CFG associated to a stable class of arrows). Given any collection
arrows P in a category S, one may make P into a category P by setting objects
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to be arrows in P and setting morphisms to be cartesian squares. There is a
morphism P → S given by sending an object X → S to the target S (and similarly
for morphisms). Then one can check that P → S is a CFG if and only if P is a
stable class of arrows.

Theorem 3.22 ([FGI+05, Prop. 4.31, p.88]). Let (S,T ) be a subcanonical presite,
and P a stable class of arrows. Let π : P → S be the associated CFG (Exam-
ple 3.21). Then (P, π) is a prestack.

Remark 3.23. The discussion in Example 3.19 adapts in a straightforward way to
a proof of Theorem 3.22.

Corollary 3.24. The CFGs G(r, n) and Mg are prestacks in the étale topology on
schemes.

Proof. The case of Mg follows directly from the theorem with (S,T ) = Set and
P the class of relative curves of genus g. The case of G(r, n) requires a slight
modification (since there is more than one arrow in the definition of the objects),
but is essentially the same. �

3.3. Descent for categories fibered in groupoids. Recall that we can view
vector bundles either as global geometric objects admitting local trivializations,
or alternatively, as collections of locally trivial objects together with transition
functions, which satisfy the cocycle condition. We now use this motivation to define
the notion of descent datum in the setting of CFGs. This is the last definition we
will need before defining a stack.

3.3.1. Vector bundles on open subsets of a complex manifold. Let X be a complex
manifold. Let OX be the category of open sets. Give OX the structure of a presite
in the usual way, by taking covering families to be open covers. Define a CFG of
vector bundles

π : VrX → OX

in the following way. For each U ⊆ X open, the objects in the fiber VrU are the
rank r, holomorphic vector bundles on U . Morphisms in Vr are given by pullback
diagrams. Consider an open covering {Ui ⊆ U}. We use the notation Uij = Ui∩Uj
and Uijk = Ui ∩ Uj ∩ Uk for the double and triple overlaps. Suppose we are given
a vector bundle Ei over Ui for every i, and an isomorphism αij : Ei|Uij → Ej |Uij
for every i, j, all of which satisfy the cocycle condition αik = αjk ◦ αij over Uijk.
Then there exists a vector bundle E lying over U , together with isomorphisms
αi : E|Ui → Ei such that αij = αj |Uij ◦ (αi|Uij )−1.

This means precisely that the category fibered in groupoids of vector bundles on
a topological space satisfies descent and therefore is a stack in the usual topology.
The formulation of descent and the definition of a stack axiomatize this familiar
gluing process.

3.3.2. Intuitive definition of descent. In this section we will give a direct translation
of the gluing condition for vector bundles encountered in §3.3.1 in the context of
categories fibered in groupoids. While intuitive, this formulation has both technical
and practical definiencies. We correct these in §A.2.1 and §A.2.2, but a reader
looking to develop intuition about stacks may safely ignore these matters, especially
in a first reading.
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Definition 3.25 (Descent using gluing data). Let M be a category fibered in
groupoids over a presite (S,T ) with a cleavage (Definition 2.8). A descent datum
for M over a space S is the following: a covering {Si → S}; for every i, an object
Xi over Si; for every i, j an isomorphism αij : Xi|Sij → Xj |Sij in the fiberM(Sij),
which satisfies the cocycle condition αik = αjk ◦ αij over Sijk. The descent datum
is said to be effective if there exists an X lying over S, together with isomorphisms
αi : X|Si → Xi in the fiber such that αij = αj |Sij ◦ (αi|Sij )−1.

Remark 3.26. From the example in §3.3.1, we see that every descent datum for the
CFG VrX → OX is effective.

We now discuss the category of descent data, and the meaning of effective descent
data in this context.

Definition 3.27 (The category of descent data). Let (S,T ) be a presite, and let
π : M → S be a CFG. Let R = {Si → S} be a covering in S. An object with
descent data on R, or descent datum on R, is a collection ({Xi}, {αij}) of objects
Xi ∈ M(Si), together with isomorphisms αij : pr∗2 Xj

∼= pr∗1 Xi in M(Si ×S Sj),
such that the following cocycle condition is satisfied: For any triple of indices i, j, k,
we have the equality

(3.4) pr∗13 αik = pr∗12 αij ◦ pr∗23 αjk : pr∗3 Xk → pr∗1 Xi.

An arrow between objects with descent data

{φi} : ({Xi}, {αij})→ ({X ′i}, {α′ij})
is a collection of arrows φi : Xi → X ′i with the property that for each pair of indices,
i, j, the diagram

pr∗2 Xj
pr∗2 φj−−−−→ pr∗2 X

′
j

αij

y α′ij

y
pr∗1 Xi

pr∗1 φi−−−−→ pr∗1 X
′
i

commutes. The objects and morphisms above determine a category of descent data
M({Si → S}).

Remark 3.28. We have deliberately omitted a number of canonical isomorphism
from the notation here. This obscures some technical issues (which can, of course,
be resolved: see §A.2.1). For example, different choices of fiber products Sij and
Sijk will lead to different but equivalent categories M({Si → S}).

Remark 3.29. If R is a covering, as in Definition 3.27, it is technically convenient
to indicate the category of descent data with respect to R as a map R → M.
This notation is consistent with the Yoneda identification between M(S) and the
category of morphisms S → M, which is the special case where R is the trivial
covering {S → S}. In general, the notation is justified by replacing the covering
with the associated sieve or simplicial object (see Section A.2).

Note that whenever a cover R′ refines a cover R there is an induced morphisms
M(R)→M(R′), which we notate as a composition:

R′ → R→M
We identify the object S with the trivial cover of itself, so that it makes sense to
write R → S for any cover R of S.
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Given X ∈M(S), we can construct an object with descent data on {σi : Si → S}
as follows. The objects are the pullbacks σ∗iX; the isomorphisms αij : pr∗2 σ

∗
jX
∼=

pr∗1 σ
∗
iX are the isomorphisms that come from the fact that both pr∗2 σ

∗
jX and

pr∗1 σ
∗
iX are pullbacks of X to Si ×S Sj (they are both equipped with canonical

isomorphisms with (σi◦pr1)∗X = (σj ◦pr2)∗X). (If we identify pr∗2 σ
∗
j = (σj ◦pr2)∗,

etc., as is common, then the αij are identity morphisms.) If φ : X → X ′ is an arrow

in M(S), then we get arrows σ∗iX
σ∗i (φ)−−−→ σ∗iX

′ yielding an arrow from the object
with descent data associated to X with the object with descent data associated to
X ′. In short, we have defined a functor M(S)→M({Si → S}).

Definition 3.30 (Effectivity of descent data). A descent datum ({Xi}, {αij}) ∈
M({Si → S}) is said to be effective if it is isomorphic to the image of an object of
M(S).

3.4. The long-awaited definition of a stack. We are finally ready for the defi-
nition of a stack:

Definition 3.31 (Stack). A stack is a category fibered in groupoids (Definition 2.8)
over a presite (S,T ) (Definition 3.6) such that isomorphisms are a sheaf (Definition
3.17) and every descent datum is effective (Definition 3.25). A prestack is a category
fibered in groupoids over (S,T ) such that isomorphisms are a sheaf. A morphism
of (pre)stacks over (S,T ) is a morphism of the underlying CFGs over S.

The definition can be rephrased in the following way, emphasizing the connection
with sheaves.

Proposition 3.32 ([FGI+05, Prop. 4.7, p.73]). Let M → S be a category fibered
in groupoids over a presite (S,T ).

(1) M is a prestack over S if and only if for each covering R = {Si → S}, the
functor M(S)→M(R) is fully faithful.

(2) M is a stack over S if and only if for each covering R = {Si → S}, the
functor M(S)→M(R) is an equivalence of categories.

This essentially leads driectly to the following proposition.

Proposition 3.33 ([FGI+05, Prop. 4.9, p.73]). Let (S,T ) be a presite, and let
M : Sop → (Sets) be a presheaf. Denote by M→ S the associated category fibered
in groupoids.

(1) M is a prestack if and only if M is a separated presheaf.
(2) M is a stack if and only if M is a sheaf.

Corollary 3.34. If (S,T ) is subcanonical, then every object in S represents a
stack. More precisely, given an object S, we associate to it the category fibered in
groupoids S/S, which is a stack over S.

Remark 3.35. In fact, using the language of 2-categories, for a subcanonical presite
(S,T ), the category S, and the category of sheaves on (S,T ) can be viewed as full
2-subcategories of the 2-category of stacks over S.

Definition 3.36 (Local class of arrows). A class P of arrows in a presite (S,T )
is local (on the target) if it is stable and has the “converse” property that for any
cover {Si → S} and any arrow X → S, if the pullbacks Si ×S X → Si are in P for
all i, then X → S is also in P.
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Remark 3.37. Fix a morphism X → Y in S and consider the collection of all S → Y
such that X ×Y S → S has property P. This is a category fibered in groupoids, in
fact a sieve of Y , that we denote P(X → Y ). Then P is a local property if and
only if P(X → Y ) is a stack for all morphisms X → Y .

This observation can be used to prove the following theorem:

Theorem 3.38 ([FGI+05, Thm. 4.38, p.93]). Let S be a scheme. Let P be a class
of flat projective canonically polarized morphisms of finite presentation in (S/S)

fpqc
,

which is local. Then the associated CFG P → (S/S)
fpqc

(from Definition 3.21) is
a stack.

Remark 3.39. Canonically polarized morphisms include smooth morphisms such
that the determinant of the relative cotangent bundle is relatively ample; for in-
stance, families of smooth curves of genus g ≥ 2. The theorem in fact holds in more
generality for polarized morphisms, but then one must add a compatibility condi-
tion for the polarizations, which lengthens the statement (see [FGI+05, Thm. 4.38,
p.93]). The above will be sufficient for many of our applications.

Corollary 3.40. The CFG Mg is a stack in the fpqc topology (and therefore in
the étale topology) for g ≥ 2.

Example 3.41. Let us make the descent condition concrete in the case of Mg.
Suppose we are given an étale cover {Si → S} and for each Si a relative curve
Xi → Si. Suppose moreover that for each i, j, we are given an Sij-isomorphism
αij : Xi|Sij → Xj |Sij , which satisfies the cocycle condition αik = αjk ◦ αij over
Sijk. Then there exists a relative curve X → S, together with Si-isomorphisms
αi : X|Si → Xi such that αij = αj |Sij ◦ (αi|Sij )−1.

Remark 3.42. A similar argument can be used to show that G(r, n) is a stack. For
brevity, we omit the details as we will also give references for Quot stacks, of which
G(r, n) is a special case.

Remark 3.43. One can also show that Mg is a stack for g = 0; it does not follow
immediately from the theorem above since the canonical bundle of such curves is
not ample. However, for g = 0, the anti-canonical bundle is ample, and this gives a
polarization that can be used in a more general formulation of the theorem [FGI+05,
Thm. 4.38]. However, M1 is not a stack! See Section A.4 for a demonstration and
a discussion of the fix.

4. Fibered products of stacks

Because of the ubiquity of base change in algebraic geometry, it is essential
to know that one can take fiber products of stacks. In this section we present a
construction of the fiber product of categories fibered in groupoids, which yields a
fiber product of stacks when applied to CFGs that are stacks.

A reader who wants to get to algebraic stacks as quickly as possible may prefer
to look briefly at §4.1 and then skip the remainder of §4, referring back as necessary.
A more detailed discussion of 2-categories and universal properties within them can
be found in the Stacks Project [Sta15, Tags 003G, 02X8, 003O].
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4.1. A working definition of 2-fibered products. Here we give a working def-
inition of a 2-fibered product of CFGs. This should suffice for understanding the
definitions of an algebraic stack. Again, on a first pass, the reader is encouraged
to look at this section, and then skip the remainder of §4. Our presentation here is
taken largely from [Sta15].

Recall that a fiber product of morphisms of sheaves f : X → Z and g : Y → Z
is defined by setting (X ×Z Y )(S) = X (S)×Z (S) Y (S) for all S. The same
definition could be used for lax 2-functors valued in groupoids, except one must
first define a fiber product of groupoids. Here there is a subtle, but crucial point,
since objects of Z (S) can be ‘equal’ to each other in more than one way. The fiber
product must therefore keep track of all of the different ways f(X) and g(Y ) are
equal to each other. One defines X (S)×Z (S) Y (S) to be the category of triples
(X,Y, α) where X ∈ X (S), Y ∈ Y (S), and α : f(X) ' g(Y ) is an isomorphism.
Morphisms (X,Y, α) → (X ′, Y ′, α′) in this groupoid are pairs (u, v) with u : X →
X ′ and v : Y → Y ′ are morphisms such that α′f(u) = f(v)α as morphisms f(X)→
g(Y ′).

Remark 4.1. This construction is analogous to one construction of the homotopy
fiber product in algebraic topology, with isomorphism playing the role of homotopy.
This is not an accident, as homotopy fiber products are intended to be invariant
under replacement of the spaces involved with homotopy equivalent spaces; the fiber
product of groupoids is intended to be invariant under equivalence of categories.
Even more directly, groupoids can be realized as topological spaces by way of the
geometric representation of the simplicial nerve, under which the fiber product of
groupoids is transformed into the homotopy fiber product.

Since we are not defining stacks in terms of lax 2-functors here, we make the
straightforward translation of the above idea to categories fibered in groupoids:

Definition 4.2 ([Sta15, Tag 0040]). Let f : X → Z and g : Y → Z be morphisms
of CFGs over S. Then the fiber product of X and Y over Z, denoted X ×Z Y,
is the category over S whose objects are quadruples (S,X, Y, α) where S ∈ S,
X ∈ X (S), Y ∈ Y(S), and α : f(X) ' g(Y ) is an isomorphism in Z(S). A
morphism (S,X, Y, α) → (S′, X ′, Y ′, α′) is triple (ϕ, u, v) where ϕ : S → S′ is a
morphism in S, u : X → X ′ is a morphism in X lying above ϕ, and v : Y → Y ′ is
a morphism in Y lying above ϕ, and α′f(u) = g(v)α.

Lemma 4.3 ([Sta15, Tag 0040]). The fiber product of CFGs is a CFG.

Lemma 4.4 ([LMB00, (3.3), p.16]). The fibered product of stacks is a stack.

The 2-fibered product of CFGs X ×Z Y has a universal property similar to that
satisfied by a fiber product of sheaves. Indeed, there are forgetful morphisms p :
X ×Z Y → X and q : X ×Z Y → Y, respectively sending (S,X, Y, α) to X and to Y .
Then α gives an isomorphism fp(S,X, Y, α) = f(X) ' g(Y ) = gq(S,X, Y, α). By
the definition of morphisms in X ×Z Y, this isomorphism is natural in (S,X, Y, α).
We denote this natural isomorphism ψ : fp ' gq. In standard terminology, the
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following diagram is 2-commutative:

X ×Z Y
p

//

q

��

X

f

��

ψ

w�
Y

g
// Z.

The universal property of the 2-fibered product is that (X ×Z Y, p, q, ψ) is the uni-
versal completion of the diagram of solid arrows below to a 2-commutative diagram

(4.1)

W
p
//

q

��

X

f

��

ψ

z�
Y

g
// Z.

In other words, given a 2-commutative diagram (4.1), there is a 2-commutative
diagram:

W a

""
γ

$$

b

%%

X ×Z Y p
//

q

��

X

f

��

Y
g

// Z
Note that the 2-commutativity of this diagram includes the tacit specification of
natural isomorphisms pγ ' a and qγ ' b. The functor γ is determined by these
data uniquely up to a unique natural transformation. Using this one can show that
if W also satisfies the universal property of X ×Z Y then γ : W → X ×Z Y is an
equivalence.

Example 4.5. Suppose that X,Y, Z ∈ S and S has fibered products. Then it
follows from the 2-Yoneda Lemma that S/X ×S/Z S/Y is equivalent to S/(X ×Z
Y ). Similarly, suppose that X ,Y ,Z are pre-sheaves on S with associated CFGs
X ,Y,Z. Then X ×Z Y is equivalent to the CFG associated to X ×Z Y .

4.2. The diagonal. The following example is used repeatedly.

Example 4.6 (The diagonal and the sheaf of isomorphisms). LetM be an S-stack
over S, let S be in S, and let X,Y inM(S) be two objects corresponding under the
2-Yoneda Lemma to S-morphisms X,Y : S →M. Then, using the notation from
§3.2, there is 2-cartesian diagram

IsomM(X,Y ) //

��

S

(X,Y )

��

M ∆ //M×M.

We will verify this by way of the universal property (4.1) (see also [BCE+14,
Prop. 5.12]). Suppose that we have a map f : T → S, an object Z ∈ M(T ),
and an isomorphism

(ϕ,ψ) : (Z,Z) = ∆(Z) ' f∗(X,Y ) = (f∗X, f∗Y ), in (M ×M)(Z).
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Then the composition ψ ◦ ϕ−1 is an isomorphism f∗X ' f∗Y , hence yields a
section of IsomM(X,Y ) over T . Conversely, given such an isomorphism α : f∗X '
f∗T , we obtain 2-commutative diagram by taking Z = (f∗X, f∗X) and (ϕ,ψ) =
(idf∗X , α).

Intuitively, IsomM(X,Y ) is the sheaf of witnesses to the equality of X and Y ,
in the same way that the diagonal is the moduli space of pairs of objects ofM that
are equal to one another. Notably, IsomM(X,Y ) is not a subobject of S, reflecting
the fact that ∆ is not an embedding. This is because a pair of objects of a groupoid
can be equal—that is, isomorphic—to each other in more than one way.

From the perspective of moduli, the isomorphisms of the objects of study were of
central importance. On the other hand, the diagonal map is central in the definition
of many properties of schemes. The diagram above relates the two notions.

Definition 4.7 (Injective morphism of stacks). A morphism f : X → Y of stacks
over S is called injective (resp. an isomorphism) if for each S ∈ S, the functor
f(S) : X (S)→ Y(S) is fully faithful (resp. an equivalence of categories). A substack
is an injective morphism of stacks.

Lemma 4.8. A stack X has injective diagonal if and only if X is representable by
a sheaf (i.e., equivalent to the stack associated to a sheaf).

Proof. Injective diagonal means that IsomX (x, y) is a subobject of S, or, equiva-
lently, that for any x, y ∈ X (S) there is at most one isomorphism between x and y.
Thus X (S) is equivalent to a set. �

4.3. Fibered products and the stack condition. As an application of the for-
malism of fiber products introduced above, we give a simple but often useful crite-
rion for a CFG over a presite to be stack, which is simply a translation of Proposition
3.32 (see also Definition A.15).

Lemma 4.9. Let π :M→ S be a CFG over a presite (S,T ).

(1) M is a prestack if and only for every covering family R = {Si → S}, every
morphism f : R → M (see Remark 3.29), and every pair of morphisms
f1, f2 : S → M making diagram (4.2) 2-commutative, there is a unique
2-isomorphism f1 ⇒ f2.

(4.2)

R
f
//

��

M

π

��

S/S

f1

66

f2

EE

// S

(2) M is a stack if and only for every sieve R associated to a covering family
{Si → S}, with natural map R → S, any morphism f : R → M, there
exists a morphism f1 : S →M making the diagram below 2-commutative,
which is unique up to 2-isomorphism (as explained in (1)).

(4.3)

R
f
//

��

M

π

��

S/S

f1

∃!

==

// S
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The lemma can be summarized with the following efficient characterization of
stacks:

Corollary 4.10. Let M be a category fibered in groupoids over S. Then M is a
stack over S if and only if for every object S of S and every cover R of S, the
functor

Hom(S,M)→ Hom(R,M)

is an equivalence of categories.

Proof. The first part of Lemma 4.9 is the full faithfulness, and the second part is
the essential surjectivity. �

Remark 4.11. Recall that the notation in the corollary is based on the abuse ex-
plained in Remark 3.29. The statement requires no such abuse when formulated
with sieves (see A.2.2), the efficiency of which is one reason we like using sieves
to think about Grothendieck topologies. For example, Corollary 4.10 generalizes
immediately to give a definition of higher stacks, while the other formulations of
descent from §3.3 become even more combinatorially complicated.

The following proposition is quite useful for making boot-strap arguments. It
allows us to show that a CFG is a stack by showing it is a stack relative to a CFG
already known to be a stack.

Proposition 4.12. Suppose that p : X → Y is a morphism of CFGs over S and
that Y is a stack over S. Then X is a stack over S if and only if it is a stack over
Y, where Y is given the pretopology of Example 3.5.

Proof. We will verify the second part of the criterion in Lemma 4.9; the first part
is very similar, so we omit it. Assume first that X is a stack over Y. Consider the
following diagram:

R
f

//

��

X
p
��

Y
��

S

f1

>>

h

77

// S

We would like to find a morphism f1 rendering the outer square 2-commutative.
Since Y is a stack over S, we can find an appropriate lift h as in the diagram. But
then the assumption that X is a stack over Y guarantees the existence of the desired
lifting f1 of h. Thus X is a stack over S. The converse is similar. �

Corollary 4.13. Suppose that p : X → Y is a morphism of CFGs over a presite
S. Assume that Y is a stack over S. Then X is a stack over S if and only if for
S ∈ S and every y : S → Y, the fiber product XS = X ×Y S is a stack on S/S.

Proof. We show the harder direction, that X is a stack over S. From Proposition
4.12, it is enough to show that X is a stack over Y. From Lemma 4.9 and the
definition of the fibered product, one can easily deduce that X is a stack over Y
if and only if X ×Y(Y/Y ) is a stack over Y/Y for all Y ∈ Y. Now using the
equivalence of categories Y/Y ∼= S/S (Example 3.5), we are done. �
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Example 4.14. As an example of the utility of Proposition 4.12 and Corollary 4.13,
consider the CFG X whose S-points are triples (C,C ′, f) where C and C ′ are
families of smooth curves over S of genera g and h, both ≥ 2, and f : C → C ′ an
S-morphism. Then there is a projection p : X → Mg ×Mh, where Mg denotes
the CFG of families of smooth curves of genus g. We know that Mg and Mh are
stacks in the étale topology by Corollary 3.40, and therefore the productMg×Mh

is a stack (Lemma 4.4). Applying Corollary 4.13 to p, to verify that X is a stack
it is therefore sufficient to show that, for any fixed pair of smooth curves C and C ′

over a scheme S, the functor M or(C,C ′)(−) : (S/S)op → (Set) that assigns to an
S-scheme T the set of T -morphisms CT → C ′T , is a sheaf. This is easily verified
using the fact that the étale topology is subcanonical (see Example 3.19).

5. Stacks adapted to a presite

In this section, we take the most naive approach to defining an algebraic stack
on a presite, namely, we define what we call a stack adapted to a presite (Definition
5.2). This is simply a stack with a representable cover by an object in the presite
(in the sense of Definition 6.17). While there are technical reasons (see Example
B.24) that in total generality this is not really the ‘right’ definition, it nevertheless
provides a quick definition, that immediately suffices for many of the standard
examples one sees (e.g., algebraic spaces, Fantechi Deligne–Mumford stacks, and
Laument–Moret-Bailly Deligne–Mumford stacks). In fact, by iteratively enlarging
the presite, and then reducing back down to the original presite, one can obtain all
of the definitions of algebraic stacks we discuss in this paper (see §B.9).

We hope that in this generality, and brevity, the salient points of an algebraic
stack will be apparent to readers who prefer to work in categories other than
schemes. The reader interested in moving quickly to the definition of the alge-
braic stack of smooth curves, or the algebraic stack of Higgs bundles, may prefer
to read this section, and then skip directly to §7. Technically, the stack of Higgs
bundles is adapted to the smooth presite of algebraic spaces, rather than to the
étale presite of schemes; nevertheless, the main aspects of the formalism should
already be apparent to the reader after this section.

5.1. Definiton of stacks adapted to a presite. In order to define a stack
adapted to a presite, we want the definition of a representable morphism:

Definition 5.1 (S-representable morphism). Let S be a subcanonical presite that
admits fibered products. We say a morphism X → Y of CFGs is S-representable if
for every S in S, the fiber product X ×Y S is in S (i.e., equivalent to a stack S/S′

for some S′ in S).

X ×Y S //

��

S

��

X // Y.

With this definition, we define an S-adapted stack by requiring that the stack
admit an ‘S-representable cover’ in S. More precisely:

Definition 5.2 (S-adapted stack). Let S be a subcanonical presite that admits
fibered products. Then an S-adapted stack (or a stack adapted to the presite S)
is a stack M over S admitting an S-representable cover in S of the following form:
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there exists a U in S and an S-representable morphism

U
p−−−−→ M

such that for every S in S and every S → M, the morphism U ×M S → S in S
obtained from base change is a cover in the pretopology on S. Such a morphism p
is called a presentation of M. A morphism of S-adapted stacks is a morphism of
stacks.

Remark 5.3. We will define more generally a covering morphism of CFGs in Defi-
nition 6.2. The cover defined in Definition 5.2 above is a cover in that sense as well
(Remark 6.4).

Example 5.4 (Algebraic spaces and adapted Deligne–Mumford stacks). If S is a
scheme and S is the étale presite on schemes over S, then the S-adapted stacks are
called Fantechi Deligne–Mumford (F DM) stacks (over S). The S-adapted stacks
that are representable by sheaves are called algebraic spaces.

Example 5.5. If S is the presite of complex analytic spaces with the pretopology
induced from usual open covers, then one obtains a notion of an adapted complex
analytic stack. Similarly, if S is the presite of topological spaces with the presite
induced from usual open covers, then one obtains a notion of an adapted topolog-
ical stack. There are other definitions of complex analytic and topological stacks
appearing in the literature; we do not pursue the relationship among the definitions.

Remark 5.6 (Conditions on the diagonal). Other notions of algebraic stacks are
determined by requiring the diagonal ∆ :M→M×SM to be S-representable, and
putting further geometric conditions on the diagonal. For instance, an Laument–
Moret-Bailly Deligne–Mumford (LMB DM) stack over the étale presite S of schemes
over a fixed scheme S is an S-adapted stack, with S-representable, separated, and
quasicompact diagonal.

To see how all the other algebraic stacks discussed in this paper can be defined
using stacks adapted to a presite, see §B.9.

5.2. Bootstrapping stacks adapted to a presite. It can often be useful to show
that a stack is S-adapted using bootstrap methods; in other words, it will often be
the case that one can exhibit a morphism from a stack of interest to a well-known
S-adapted stack, so that it is easy to check the S-adapted condition on the fibers.
The following proposition states that in this situation the stack is an S-adapted
stack.

Proposition 5.7. Let f : X → Y be a morphism of stacks over a subcanonical
presite S that admits fibered products. Assume that Y is an S-adapted stack and
that for all S in S and all morphisms S → Y we have that X ×Y S is S-adapted.
Then X is an S-adapted stack.

Proof. Later we will prove Proposition 6.31, whose proof can be readily modified
to fit this situation. We sketch the argument here. Choose a presentation Y → Y.
Then then set Z = X ×Y Y . One can check that S-representable morphisms are
stable under base change (see e.g., Lemma 6.8; in that notation, take C = S).
Thus the projection Z → X is S-representable. One can then check directly from
the definition that for every S in S and every morphism S → X , the morphism
Z×X S → S is a cover in S (use Y ×YS = Y ×YX×X S = Z×X S). Furthermore, Z
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is S-adapted, by assumption, so there is a presentation Z → Z. One can check that
S-representable morphisms are stable under composition (see e.g., Lemma 6.8; in
that notation, take C = S). Thus the composition Z → Z → X is S-representable.
One can then check directly from the definition that this morphism is a cover in
the sense of Definition 5.2, and thus provides the desired presentation for X . �

Remark 5.8. A result similar to Proposition 5.7 holds when additional conditions
are placed on the diagonal of the stacks (see Corollary B.26).

6. Algebraic stacks

In the previous section we introduced the notion of a stack adapted to a presite.
This provided a quick definition, that suffices in many cases. However, in general,
that approach is a little too naive, particularly if one does not enlarge the presite
iteratively. In this section, we take a slightly more lengthy approach, which consid-
ers stacks that are adapted to larger classes of morphisms in the the presite. After
iterating this process, we arrive at the definition of an algebraic stack (adapted to
a class of morphisms in the presite); stacks adapted to the presite are algebraic
stacks.

We now also provide a lengthier motivation to the study of algebraic stacks than
we provided in the previous section. Suppose that S is a subcanonical presite,
meaning that every S ∈ S represents a sheaf, or equivalently that S/S is a stack on
S. A stack on S is fundamentally a topological object, and the category of stacks
on S is therefore too inclusive a milieu for our geometric purposes. Even when S
is a category of geometric objects, the stacks (and even the sheaves) on S need not
behave at all geometrically. To take just one example, a stack on the category of
schemes always has a tangent space at a point, but this tangent space may not have
the structure of a vector space (see §10.1). Nevertheless, some sheaves and stacks
that are not representable do behave geometrically, and our goal will be to identify
those that do: algebraic spaces and algebraic stacks.

Remark 6.1. Granting our post hoc reasoning for the definition of algebraic stacks,
it might have been more sensible to call them ‘geometric stacks’. This terminology
has caught on in some places [TV08], but we stick to the traditional nomenclature
here.

The essential idea in the definition of algebraic stacks is that a stack that re-
sembles geometric objects locally can itself be studied geometrically, provided that
the meaning of ‘local’ is sufficiently geometric. In the algebraic category, ‘locally’
is interpreted ‘over a smooth cover’ and the ‘geometric objects’ are taken to be
schemes.

Here a technicality arises: there are étale sheaves, known as algebraic spaces, that
resemble schemes étale-locally, but are not themselves schemes. More worryingly,
the class of algebraic stacks modelled locally by algebraic spaces is strictly larger
than the class of those modelled locally by schemes. In order to make the whole
theory satisfyingly formal, one takes the smallest class of stacks that includes affine
schemes and is stable under disjoint unions and groupoid quotients. Thankfully,
this turns out to be the same as the class of algebraic stacks with smooth covers
by algebraic spaces.

This section will be quite formal, and applies to essentially any presite. The main
idea is that of a P-adapted stack in Section 6.4 over a presite S, which is precisely
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a stack modelled locally, according to a suitable property P, on morphisms in S.
In Section 6.5, we iterate the construction to arrive at the class of algebraic stacks.

In fact, most stacks we encounter in practice (e.g., quasiseparated Deligne–
Mumford stacks) are adapted to the class of morphisms of schemes (or even to
affine schemes), and the iteration in Section 6.5 is useful only to have a category
with good formal properties. A reader interested in seeing stacks in geometric
action may prefer to skip Section 6.5.

The key point is an elementary notion of a cover, and to this end, we must first
discuss representable morphisms (§6.2). We also present Proposition 6.31, which
is a useful tool for bootstrapping from one adapted stack to another, analogous to
Corollary 4.13 for stacks.

6.1. Covers. We explain what it means for a morphism of stacks over a presite S
to be a cover:

Definition 6.2 (Covering morphism of CFGs). A morphism of CFGs X → Y on
a presite S is said to be covering if, for any morphism S → Y, there is a cover
{Si → S} such that the induced maps Si → Y lift to X :

Si

����

X ×Y S
��

// S

��

X // Y.

Remark 6.3. Note that a morphism of objects of S is covering according to Defini-
tion 6.2 if and only if it is covering in the topology associated to the pretopology
of S (Definition A.16).

Remark 6.4. The presentation P : U →M in Definition 5.2 is covering the sense
of Definition 6.2. Indeed, choose an S in S and a morphism S →M, and consider
the fibered product

U ×M S //

��

S

��

U
P //M.

In Definition 6.2 we require that there is a cover {Si → S} so that for each i,
the map Si → S factors through U ×M S. Of course, since U ×M S → S is a
cover by Definition 5.2, this condition is automatically satisfied taking {Si → S} =
{U ×M S → S}.

Lemma 6.5. Coverings are stable under composition, base change, and fibered
products of morphisms.

Proof. We prove stability under composition: Suppose that X → Y → Z is a
composition of covering morphism and W is a scheme over Z. Since Y covers Z,
there is a cover {Wi → W} such that the maps Wi → Z lift to Y. Now, since X
covers Y there are covers {Wij → Wi} such that Wij → Y lifts to X . The family
{Wij →W} is a cover of a cover, hence is covering.

We prove stability under base change: Suppose that X → Y is covering and
Z → Y is an arbitrary morphism. Let W be a scheme over Z. Then there is a
cover {Wi → W} such that the maps Wi → Y lift to X , as X covers Y. But then
by definition of the fiber product, the maps Wi → Z lift to Z ×Y X .



36 CASALAINA-MARTIN AND WISE

Stability under fiber product now follows formally from the parts already demon-
strated (e.g., the proof of Lemma 6.8 can easily be adapted to this purpose). �

6.2. Representable morphisms. A representable morphism of stacks on S is
roughly one whose fibers are representable by some prescribed class of stacks:

Definition 6.6 (Representable morphism). Let C be a class of CFGs over a sub-
canonical presite S such that C is stable under isomorphism and fiber product and
every CFG over S can be covered (Defintion 6.2) by objects of C. We say that a
morphism X → Y of CFGs is representable by objects of C or C-representable (or
representable, when C is clear from context) if, for every Z ∈ C, the fiber product
X ×Y Z is in C.

X ×Y Z //

��

Z
��

X // Y.

When S is the category of schemes and C is also the category of schemes, i.e., the
collection of stacks on the étale site of schemes representable by schemes, we call a
C-representable morphism schematic (i.e., we recover Definition 5.1).

Remark 6.7. For obvious reasons, schematic morphisms are sometimes also called
representable morphisms, without qualification. However, it is also common to use
the term representable morphism for morphisms representable by algebraic spaces,
so for clarity we use ‘schematic’ to refer to morphisms representable by schemes.

Lemma 6.8. For C a class of CFGs over a category S that is stable under isomor-
phism and fiber product and such that every CFG over S can be covered (Defini-
tion 6.2) by objects of C:

(1) The composition of C-representable morphisms is C-representable.
(2) The base change of a C-representable morphism is C-representable.
(3) The fibered product of C-representable morphisms is C-representable.
(4) If f : X → Y and g : Y → Z are morphisms such that gf is C-representable

and the diagonal of g is C-representable then f is C-representable.

Proof. The verification is formal, so the proof in [BCE+14, Prop. 5.8, p.87] for
schematic morphisms applies here. Variants appear in [LMB00, Lem. 3.11 and 3.12],
[Sta15, Tags 0300, 0301, 0302]. For completeness, we give a proof.

(1) Suppose X → Y and Y → Z are C-representable. To see that the composition
is C-representable, consider a W ∈ C and a morphism W → Z. Then W×Z X =
(W×Z Y)×Y X is C-representable using first the C-representability of Y → Z, and
then the C-representability of X → Y.

(2) If X → Y is a C-representable morphism, W → Z → Y are morphisms of
CFGs with W ∈ C, then W×Z(Z ×Y X ) = W ×Y X , hence is in C.

(3) is essentially [GD71b, Rem. (1.3.9) p.33], which observes that the conclusion
follows from (1) and (2), together with the fact that given morphisms f : X → X ′

and g : Y → Y ′ over a stack Z, the fibered product X ×Z Y
f×idZ g−−−−−→ X ′ ×Z Y ′ is

given by the composition of morphisms obtained from fibered product diagrams:

X ×Z Y
f×idZ idY−−−−−−→ X ′ ×Z Y

idX′ ×idZ g−−−−−−−→ X ′ ×Z Y ′.
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(4) For any W → Y with W in C, we have a cartesian diagram

W×Y X //

��

W×Z X
��

Y
∆g

// Y ×Z Y.

We know W×Z X is in C since gf is representable, so W×Y X is in C by repre-
sentability of the diagonal of g. �

Definition 6.9 (Locality to the target for representable morphisms). Let P be
a property of morphisms between CFGs in C that is stable under base change
(Definition 3.20). We say P is local to the target if, for any morphism X → Y and
any cover Z → Y, the morphism X ×Z Y → Z has property P if and only if X → Y
does.

Now that we have these definitions, we can translate properties of morphisms in
S into properties of representable morphisms of stacks:

Definition 6.10 (P-representable morphism). Let C be a class of CFGs over a
subcanonical presite S such that C is stable under isomorphism and fiber product
and every CFG over S can be covered by objects of C. Let P be a property
of morphisms between CFGs in C that is stable under base change (Definition
3.20), stable under composition, and local on the target (Definition 6.9). A C-
representable morphism X → Y of stacks over S (Definition 6.6) is said to have
property P if for every Z in C and every Z → Y, the morphism X ×Y Z → Z of
CFGs between objects of C has property P. We also call this a P-representable
morphism.

Example 6.11. Here are some examples of classes of morphisms of schemes that
are stable under base change and local to the target for the étale topology on
schemes:

• quasiseparated [Gro65, Prop. (2.7.1) (ii)];
• quasicompact [Gro65, Cor. (2.6.4) (v)];
• flat [Gro67, Prop. (17.7.4) (iii)];
• smooth [Gro67, Prop. (17.7.4) (v)];
• étale [Gro67, Prop. (17.7.4) (vi)];
• unramified [Gro67, Prop. (17.7.4) (iv)];
• separated [Gro65, Prop. (2.7.1) (i)];
• proper [Gro65, Prop. (2.7.1) (vii)];
• finite type [Gro65, Prop. (2.7.1) (v)];
• locally of finite type [Gro65, Prop. (2.7.1) (iii)];
• finite presentation [Gro65, Prop. (2.7.1) (vi)];
• locally of finite presentation [Gro65, Prop. (2.7.1) (iv)];
• locally of finite type and pure relative dimension d [Gro65, Cor. (4.1.4)];
• surjective [GD71a, Props. (3.6.1) and (3.6.2) (i)] or [Gro65, Prop. (2.6.1)].

For more references, see [LMB00, (3.10)] or [BCE+14, Prop. 5.5].

6.3. Locality to the source.

Definition 6.12 (Local to the source). Let P be a property of morphisms in S
that is local (on the target) and stable under base change and composition. We
call P local to the source if a morphism X → Y in S has the property P if and



38 CASALAINA-MARTIN AND WISE

only if, for any covering family Ui → X in the pretopology S, all of the composed
morphisms Ui → Y have property P.

Example 6.13. Let P be the class of étale morphisms of schemes. Then P is local
to the source in the étale topology.

Example 6.14. Let P be the class of local isomorphisms of complex analytic
spaces. Then P is local to the source in the étale topology.

Example 6.15. Recall that smooth surjections are covering (in the sense of Defi-
nition 6.2) in the étale topology (Example A.22). The class of smooth morphisms
is local to the source in the étale topology [Sta15, Tag 06F2]. We will prove a more
general version of this statement in Lemma 9.20.

Example 6.16. The same proof shows that smooth morphisms in the category
of complex analytic spaces, and submersions in the category of C∞-manifolds, are
local to the source in the usual topologies.

6.4. Adapted stacks. Let C be a class of CFGs over a subcanonical presite S such
that C is stable under isomorphism and fiber product and every CFG over S can
be covered by objects of C. Let P be a property of morphisms between CFGs in C
that is stable under base change (Definition 3.20), stable under composition, local
to the source (Definition 6.12), and local to the target (Definition 6.9).

In this section we will introduce the class of stacks that admit P-representable
covers by objects of C, calling these (Definition 6.17) stacks P-adapted (to C), or
just adapted stacks, if the context is clear (in particular, if it will not be confused
with a stack adapted to the presite). In the next section, we will show that once
one has the class of P-adapted stacks, the property P can always be defined for
morphisms between P-adapted stacks, which will allow us to iterate this procedure
in the next section and arrive at the definition of an algebraic stack (with respect
to a class of morphisms P in S).

Perhaps remarkably, many of the algebraic stacks we consider in this paper are
smooth-adapted to schemes (the class C is taken to be S and the class of morphisms
P is taken to be the class of smooth morphisms), so the reader who so desires may
safely ignore the question of iteration and proceed after this section to Section 9.
In fact, for the purposes of this paper, we will only need to iterate once, to obtain
the class of algebraic spaces, and smooth morphisms between algebraic spaces, as
all of the stacks we will work with are smooth-adapted to algebraic spaces.

Definition 6.17 (Stacks P-adapted to C). Let C ⊇ S be a class of CFGs over a
subcanonical presite S such that C is stable under isomorphism and fiber product
and every CFG over S can be covered by objects of C. Let P be a property of
morphisms between CFGs in C that is stable under base change (Definition 3.20),
stable under composition, local to the source (Definition 6.12), and local to the
target (Definition 6.9). Then a stack on S is P-adapted to C if it admits a P-
representable (Definition 6.10) cover (Definition 6.2) by an object of C.

In other words, M is P-adapted to C if there exists a U in C and a morphism

p : U −→M
such that for every Z in C and every Z →M, we have that U ×M Z is in C, and
the morphism U ×M Z → Z has property P, and is covering. Such a morphism p
is called a presentation of M.
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When P, S, and C are clear, we abbreviate the terminology to adapted stacks.
A morphism of adapted stacks is a morphism of stacks.

Remark 6.18. The presence of both S and C in the definition is for technical reasons.
We will later wish to iterate this construction, and we do not wish to undertake
a definition of Grothendieck topologies on 2-categories. Had we given such a defi-
nition, we would have simply taken C to be a 2-site and defined P-adapted stacks
to C without any reference to S. This would be similar to the approach taken in
§5; note that in that approach one can avoid 2-cagetories by simply working with
presites on the category of algebraic spaces (rather than with all the stacks that
arise from the adaption process to the presite).

Example 6.19. If C = S (as categories) and P is the class of coverings in the
presite (S,T ), then then P-adapted stacks are the same as the S-adapted stacks of
Definition 5.2. In particular, if S is a scheme and S is the étale presite on schemes
over S (i.e., (S/S)et), we take C = S and P to be the class of étale covers, then
the P-adapted stacks are called adapted Deligne–Mumford (F DM) stacks. The
P-adapted stacks that are representable by sheaves are called algebraic spaces (see
§B).

Example 6.20. If S = C is the presite of complex analytic spaces, and P is the class
of smooth morphisms, with the pretopology induced from usual open covers, then
one obtains a notion of an adapted complex analytic stack. Similarly, if S = C is the
presite of topological spaces with the presite induced from usual open covers, then
one obtains a notion of an adapted topological stack. There are other definitions
of complex analytic and topological stacks appearing in the literature; we do not
pursue the relationship among the definitions.

Lemma 6.21. Suppose that X → Z and Y → Z are morphisms of P-adapted
stacks. Then X ×Z Y is a P-adapted stack.

Proof. Choose P covers X0 → X , Y0 → Y, and Z0 → Z. Then the map

X0 ×Z Y0 ×Z Z0 → X ×Z Y ×Z Z = X ×Z Y

is a composition of changes of base of representable P covers, hence is a represent-
able P cover. �

6.5. Iterated adaptation. In order to iterate the definition of P-adapted stacks,
we must extend the property P to morphisms representable by adapted stacks.
The main content of this section is that there is a unique way to do this so that
P remains stable under base change and composition, and local to the source and
target.

Remark 6.22. Note that Lemma 9.20 gives a canonical way of extending the defini-
tion of smooth morphisms to all morphisms of CFGs over the category of schemes
in a way that is still stable under composition and base change and local to source
and target. This definition necessarily agrees with Definition 6.23, below, which
is valid for an arbitrary class of morphisms that is stable under composition to
base change and local to source and target. The reader should feel free to skip to
Definition 6.27 if he or she is only interested in algebraic stacks over schemes and
is willing to rely on Lemma 9.20.
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Definition 6.23 (Bootstrapping property P). Let C ⊇ S be a class of CFGs
over a subcanonical presite S such that C is stable under isomorphism and fiber
product and every CFG over S can be covered by objects of C. Let P be a property
of morphisms in C that is stable under base change (Definition 3.20), stable under
composition, local to the source (Definition 6.12), and local to the target (Definition
6.9). Suppose that X and Y are P-adapted stacks, so that there are presentations
X0 → X and Y0 → Y; i.e., P-representable covers from objects in C. We say that
X → Y is in class P if the map X0 ×Y Y0 → Y0 is in class P.

For brevity in what follows, we will sometimes write X → Y is P if it is in class P.

Lemma 6.24. The definition of the class P of morphisms between P-adapted stacks
given above does not depend on the choices of presentations X0 → X and Y0 → Y.

Proof. Suppose that X ′0 → X is a different presentation. Then let X ′′0 = X ′0×X X0.
The projection X ′′0 → X ′0 is a P cover, since P covers are stable under base change,
and X0 → X is a P cover. Pulling back to Y0 over Y, we have a cartesian digaram:

X ′′0 ×Y Y0
f
//

g

��

X ′0 ×Y Y0

p

��

X0 ×Y Y0
q

// Y0

By assumption q is P, and g is the base change of a P morphism, so it is P.
Therefore qg = pf is P. But P is local to the source, and f is the base change of
the P cover, X ′′0 → X ′0, so p is P, as required. This proves the independence of the
choice of X0.

Now suppose that Y ′0 → Y is another presentation. Again we form Y ′′0 = Y ′0×YY0

and note that the two projections are P covers, as is the map Y ′′0 → Y. Now consider
the diagram with cartesian squares:

X0 ×Y Y0
f
// Y0

X0 ×Y Y ′′0
h //

OO

p

��

Y ′′0

q

��

OO

X0 ×Y Y ′0
g
// Y ′0

The map f is P, by assumption, so h is P as well. As q is P, so is qh = gp. But p
is a P cover (being the base change of q), so it follows that g is P, as required. �

Lemma 6.25. The property P of morphisms of stacks admitting P-representable
covers is stable under composition, stable under base change, local to the target,
and local to the source.

Proof. Consider a composition X → Y → Z where X0 → X, Y0 → Y , and Z0 → Z
are all P-representable covering maps, where X → Y is P. Form the following
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diagram:

X0 ×Y Y0 ×Z Z0

fP

(Cov) ''

P

Covww

X0 ×Y Y0

P

(Cov)
''

Cov

P

ww

Y0 ×Z Z0

Cov
P

ww

g

''
X0

P Cov
��

Y0

P Cov
��

Z0

P Cov
��

X
(Cov)

// Y // Z

Morphisms that are P or covering without any further assumptions are labelled with
a P or Cov. All of these morphisms are C-representable. If X → Y is covering
then the other arrows labelled (Cov) are covering as well.

To prove stability under composition, suppose that Y → Z is P. Then g is P,
so gf is P.

On the other hand, we have a cartesian diagram:

X0 ×Y Y0 ×Z Z0
CovP

p
//

��

X0 ×Z Z0

��

Cov

q
// Z0

Y0
P Cov // Y

Since Y0 is P over Y, we deduce that p is P and therefore that qp = gf is P. But
p is covering, so by locality to the source, q is P. This means that X → Z is P, by
definition. This proves stability under composition.

To prove locality to the source, we use the same diagrams. Suppose that X → Z
is P. Then q is P, so qp = gf is P. But then f is covering and P, so we deduce
that g is P, as required.

Now we prove stability under base change. Consider a cartesian diagram

(6.1)

X ′ //

��

X

��

Y ′ // Y

where X is P over Y. Let X ′ → X be the base change. Suppose that X0 → X and
Y0 → Y are P covers. Then p : X0 ×Y Y0 → Y0 is P, by assumption. Changing
base to Y ′, we get P covers X ′0 → X and Y ′0 → Y. The map q : X ′0 ×Y′ Y ′0 → Y ′0
is the base change of p. But both X0 ×Y Y0 and Y0 in C, by assumption, and P
is stable under base change for morphisms in C. Therefore q is P, from which it
follows that X ′ → Y ′ is P, by definition.

Finally, we prove locality on the target. Suppose that we have a cartesian dia-
gram (6.1). Assume that Y ′ is a cover of Y and that X ′ is P over Y. Let X0 → X
and Y0 → Y be P covers. Assume that X ′ is P over Y ′. Set Y ′0 = Y0 ×Y Y ′ and
X ′0 = X0 ×X X ′. Then X ′0 ×Y′ Y ′0 → Y ′0 is the base change of X0 ×Y Y0. By
assumption Y ′0 → Y0 is a cover, so by locality to the target for morphisms between
objects of C, we deduce that X0 ×Y Y0 is P over Y0. This means that X is P over
Y, by definition. �
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Lemma 6.26. Given a class of morphisms P′ of P-adapted stacks that extends the
class of morphisms P to the class of P-adapted stacks, and which is stable under
base change and composition, and local to the source and target, then P′ = P.

Proof. We leave the proof to the reader. �

6.6. Algebraic stacks. The lemmas in the previous section imply that the prop-
erty P makes sense for stacks that are P-adapted to C. Replacing C with the
category of stacks on S that are P-adapted to C, we may iterate the procedure,
enlarging the class of stacks under consideration and ensuring that the property
P makes sense for them at each step. Taking the union of all of these classes, we
arrive at the class of algebraic stacks:

Definition 6.27 (Algebraic stack). Let P be a property of morphisms of S that is
stable under base change, stable under composition, local to the target, and local
to the source. An algebraic stack (with respect to the property P) is a member of
the smallest class C of stacks on S such that C ⊇ S, C has property P defined on it,
C is stable under base change and composition, and local to the source and target,
and the class of stacks on S that are P-adapted to C (Definition 6.17) is C.

Definition 6.28 (Deligne–Mumford stacks and algebraic spaces). A stack on the
category of schemes is called an algebraic stack if it is algebraic with respect to the
étale topology and the class of smooth maps. It is called a Deligne–Mumford stack
if it is algebraic with respect to the étale topology and the class of étale maps. It is
called a algebraic space if it is an algebraic stack and it is representable by a sheaf.

Remark 6.29. One can also use the usual topology on complex analytic spaces and
take P again to be smooth morphisms. Much of what we do here in the algebraic
category works analytically as well, but we will not address the analytic category
directly in what follows. Likewise, there is a class of ‘algebraic stacks’ on the
category of manifolds, obtained by taking the usual topology on the category of
manifolds and taking P to be the class of submersions.

6.7. Fiber products and bootstrapping.

Corollary 6.30. Fiber products of algebraic stacks are algebraic.

Proof. This is immediate by iteration of Lemma 6.21. �

It can often be useful to show that a stack is P-adapted to C using bootstrap
methods; in other words, it will often be the case that one can exhibit a morphism
from a stack of interest to a well-known adapted stack, so that it is easy to check
the P-adapted condition on the fibers. The following proposition states that in this
situation the stack is an P-adapted stack. We make this precise in the following
remark and proposition.

The class of S-adapted stacks is stable under isomorphism and fibered products
(Lemma 6.21). Therefore, from Definition 6.6, we have the notion of a morphism
of stacks representable by adapted stacks.

Proposition 6.31. Let f : X → Y be a morphism of stacks over a subcanonical
presite S. Assume that Y is a P-adapted stack and that f is representable by P-
adapted stacks. Then X is a P-adapted stack.
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Proof. Choose a P-representable cover Y0 → Y, with Y0 ∈ C. Then then set
Z = Y0 ×Y X . The projection Z → X is a P-representable cover. Furthermore,
Z is P-adapted, by assumption, so there is a P-representable cover X0 → Z, with
X0 ∈ C. Then X0 → X is a composition of P-representable covers, hence is a
P-representable cover, as required. �

Corollary 6.32. Suppose that Y is an algebraic stack and f : X → Y is a morphism
of stacks that is representable by algebraic stacks. Then X is an algebraic stack.

Proof. This is immediate by iteration of Proposition 6.31. �

7. Moduli stacks of Higgs bundles

In this section we construct the moduli stack of Higgs bundles on an smooth com-
plex projective curve. We also construct several related moduli stacks of interest.
In what follows, the reader should always feel free to assume that the morphism
π : X → S is a projective morphism between schemes, and that all sheaves are
coherent (or even vector bundles). For instance, one case of special interest that
will always satisfy the given hypotheses will be the case where S = SpecC, X is a
smooth complex projective curve (or compact Riemann surface), and the sheaves
are taken to be the sheaves of sections of holomorphic vector bundles on X.

In order not to avoid repetition below when defining various categories fibered in
groupoids, we fix the following notation. Suppose that f : T → S is an S-scheme.
If ξ is an object of some CFG on S/S, we denote by ξT a pullback of ξ to T .
For example, if X is an S-scheme, we denote by XT a T -scheme making the the
following diagram cartesian:

XT
//

��

X

��

T
f
// S.

If L is a line bundle on X, we denote by LT = f∗L a pullback of that line bundle
to XT . Note that we have somewhat abusively used f to denote pullback of L via
the morphism XT → X induced from f . We shall make this abuse repeatedly in
what follows.

When T is denoted by decorating S, we abbreviate our notation further and
denote XT by decorating X the same way as S; i.e., if T = S′ then we allow
ourselves to write X ′ instead of XS′ .

7.1. The moduli space of curves. We will show that the stack of smooth curves
is algebraic using the representability of the Hilbert scheme. We give another proof
in Section 10, using Artin’s criteria (see Theorem 11.25).

The following is a useful criterion to check properties of the diagonal of an
algebraic moduli stack of schemes.

Theorem 7.1 ([FGI+05, Thm. 5.23, p.133]). Let S be a noetherian scheme, let
X → S be a flat, projective scheme over S, and let Y → S be a quasi-projective
scheme over S. Then the functor IsomS/S(X,Y ) on schemes over S is represent-
able by a scheme.

Remark 7.2. In fact IsomS/S(X,Y ) is representable by an open subscheme of the
Hilbert scheme scheme HilbX×SY/S .
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Remark 7.3. A special case of a theorem of Olsson ([Ols06, Thm. 1.1]) allows one
to drop the noetherian and projective hypotheses, in exchange for requiring finite
presentation and settling for an algebraic space rather than scheme. Let S be a
scheme, let X be a flat, proper scheme of finite presentation over S, and let Y be
a separated scheme of finite presentation over S. Then the functor IsomS/S(X,Y )
is representable by an algebraic space over S.

Theorem 7.4 ([DM69, Prop. (5.1)]). For g ≥ 2, the stack Mg → (S/C)et is a
Deligne–Mumford stack.

Proof. The previous theorem asserts that ∆ : Mg → Mg ×C Mg is schematic.
More detailed analysis of the isomorphisms of algebraic curves establishes that the
the diagonal is unramified. Since we are in characterstic 0, this essentially follows
from the fact that the automorphism group of a smooth curve of genus g ≥ 2 is
finite, and group schemes in characteristic 0 are smooth.

Now let Hg be the open subset of the Hilbert scheme parameterizing smooth, ν-
canonically embedded curves for ν � 0. The universal family Cg → Hg determines
a morphism P : Hg →Mg, that is schematic by virtue of the fact that the diagonal
is schematic (see Lemma B.12). One can check that P is smooth, and therefore
provides a presentation of the stack. Therefore Mg is DM, since the diagonal is
unramified (see Lemma B.23). �

7.2. The Quot stack and the Quot scheme. Let π : X → S be a proper mor-
phism of finite presentation between schemes. Let E be a quasicoherent sheaf of
finite presentation on X. We define a category fibered in groupoids

QuotE/X/S → S/S

as follows. For each S-scheme f : S′ → S, we set the objects of QuotE/X/S(S′) to
be surjections

E′
q′−−−−→ F ′ −−−−→ 0

where, as was introduced at the beginning of Section 7, E′ denotes the pullback of
E to X ′ = X ×S S′. The sheaf F ′ is required to be an S′-flat quasicoherent sheaf
of finite presentation on X ′. We will denote such an object by the pair (F ′, q′).

Given an S-morphism g : S′′ → S′ and object (F ′′, q′′) ∈ QuoteE/X/S(S′′), a
morphism over g from (F ′′, q′′) to (F ′, q′) is a commutative diagram of quasicoherent
sheaves on X ′′:

E′′
q′′

// F ′′ //

o
��

0

g∗E′
g∗q′
// g∗F ′ // 0

(The equality on the left indicates the canonical isomorphism induced by pullback.)
As quotients of a coherent sheaf cannot have any nontrivial automorphisms re-

specting the quotient map, the QuotE/X/S CFG is equivalent to the CFG associated
to the presheaf

QuotE/X/S : (S/S)op → (Set)

wherein QuotE/X/S(T ) is defined to be the set of isomorphism classes of objects
of QuotE/X/S(T ). Of course, QuotE/X/S is not literally equal to QuotE/X/S , since
one is a CFG and the other is a presheaf.
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Remark 7.5. By dualizing, one can check that the Grassmannian G(r, n) is a sub-
stack of QuotO⊕nSpec C/ SpecC/ SpecC.

The following is a special case of a result of Lieblich:

Theorem 7.6 ([Lie06, Prop. 2.7], [Sta15, Tag 08KA]). Let π : X → S be a
proper morphism of finite presentation between schemes. The CFG QuotE/X/S
is an algebraic space that is locally of finite presentation over S.

More can be said for projective morphisms π : X → S. Let L be a relatively
very ample line bundle on X/S. If S′ = Spec k for a field k, and F ′ is a coherent
sheaf on XS′ , then the Hilbert function of F ′ with respect to L′ is defined to be

Φ(m) := χ(X ′, F ′(m)) =

dimX∑
i=0

(−1)i dimkH
i(X ′, F ′ ⊗ (L′)⊗m).

This is in fact a polynomial in Q[m] (see [FGI+05, §5.1.4] for more details). There
is a decomposition

QuotE/X/S =
∐

Φ∈Q[m]

QuotΦ,LE/X/S

where QuotΦ,LE/X/S(S′) is the set of equivalence classes 〈F ′, q′〉 over S′ such that

for each s′ ∈ S′, the Hilbert polynomial of F ′t with respect to L′t is equal to Φ.
Crucially, cohomology and base change implies that the inclusions of the subfunc-

tors QuotΦ,LE/X/S ⊆ QuotE/X/S are representable by open and closed subfunctors

of QuotE/X/S . This reduces the study of QuotE/X/S to that of the subfunctors

QuotΦ,LE/X/S .

The main theorem is due to Grothendieck [Gro62] (see also [AK80], and [FGI+05,
Thm. 5.14, p.127]).

Theorem 7.7 ([Gro62]). Let S be a noetherian scheme, π : X → S a projective
morphism, and L a relatively very ample line bundle on X/S. Then for any coherent

sheaf E and any polynomial Φ ∈ Q[m], the CFG QuotΦ,LE/X/S is representable by a

projective S-scheme QuotΦ,L
E/X/S.

Remark 7.8. By dualizing one can check that the Grassman CFG G(r, n) is isomor-

phic to the CFG Quot
r,OSpec C

O⊕nSpec C/ SpecC/ SpecC, and the Grassmannian G(r, n) is isomor-

phic to the Quot scheme Quot
r,OSpec C

O⊕nSpec C/ SpecC/ SpecC. Of course, one cannot use this

observation to construct the Grassmannian, as Grothendieck’s proof of Theorem 7.7
relies on the representability of the Grassmannian by a projective scheme.

7.3. Stacks of quasicoherent sheaves. Let S be a scheme. Let π : X → S be
a proper morphism of finite presentation between schemes. We define a category
fibered in groupoids

QCohX/S → S/S

in the following way. For an S-scheme f : S′ → S in S/S, we take QCohX/S(S′)
to consist (in the notation introduced at the beginning of Section 7) of the S′-
flat quasicoherent sheaves [Sta15, Tag 01BE] on XS′ . Morphisms in QCohX/S
are defined by pullback; i.e., if g : S′′ → S′ is a morphism, F ′′ is an object of
QCohX/S(S′′) and F ′ is an object of QCohX/S(S′), we define a morhpism F ′′ → F ′
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to be an isomorphism F ′′ → g∗F ′. Following [Lie06], we use CohX/S to denote
the substack of QCohX/S consisting of quasicoherent sheaves of finite presentation
[Sta15, Tag 01BN] (when the structure sheaf is coherent, finitely presented sheaves
coincide with coherent sheaves [Sta15, Tag 01BZ]). We similarly define FibX/S and
Fib(r)X/S by restricting to locally free sheaves of finite rank and locally free sheaves
of rank r, respectively.

The first statement we want is descent for quasicoherent sheaves. This is [SGA03,
VIII, Thm.1.1, Cor.1.2, p.196]. See also [LMB00, (3.4.4)], and [FGI+05, Thm. 4.23,
p.82]. The same argument shows that the statements holds for coherent sheaves,
and for vector bundles.

Theorem 7.9 ([SGA03, Exp. VIII, Thm. 1.1, p.196]). Let S be a scheme, and let
X be a scheme over S. The CFG QCohX/S → S/S is a stack with respect to the
fpqc topology. The same is true for CohX/S, FibX/S and Fib(r)X/S.

Moreover, these are algebraic stacks. The following is a special case of a result
of Lieblich:

Theorem 7.10 ([Lie06, Thm. 2.1]). Let π : X → S be a proper morphism of
finite presentation between schemes, with S an excellent scheme (see e.g., [Sta15,
Tag 07QS]; for instance S can be a scheme of finite type over a field). The stack
CohX/S is an algebraic stack, locally of finite presentation over S. The same is true
for FibX/S and Fib(r)X/S.

For a projective morphism of noetherian schemes, the Quot scheme can be used
to establish the presentation of the Artin stack (see Remark 7.13). For our purposes,
the benefit of this perspective will be in comparing the moduli stack of Higgs bundles
to the moduli scheme of semistable Higgs bundles constructed via GIT.

Theorem 7.11 ([LMB00, Thm. 4.6.2.1, p.29]). Let S be a noetherian scheme, and
let π : X → S be a projective morphism. Assume that π∗OX = OS universally (i.e.,
π′∗OX′ = O ′S for all S′ → S). Then the S-stack CohX/S is an algebraic S-stack
locally of finite type. The same is true for FibX/S and Fib(r)X/S.

Remark 7.12. The hypothesis that π∗OX = OS universally is satisfied whenever
X is projective and flat over S with reduced, connected geometric fibers [FGI+05,
Ex. 9.3.11, p.303].

Remark 7.13. For each coherent sheaf E on X, a universal quotient over the scheme
QuotE/X/S induces a morphism QuotE/X/S → CohX/S . Taking appropriate open

subsets of these Quot schemes gives a presentation of the algebraic stack (see
[LMB00, p.30] for more details).

Remark 7.14. Suppose that S = Spec k for an algebraically closed field k, and that
X is a smooth projective curve. We can define the CFG FibX/S(r, d) by restricting
to vector bundles of degree d. All of the statements above hold in this setting; i.e.,
the CFG FibX/S(r, d) of vector bundles of rank r and degree d on X is an algebraic
stack, of finite type over k, that admits a presentation from open subsets of Quot
schemes.

7.4. The stack of Higgs bundles over a smooth projective curve. Let X
be a smooth, projective curve over C, of genus g. Fix r ≥ 1 and d ∈ Z. A Higgs
bundle on X of rank r and degree d consists of a pair

(E, φ)
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where E is a vector bundle (locally free sheaf of finite rank) on X with rankE = r
and degE = d, and

φ ∈ HomOX (E,E ⊗KX),

where KX = Ω1
X = ωX is the canonical bundle on X. The aim of this section is to

construct an algebraic stack HX/ SpecC(r, d) of Higgs bundles on X of rank r and
degree d, over the étale site S/ SpecC.

7.4.1. Higgs bundles as a category fibered in groupoids. We begin by defining the
CFG underlying the stack HX/ SpecC(r, d). Given a C-scheme f : S′ → SpecC, we
start by defining HX/ SpecC(r, d) to have objects consisting of pairs

(E′, φ′)

where E′ ∈ FibX/ SpecC(r, d)(S′) is a relative vector bundle of rank r and degree d
on X ′/S′, and

φ′ ∈ HomOX′ (E
′, E′ ⊗ f∗KX).

Given a C-morphism g : S′′ → S′, and (E′, φ′) in HX/ SpecC(r, d)(S′), we obtain a
pulled-back family

(E′′, φ′′) := g∗(E′, φ′)

in HX/ SpecC(r, d)(S′′), where (in the notation from the beginning of Section 7)
E′′ = g∗E′ and φ′′ = g∗φ′.

We now define the morphisms of HX/ SpecC(r, d) in the following way. Given
(E′′, φ′′) in HX/ SpecC(F )(S′′), and (E′, φ′) in HX/ SpecC(F )(S′), then a morphism
(E′′, φ′′)→ (E′, φ′) over g : S′′ → S′ consists of an isomorphism

α : E′′ → g∗E′

such that the following diagram commutes:

E′′
φ′′

//

α

��

E′′ ⊗ (fg)∗KX

α⊗id
��

g∗E′ ⊗ (fg)∗KX

g∗E′
g∗φ′

// g∗(E′ ⊗ f∗KX).

We now have a category fibered in groupoids:

HX/ SpecC(r, d)→ S/ SpecC.

7.4.2. Higgs bundles as an algebraic stack. The key point is the following well-
known lemma:

Lemma 7.15. Let π : X → S be a flat, proper morphism of finite presentation
between schemes. Let G be an S-flat quasicoherent sheaf of OX-modules that is of
finite presentation. There exists a quasicoherent OS-module M of finite presenta-
tion, such that the linear scheme V = SpecS

(
Sym•OS M

)
defined by M represents

the functor

(S′
f−→ S) 7→ Γ(X ′, f∗G),

(see the beginning of Section 7 for notation). The formation of V commutes with
all base changes S′ → S. This functor will be denoted by H omX/S(OX , G).
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Lemma 7.15 is essentially contained in [Gro63, Cor. 7.7.8, Rem. 7.7.9, p.202–3].
This can also be found in [Ray70, p.28], [Nit91, Lem. 3.5], and detailed proofs are
given in [BLR90, p.206–207] and [FGI+05, Thm. 5.8, p.120].

Corollary 7.16. The forgetful morphism of CFGs

HX/ SpecC(r, d)→ FibX/ SpecC(r, d)

is schematic.

Proof. An S-morphism S′ → FibX/ SpecC(r, d) corresponds to a vector bundle E′

over X ′. Using the construction of the fibered productHX/ SpecC(r, d)×FibX/S(r,d)S
′

in Definition 4.2, one can establish that this is equivalent to the functor on S/S′

H omX′/S′(OX′ , E
′∨ ⊗ E′ ⊗ f∗KX).

This is representable by a scheme, by virtue of the lemma above. �

Corollary 7.17. The CFG HX/ SpecC(r, d)→ S/SpecC is a stack.

Proof. We have seen in Theorem 7.9 that FibX/ SpecC(r, d) is a stack. Therefore,
the corollary follows from Corollary 7.16 and Corollary 4.13. �

Theorem 7.18. The CFG of Higgs bundles HX/ SpecC(r, d) → S/ SpecC is an
algebraic stack, locally of finite type over SpecC.

Proof. We have seen in Corollary 7.17, that HX/ SpecC(r, d) is a stack. Under
the hypotheses here, it follows from Theorem 7.11 (see also Remark 7.12) that
FibX/ SpecC(r, d) is an algebraic stack locally of finite type over C. Thus from
Corollary 7.16 and Corollary 6.32 we have that HX/ SpecC(r, d) is an algebraic stack,
locally of finite type over C. �

7.5. Meromorphic Higgs bundles, and the stack of sheaves and endomor-
phisms. There is also interest in considering so-called meromorphic Higgs bundles
on a smooth projective curve X; that is pairs (E, φ) where E is a vector bundle
and φ : E → E ⊗ KX(D) is a morphism of sheaves, for some fixed divisor D on
X. The construction of such a stack can be made in essentially the same way as
for Higgs bundles. Since it is not much more work, we provide here a more general
construction.

In this setting, the input data are the following:

(1) π : X → S a proper morphism of finite presentation between schemes, such
that either
(a) S is excellent, or,
(b) S is noetherian, π is projective, and π∗OX = OS universally.

(2) F an S-flat quasicoherent sheaf of OX -modules of finite presentation.

The output from this data will be an algebraic stack EX/S(F ) of endomorphisms
of coherent sheaves with values in F , over the site (S/S)et. Taking X/S to be a
smooth complex projective curve over S = SpecC, F = KX(D), and restricting to
vector bundles, one obtains the stack of meromorphic Higgs bundles associated to
the divisor D.

Remark 7.19. While the construction above generalizes the construction of Higgs
bundles for curves, it seems that for many applications these stacks are not the
correct generalizations. First in higher dimension (even in the smooth case over S =
SpecC and with F = Ω1

X), one should at least include the integrability condition
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φ ∧ φ = 0 (in End(E) ⊗ Ω2
X). Second, in any dimension, it is often better to put

derived structures on X and S so that the relative cotangent complex becomes
perfect, and then consider the moduli problem on the derived scheme X. The
result will be a derived stack (a notion which we will not introduce here). One case
where the generalized construction we take here does suffice is for families of stable
curves, where one can consider endomorphisms with values in the relative dualizing
sheaf ωX/S . This will be discussed further below.

7.5.1. The CFG EX/S(F ). We begin by defining the category fibered in groupoids
underlying the stack EX/S(F ). Given a morphism f : S′ → S, we start by defining
EX/S(F )(S′) to have objects those pairs

(E′, φ′)

where E′ is an S′-flat coherent sheaf on X ′ and

φ′ ∈ HomOX′ (E
′, E′ ⊗ F ′),

where F ′ = f∗F and X ′ = X ×S S′ (as always, we use the notation introduced at
the beginning of Section 7).

Given an S-morphism g : S′′ → S′, we again denote the composition f ◦ g = f ′,
and will use the notation introduced at the beginning of Section 7. Given (E′, φ′)
in EX/S(F )(S′), we obtain a pulled-back family

g∗(E′, φ′) = (g∗E′, g∗φ′)

in EX/S(F )(S′′),
We now define morphisms in the following way. Given (E′′, φ′′) in EX/S(F )(S′′),

and (E′, φ′) in EX/S(F )(S′), a morphism (E′′, φ′′) → (E′, φ′) over g : S′′ → S′

consists of an isomorphism

α : E′′ → g∗E′

such that the diagram

E′′
φ′′

//

α

��

E′′ ⊗ F ′′

α⊗id
��

g∗E′ ⊗ F ′′

g∗E′
g∗φ′
// g∗(E′ ⊗ f∗F ′)

Now we have the category fibered in groupoids

EX/S(F )→ S/S.

7.5.2. EX/S(F ) is a stack. In this setting, we replace Lemma 7.15 with a special case
of a result due to Lieblich. Let X → S be a proper morphism of finite presentation
between schemes. Let E and G be finitely presented, quasicoherent sheaves on X
such that G is S-flat. We define a CFG

H omX/S(E,G)→ S/S

by assigning to each morphism f : S′ → S the set of homomorphisms

HomOX′ (ES′ , GS′).

Morphisms are defined by pullback.
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Proposition 7.20 (Leiblich [Lie06, Prop. 2.3]). Let X → S be a proper morphism
of finite presentation between schemes. Let E and G be finitely presented, quasico-
herent sheaves on X such that G is S-flat. The CFG H omX/S(E,G) → S/S is
representable by an algebraic space over S, locally of finite type.

Corollary 7.21. The forgetful morphism of CFGs

EX/S(F )→ CohX/S

is representable by algebraic spaces, locally of finite type over S.

Proof. An S-morphism S′ → CohX/S corresponds to E′ in CohX/S(S′). Therefore
the fibered product EX/S(F )×CohX/S S

′ is the CFG H omX/S(E′, E′ ⊗ F ′), which
is representable by virtue of Lieblich’s result above. �

Corollary 7.22. The CFG EX/S(F ) is a stack.

Proof. We have seen in Theorem 7.9 that CohX/S is a stack. Therefore, the corollary
follows from Corollary 7.21 and Corollary 4.13. �

7.5.3. EX/S(F ) is an algebraic stack.

Theorem 7.23. EX/S(F ) is an algebraic stack, locally of finite presentation over S.

Proof. We have seen in Corollary 7.22, that EX/S(F ) is a stack. Under the hypothe-
ses here, it follows from Theorem 7.10 that CohX/S is an algebraic stack, locally of
finite presentation over S. Thus from Corollary 7.21 and Corollary 6.32 we have
that EX/S(F ) is an algebraic stack, locally of finite presentation over S. �

7.6. The stack of Higgs bundles over the moduli of stable curves. We now
construct a moduli stack of Higgs bundles over the moduli stack of stable curves:

HShMg
→Mg.

We start by fixing a base S in S (for instance S = SpecC, or even S = SpecZ).

Definition 7.24 (Stable curve). A stable curve of genus g ≥ 2 over an algebraically
closed field k is a connected curve of arithmetic genus g, with no singularities apart
from nodes, and with finite automorphism group (every component isomorphic to
P1
k meets the rest of the curve in at least 3 points).

For an S-scheme S′ → S, a relative stable curve of genus g over S′ is a surjective
morphism of schemes π : X ′ → S′ that is flat, proper and whose every geometric
fiber is a stable curve of genus g.

We define the CFG Mg over S/S. For every S-scheme S′ → S we take the

objects of Mg(S
′) to be the relative stable curves over S′. The morphisms in Mg

are given by pullback diagrams, exactly as in the definition of Mg. Using the fact
that for every relative stable curve of genus g ≥ 2 the relative dualizing sheaf ωX/S
is relatively ample, one can show thatMg is an algebraic stack (in fact DM) exactly

as was done for Mg. In fact Mg is an open substack of Mg, since smoothness is
an open condition.

Now we define the CFG CohMg/S
. Over an S-scheme S′ → S, the objects of

CohMg/S
(S′) are pairs (X ′/S′, E′) where X ′ → S′ is a relative stable curve, and

E′ is an S′-flat finitely, presented quasicoherent sheaf on X ′. Morphism are defined
by pullback in both entries. There is a natural morphism of CFGs

CohMg/S
→Mg
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given by forgetting the sheaf. For every S-scheme S′ → S, and every mor-
phism S′ → Mg induced by a relative stable curve X ′ → S′, the fibered product
CohMg/S

×Mg
S′ is equivalent to CohX′/S′ . Since this is a algebraic stack, we have

immediately from Corollary 4.13 and Corollary 6.32 that CohMg/S
is a algebraic

stack (this is also a special case of [Lie06, Thm. 2.1]). Similarly, we have stacks
CohMg/S

(r, d) (resp. FibMg/S
(r, d)) where we restrict to sheaves (resp. bundles) of

relative rank r and degree d. Recall that the rank and degree for sheaves on a
reducible curve are defined via the Hilbert polynomial with respect to the relative
dualizing sheaf.

Finally we define the CFG HShMg/S
. Over an S-scheme S′ → S, let the ob-

jects of HShMg/S
(S′) be triples (X ′/S′, E′, φ′) where X ′ → S′ is a relative sta-

ble curve, and E′ is an S′-flat finitely, presented quasicoherent sheaf on X ′, and
φ′ ∈ HomOX′ (E

′, E′ ⊗ ωX/S). Morphism are defined by pullback in the first two
entries, and in the same way as in the definition of Higgs bundles in the last entry.
There is a natural morphism of CFGs

HShMg/S
→ CohMg/S

given by forgetting φ′. For every S-scheme S′ → S, and every morphism S′ →
CohMg/S

induced by a pair (X ′/S′, E′), the fibered product HShMg/S
×CohMg/S

S′

is equivalent to EX′/S′(ωX′/S′). Since this is an algebraic stack, we have immedi-
ately from Corollary 4.13 and Corollary B.26 that HShMg/S

is an algebraic stack.

Similarly, we have stacks HShMg/S
(r, d) (resp. HMg/S

(r, d)) where we restrict to

sheaves (resp. bundles) of relative rank r and degree d.

Remark 7.25. In the discussion above we omitted some noetherian hypotheses on
the test S-schemes S′. This is possible via the standard noetherian reduction
arguments of [Gro66, §8]. Similar arguments are made in §11.2, and we direct the
reader there for more details on these types of arguments.

7.7. Semi-stable Higgs bundles and the quotient stack. In [Nit91] Nitsure
constructs a moduli scheme of semi-stable Higgs bundles on a smooth projective
curve taking values in a line bundle L. The construction of the moduli stack of Higgs
bundles on an algebraic curve above essentially follows Nitsure’s construction in the
setting of stacks. Here we introduce Nitsure’s space, and compare it to the moduli
stack. Nitsure’s construction uses geometric invariant theory, so our stack-oriented
perspective will rely on quotient stacks (Section C.1).

7.7.1. Nitsure’s construction. Recall that the slope of a bundle E on a smooth
curve X is defined to be µ(E) := deg(E)/ rank(E). We will say that (E′, φ′) is a

sub-Higgs bundle of (E, φ) if E′
ι
↪→ E and there is a commutative diagram

E
φ
// E ⊗ L

E′
φ′
//

?�

ι

OO

E′ ⊗ L.
?�
ι⊗idL

OO

A Higgs bundle (E, φ) is said to be slope stable (resp. semi-stable) if for every
sub-Higgs bundle (E′, φ′) ⊆ (E, φ), one has µ(E′) < µ(E) (resp. µ(E′) ≤ µ(E)).

Fix positive integers r and d. By [HL10, Prop. 2.3.1], semistability is an open
condition on a flat family of coherent sheaves. Therefore there is an open substack
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HssX/ SpecC(L)(r, d) ⊆ HX/ SpecC(r, d) of semi-stable Higgs bundles over X of rank

r and degree d, taking values in L. Here we aim to relate this stack to a quasi-
projective variety constructed by Nitsure. We review Nitsure’s construction briefly.

Let OX(1) be an ample line bundle on X. Let N ∈ Z be the minimal positive
integer such that

d

r
+N deg OX(1) > max

{
2g − 1, 2g − 1 +

(r − 1)2

r
degL

}
.

Set p = (d + rN deg OX(1)) + r(g − 1). Let Q be the component of the Quot
scheme containing quotients OX(−N)⊕p → E → 0 where E is a rank r, degree d
vector bundle on X. Let Q◦ be the locus in Q where E is locally free, the quotient
Op
X → E(N) → 0 obtained by twisting by OX(N) induces an isomorphism on the

space of global sections, and H1(X,E(N)) = 0. It is known that Q is projective,
and that Q◦ is reduced and open in Q (see [Nit91, p. 281]). Let E be the universal
bundle on X ×Q◦ obtained from the universal quotient. Lemma 7.15 implies there
is a linear scheme F → Q◦ parameterizing pairs (OX(−N)⊕p → E → 0, φ), where
φ : E → E ⊗L. [Nit91, Cor. 3.4] implies that every slope semi-stable Higgs bundle
of rank r and degree d (together with a presentation as a quotient) shows up in
this family.

Let F ss be the locus of pairs where the bundle and the endomorphism form a
slope semi-stable Higgs bundle. The universal family over F induces a morphism

F ss → HssX/ SpecC(L)(r, d).

It is essentially the content of [Nit91, Prop. 3.6] that this morphism is smooth.
Moreover, the obvious action of PGLp on Q given by changing coordinates for the
choice of generators of the bundle lifts to an action of PGLp on F [Nit91, p. 281].
The closed orbits in F ss are given by S-equivalence classes of slope semi-stable
Higgs bundles [Nit91, §4].

Nitsure constructs a quotient of F in the following way. There is a quasi-
projective variety H equipped with a PGLp-linearized ample line bundle L, and
a PGLp-equivariant morphism τ̂ : F → H such that slope (semi-)stability on
F corresponds to GIT (semi-)stability on H [Nit91, §5]. Via τ̂ , the quasiprojec-
tive GIT quotient H//LPGLp induces a quasiprojective scheme structure on the
set F ss/PGLp of S-equivalence classes of slope semi-stable Higgs bundles [Nit91,
p. 290], which we will denote by Hss

X/ SpecC(L)(r, d). (We expect one can also ob-

tain the quotient directly via GIT on F with respect to the semiample line bundle
obtained from L by pullback via τ̂ .) This is the moduli scheme of Higgs bundles con-
structed by Nitsure. It is shown in [Nit91, p.290, Thm. 5.10] that Hss

X/ SpecC(L)(r, d)

is a good quotient for F ss by the action of PGLp, and is a categorical moduli scheme
for the associated moduli functor H ss

X/ SpecC(L)(r, d) of Higgs bundles (defined in

the obvious way). Consequently there is a diagram

HssX/ SpecC(L)(r, d) // H ss
X/ SpecC(L)(r, d)

��

F ss
33

++

[F ss/PGLp] // Hss
X/ SpecC(L)(r, d).
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The composition HssX/ SpecC(L)(r, d) → Hss
X/ SpecC(L)(r, d) is a categorical moduli

scheme for the stack HssX/ SpecC(L)(r, d), as well, in the sense that it is initial among

all morphisms to schemes.

7.8. The stack of principal G-Higgs bundles. The focus of our presentation
has been on Higgs vector bundles. For completeness we include a brief section of
principal Higgs bundles on smooth complex projective curves. We direct the reader
to [DP12] for more on the topic.We will give a deformation-theoretic perspective
on G-Higgs bundles in Section 10.2.7.

Let X be a smooth complex projective curve, and let G be a complex semisimple
Lie group. Let g be the complex Lie algebra associated to G, and let

Ad : G→ Aut(g)

be the adjoint representation of G. Given an algebraic principal G-bundle P on X,
the adjoint bundle of P is the associated algebraic vector bundle

adP := P ×G g := (P × g)/G

where the action of G is the product action via the natural action of G on P and
the adjoint action of G on g.

Definition 7.26 (G-Higgs bundle). Let X be a smooth complex projective curve,
and let G be a complex semisimple Lie group. A G-Higgs bundle on X is a pair
(P,Φ) where P is a principal G-bundle over X and Φ ∈ H0(X, adP ⊗KX).

Remark 7.27. If G ↪→ GLn, then the data of a G-Higgs bundle (P,Φ) gives rise to
a Higgs bundle (E, φ), where E := P ×G Cn, and φ : E → E ⊗KC is described as
follows. First observe that End(E) = P ×G End(Cn). The embedding G ↪→ GLn
induces on tangent spaces a G-equivariant map g→ End(Cn), where by definition
G acts by the adjoint representation on g, and by conjugation on End(Cn) via the
embedding G ↪→ GLn. Thus we obtain a morphism

adP = P ×G g −→ P ×G End(Cn) = End(E).

Tensoring by KX and taking global sections, one obtains the morphism φ induced
by Φ.

Following the construction in §7.4, one can define the CFG HGX/ SpecC(r, d) over

the étale site S/ SpecC consisting of principal G-Higgs bundles whose associated
vector bundle is of rank r and degree d.

Theorem 7.28. The category fibered in groupoids of principal G-Higgs bundles,
HGX/ SpecC(r, d)→ S/ SpecC, is an algebraic stack locally of finite type over SpecC.

Proof. The CFG PrinGX/ SpecC(r, d), of principal G-bundles over X with associated
vector bundle of rank r and degree d, is an algebraic stack locally of finite type
over C (see e.g., [LMB00, Exa. (4.6)]). The forgetful functor HGX/ SpecC(r, d) →
PrinGX/ SpecC(r, d) is schematic (this is similar to Corollary 7.16). It follows from

Corollary 6.32 that HGX/ SpecC(r, d) is an algebraic stack locally of finite type over C.

�

Remark 7.29. As in §7.5, one can easily generalize this construction to the case
of a proper morphism π : X → S of finite presentation between schemes over C,
and pairs (P,Φ), where P is again a principal G-bundle, but Φ is a global section
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of adP ⊗ F , where F is some fixed S-flat quasicoherent sheaf of OX -modules of
finite presentation. As in the case of Higgs bundles, for many applications this is
not the correct generalization. In the smooth case, the following is standard: Let
X be a smooth projective manifold. A G-Higgs bundle is a pair (P,Φ) where P is
a principal G-bundle over X and Φ ∈ H0(X, adP ⊗ Ω1

X) is such that [Φ,Φ] = 0 ∈
H0(X, adP ⊗

∧2
Ω1
X).

8. The Hitchin fibration

In this section we describe the Hitchin fibration at the level of stacks.

8.1. Characteristic polynomials and the Hitchin morphism. In this section
we introduce characteristic polynomials and the Hitchin morphism.

8.1.1. Characteristic polynomials. Let X be a scheme, let E be a locally free sheaf
of rank n on X, let L be a a locally free sheaf of rank 1 on X, and let

φ : E → E ⊗ L
be a morphism of sheaves. Let L = SpecX (Sym• L∨) be the geometric line bundle
associated to L, and let

p : L→ X

be the structure map. Let

(8.1) OL
T−−−−→ p∗L

be the tautological section (this is the section corresponding to the tautological map
of geometric line bundles L ×X A1

X → L ×X L, given heuristically by “(vx, λx) 7→
(vx, λxvx) for vx ∈ Lx and λx ∈ A1

X,x”; see §8.1.3 below).
Tensoring by p∗E, we obtain

p∗E
T−−−−→ p∗E ⊗ p∗L

Consequently we obtain the endomorphism

p∗E
T−p∗φ−−−−→ p∗E ⊗ p∗L

Taking the determinant we obtain

p∗ detE
det(T−p∗φ)−−−−−−−−→ p∗ detE ⊗ p∗L⊗n

We can view this as a global section

OL
det(T−p∗φ)−−−−−−−−→ p∗L⊗n

Therefore we have

(8.2) det(T −p∗φ) ∈ Γ(L, p∗L⊗n) = Γ(X, p∗OL⊗L⊗n) =
⊕
m≥0

TmΓ(X,L⊗(n−m)).

On the right, T is a formal variable, which we introduce to make the bookkeeping
and some local computations easier to follow.

We call det(T − p∗φ) the characteristic polynomial of φ (it is an element of the
graded ring of global sections of tensor powers of L, which we formally view as a
polynomial by introducing the formal variable T ).

The component of det(T − p∗φ) in Γ(X,L⊗i) can be obtained in the following
way. The morphism

φ : E → E ⊗ L
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determines a global section of L via the composition

OX → E∨ ⊗ E → L,

where the first map takes 1 to idE and the second is induced by φ. We de-
fine the trace Tr(φ) ∈ H0(X,L) to be this global section. The component of
det(T −p∗φ) in H0(X,L⊗i) is given by (−1)i Tr(∧iφ). In particular, det(T −p∗φ) ∈⊕n

i=0 T
n−iΓ(X,L⊗i). Moreover, the component in Γ(X,OX) is always equal to 1,

and so we will drop this term in what follows.

8.1.2. The Hitchin morphism. From the discussion above we can define the Hitchin
morphism

h : HX/S(L)(n) →
n⊕
i=1

Tn−iΓ(X,L⊗i)

(E, φ) 7→ det(T − p∗φ).

Here we are denoting by HX/S(L)(n) the sub-algebraic stack of EX/S(L)(n) con-
sisting of endomorphisms of locally free coherent sheaves of rank n with values in L,
over the site (S/S)et. On the right, we suggestively indicate the functor that on an
S-scheme S′ → S takes values

⊕n
i=1 T

n−iΓ(X ′, L′⊗i), where X ′ = S′×SX and L′ is
the pullback to X ′. In other words it is the functor HomX/S(OX ,

⊕n
i=1 T

n−iL⊗i)
of Lemma 7.15. By virtue of Lemma 7.15, this functor is representable by a scheme
AX/S(L)(n) over S, . We call AX/S(L)(n) the Hitchin base for HX/S(L)(n). We
obtain the Hitchin morphism

h : HX/S(L)(n) → AX/S(L)(n).

Remark 8.1. When X/S is a smooth projective curve over S = SpecC (and we
consider C-points of the moduli problem) the Hitchin map takes a rank n Higgs
bundle (E, φ) on X with values in a line bundle L, and sends it to the corresponding
n-tuple of “coefficients” of the characteristic polynomial of φ in the complex vector
space

⊕n
i=1 Γ(X,L⊗i).

8.1.3. The tautological section of p∗L. The main goal of this subsection is to define
the tautological section (8.1), and give a local description of the map. There are
several equivalent ways to define it. One can use adjunction to identify the groups
HomOL(OL, p

∗L) = HomOX (L∨,Sym• L∨) and then use the tautological morphism
of sheaves on the right (see Remark 8.2). Alternatively, one could consider the
global section of the geometric line bundle p∗L on L given pointwise by assigning
to v ∈ L the point v in the fiber of p∗L over v (see Remark 8.3). Finally, one can
describe it from a morphism of geometric line bundles T : A1

X ×X L → L ×X L
over L; since this is the how we will use the tautological section, we consider this
approach in detail.

The OX -module structure map for the rank 1, locally free sheaf L

OX × L→ L

induces a multiplication map

A1
X ×X L µ−−−−→ L,
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as is seen easily from the following diagram, where U is an open set, and the dashed
arrow indicates a section of OX × L over U :

A1
X ×X L

µ
//

��

L

��

U

99

� � // X X.

This in turn induces a diagram

(8.3) A1
X ×X L

T

''

µ

""

pr2

**

L×X L //

��

L
p
��

L
p
// X

The map T is the geometric version of the tautological global section. More pre-
cisely, A1

X ×X L is the pullback of the trivial geometric line bundle on X (i.e.,
p∗A1

X), and is hence the trivial geometric line bundle on L (i.e., A1
L), and L×X L

is p∗L. The associated morphism of sheaves is a morphism

OL
T−−−−→ p∗L,

which corresponds to a global section T ∈ H0(L, p∗L).

It can be useful to describe the tautological section locally. Let U = SpecR ⊆ X
be an affine open subset. Assume that L is trivialized over U , corresponding to the
trivial R-module R. We can identify the R-algebra Sym• L∨(U) with R[T ], so that
p : L→ X is identified over U as p : L|U = A1

U = SpecR[T ]→ U = SpecR.
The multiplication map µ : A1

U ×U L|U → L|U is then identified with the R-
algebra map

R[T, T ′] = R[T ]⊗R R[T ′]
µ←−−−− R[T ′]

given by T ′ 7→ TT ′. The diagram (8.3) defining the geometric tautological section,
i.e., the map T : A1

U ×U L|U → L|U ×U L|U , is given at the level of R-algebras by
the daigram:

R[T ]⊗R R[T ′]
ii

T

nn µ
YY

R[T̃ ′]⊗R R[T ′] oo ? _
OO

?�

R[T ′]
OO

?�

R[T̃ ′] oo ? _R

The tautological map T is given here by T ′ 7→ TT ′ and T̃ ′ 7→ T ′.
Now p−1(U) = L|U = SpecR[T ]. We have that A1

U ×U L|U and L|U ×U L|U are
geometric line bundles, which on L|U , where they are trivialized, correspond to the
trivial rank 1, locally free module R[T ]. The tautological section T : OL → p∗L is
given under these identifications by the multiplication map

(8.4) R[T ]
·T−−−−→ R[T ].
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Remark 8.2. Alternatively, one can describe the tautological section as follows. We
have identifications

HomOL(OL, p
∗L) = HomOL(p∗OX , p∗L) = HomOX (OX , p∗(OL ⊗ p∗L))

= HomOX (OX , (Sym• L∨)⊗ L) = HomOX (L∨,Sym• L∨).

There is a natural inclusion L∨ ↪→ OX ⊕L∨⊕ (L∨)⊗2⊕ · · · onto the second factor,
and this corresponds to the tautological section. Locally, if we set U = SpecR ⊆ X
to be an open affine over which L is trivial, then Sym• L∨ is identified with R[T ],
and the natural map L∨ → Sym• L∨ is associated to the map R → R[T ] by
multiplication by T .

Remark 8.3. One can also describe the tautological section geometrically as follows.
The sheaf p∗L is the sheaf of sections of the line bundle p∗L := L×X L→ L, where
the structure morphism to L is the first projection. There is a global section of the
structure morphism given by the diagonal map L→ L×XL. This is the tautological
global section.

8.1.4. The characteristic polynomial locally. Let (E, φ) be a Higgs bundle on X
with values in L. Let U = SpecR ⊆ X be an affine open subset. Assume that E is
trivial over U , corresponding to Rn, and that L is also trivialized, corresponding to
R. Then φ : E → E⊗L can be identified as a map Rn → Rn, and thus with an n×n
matrix (φij) over R. We can also identify Sym• L∨ with R[T ], so that p : L → X
is identified over U as p : A1

U → U , and the tautological section T : OL → p∗L is
given under these identifications by the multiplication map

R[T ]
·T−−−−→ R[T ].

The map (T − p∗φ) : p∗E → p∗E⊗L can then be identified over L|U with the map
R[T ]n → R[T ]n given by the matrix

T − p∗φ =

 T − φ11 · · · −φ1n

...
. . .

...
−φn1 · · · T − φnn

 .

We then have

(8.5) det(T − p∗φ)|U = Tn − Tr(φ)Tn−1 + · · ·+ (−1)n detφ ∈ R[T ].

Recall that globally we had det(T − p∗φ) ∈ Γ(L, p∗L⊗n) = Γ(X, p∗OL ⊗ L⊗n) =⊕
m≥0 T

mΓ(X,L⊗(n−m)); the coefficients of the powers of T in this description and

in (8.5) agree.

8.2. Spectral covers and fibers of the Hitchin morphism. Here we describe
spectral covers, and the connection with the fibers of the Hitchin morphism. The
main point for Higgs bundles on smooth curves are the results of [BNR89, Sch98]
reviewed in Remark 8.9. We give a weaker statement that holds in more generality
in Proposition 8.4 and Lemma 8.6.
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8.2.1. Spectral covers. Every σ : OX →
⊕n

i=1 L
⊗i (corresponding to a map σ :

S → AX/S(L)(n)) determines via (8.2) a global section σ : OL → p∗L⊗n of the line

bundle p∗L⊗n on L, and consequently a zero set of the section:

X̃(σ) := V (σ) ⊆ L.

The map X̃(σ)→ X (obtained by composition from the map p : L→ X) is called
the spectral cover associated to σ. One can check (see the local computation below)
that the spectral cover is a finite morphism of degree n. For later reference, recall
that the section σ (in the form σ : OX →

⊕n
i=1 L

⊗i) induces a canonical inclusion
Sym• L∨ ↪→ (Sym• L∨)⊗ L⊗n, and V (σ) is then defined from the associated short
exact sequence of OX -algebras

(8.6) 0→ (Sym• L∨)⊗ L⊗−n → Sym• L∨ → OV (σ) → 0.

We denote the corresponding ideal of Sym• L∨ by Iσ.
More generally, the computation shows that for any σ′ : S′ → AX/S(L)(n), corre-

sponding to σ′ : OX′ →
⊕n

i=1 L
⊗i|X′ , where X ′ = X×SS′, there is a corresponding

spectral cover p′ : X̃ ′(σ′)→ X ′. In particular, there is a universal spectral cover

X̃(σidAX/S(L)(n)
)→ X ×S AX/S(L)(n)

determined by the identity morphism on AX/S(L)(n), from which all the spectral
covers are obtained by pullback.

8.2.2. Local description of the spectral cover. To describe X̃(σ), it can be useful to
consider the construction locally on X. Let U = SpecR ⊆ X be an affine open
subset. Assume that L is trivialized over U , corresponding to the R-module R.
Given σ ∈

⊕n
i=1 T

n−iΓ(X,L⊗i), with components σi ∈ Γ(X,L⊗i), then we can
write

σ|U = Tn − σ1|UTn−1 + · · ·+ (−1)nσn|U .
Since L, and hence L⊗i is trivalized over U , we may view the σi|U as elements of
R. The short exact sequence (8.6) is then written locally as

0 −−−−→ R[T ]
σ|U−−−−→ R[T ] −−−−→ R[T ]/Iσ|U −−−−→ 0.

In other words, Iσ|U is given by (σ|U ) ⊆ R[T ], and X̃(σ)|U = SpecR[T ]/(σ|U ).

8.2.3. Minimal ideals for endomorphisms. Let X be a scheme, L a rank 1 locally
free sheaf on X, and E a quasicoherent sheaf on X. A morphism of OX -modules

φ : L∨ → End(E)

is equivalent to a morphism of OX -algebras

φ• : Sym• L∨ → End(E).

The minimal ideal of φ, denoted Iφ, is defined to be the kernel of φ•. The minimal

cover X̃(φ)→ X associated to φ is defined to be the subscheme of L defined by Iφ.

Note that E induces a quasicoherent sheaf M on X̃(φ) such that the pushforward of
M to X is equal to E. If E is locally finitely generated, the support of M is exactly

X̃(φ) (i.e., locally, the support is the set of primes containing the annihilator of the
finitely generated module).

More generally, for any ideal sheaf I ⊆ Sym• L∨, a quasicoherent sheaf M on
the scheme V (I) ⊆ L is equivalent to a quasicoherent sheaf E on X together with
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a morphism φ : L∨ → End(E) such that I ⊆ Iφ; the identification is made via
pushforward; i.e., E is the pushforward of M .

Locally on X, for locally free sheaves this is described as follows. Suppose that E
is locally free of rank n, and is trivial over U = SpecR ⊆ X. Then φ : L∨ → End(E)
induces an evaluation morphism φ•|U : R[T ] → EndR(Rn) sending T to φ|U . The
kernel kerφ•|U is the restriction of the minimal ideal Iφ|U . We have that Rn

is an R[T ]/Iφ|U -module, with support SpecR[T ]/Iφ|U . In addition, so long as
σ|U ∈ Iφ|U , we can view Rn as an R[T ]/(σ|U )-module, as well. In other words,
E is obtained by push forward from a sheaf on the spectral cover associated to σ
(although it may only be supported on the possibly smaller minimal cover associated
to φ).

This discussion allows us to identify Higgs bundles with given minimal ideal with
certain sheaves on the spectral cover.

Proposition 8.4 ([BNR89, Prop. 3.6]). Let X → S be a proper morphism of finite
presentation between schemes with S excellent, and let L be a locally free sheaf of
rank 1 on X. Given an S-morphism

σ′ : S′ → AX/S(L)(n),

to give a pair (E′, φ′) in HX/S(L)(n)(S′) such that φ′ has minimal ideal Iφ′ equal

to Iσ′ , it is equivalent to give a coherent sheaf M ′ on X̃ ′(σ′) (where X ′ = X×S S′)
such that the pushforward of M ′ to X ′ is a rank n locally free sheaf and the support

of M ′ is X̃ ′(σ′).

Proof. As we have seen above, (E′, φ′) ∈ HX/S(L)(n)(S′) corresponds to a quasico-

herent sheaf M ′ on L′ (the total space of L′) whose support is X̃ ′(φ′). But X ′(φ′)

coincides with X̃ ′(σ′) if and only if Iσ′ = Iφ′ . �

Remark 8.5. It is easy to see that every locally free sheaf M ′ of rank 1 on X̃ ′(σ)
satisfies the conditions in Proposition 8.4. Note that one can easily construct exam-

ples (even with X̃ ′(σ′) a union of smooth complex projective curves) where there

are sheaves M ′ on X̃ ′(σ′) that push forward to rank n locally free sheaves E′ on X
such that the induced endomorphism φ′ : E′ → E′⊗L′ does not have characteristic
polynomial equal to σ′; this is the reason for the hypothesis on the support of M ′.

8.2.4. Fibers of the Hitchin map. The following lemma asserts that the category of
sheaves in Proposition 8.4 above is contained in the fiber of the Hitchin map.

Lemma 8.6. A pair (E′, φ′) in HX/S(L)(n)(X ′) such that the minimal ideal Iφ′ is
equal to Iσ′ has characteristic polynomial given by σ′. Moreover, if X ′ is integral

and the fiber of X̃ ′(σ′) over the generic point of X is geometrically reduced (e.g.,

X ′ is a variety over C and X̃ ′(σ′) is reduced), then the converse holds.
In other words, under these hypotheses, Proposition 8.4 describes the fiber of the

Hitchin morphism in terms of sheaves on the spectral cover.

Proof. Let (E′, φ′) be a Higgs bundle as in the statement of the lemma, and let
pφ′(T ) be the characteristic polynomial of φ′.

Assume first that Iφ′ = Iσ′ . Viewing the characteristic polynomial as a global
section pφ′(T ) : OX′ →

⊕n
i=1 L

⊗i|X′ defines a locally principal ideal Ipφ′ (T ) of

Sym• L∨ (§8.2.1). The Cayley–Hamilton theorem says that Ipφ′ (T ) ⊆ Iφ′ . But we

are assuming that Iφ′ = Iσ′ . So we have Ipφ′ (T ) ⊆ Iσ′ , with both being locally
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principal generated by monic polynomials of degree n. So we have reduced to the
local statement: Given a ring R, and two principal ideals (f(T )) and (g(T )) in R[T ]
with both f(T ) and g(T ) monic of degree n, if (f(T )) ⊆ (g(T )), then f(T ) = g(T ).
Thus the characteristic polynomial pφ′(T ) is given by σ.

Conversely, suppose X is integral, the fiber of X̃ ′(σ′) over the generic point of
X is geometrically reduced, and that the characteristic polynomial pφ′(T ) is given
by σ′. We want to show that Iφ′ = Iσ′ . It is enough to do this locally. In other
words, we assume that R is an integral domain with field of fractions K contained
in an algebraic closure K, that σ(T ) ∈ R[T ] is a monic polynomial of degree n,
that K[T ]/(σ(T )) is reduced, and that φ : Rn → Rn is an endomorphism with
characteristic polynomial σ(T ). We want to show the containment Iφ ⊇ (σ(T )) is
an equality. So consider 0 6= f(T ) ∈ Iφ. The claim is that f(T ) is divisible by σ(T )
in R[T ]. To see this, note that with φK : Kn → Kn the induced morphism, we
have that f(φK) = 0. Thus f(T ) is divisible in K[T ] by the minimal polynomial
for φK . Note also that from the local definition of the characteristic polynomial, it
is clear that the the characteristic polynomial of φK is the same as for φ, namely
σ(T ). Our assumption that K[T ]/(σ(T )) is reduced, i.e., that the characteristic
polynomial of φK has distinct roots, implies that the characteristic polynomial for
φK agrees with the minimal polynomial. Thus f(T ) is divisible by σ(T ) in K[T ].
But since σ(T ) is monic, one can then conclude (see the remark below) that f(T )
is divisible by σ(T ) in R[T ]. �

Remark 8.7. Let R be an integral domain and let K be its field of fractions. Suppose
that f(T ), g(T ) ∈ R[T ] with g(T ) monic, and there exists h(T ) ∈ K[T ] such that
f(T ) = g(T )h(T ) ∈ K[T ]. Then h(T ) ∈ R[T ]. Indeed, let us write

f(T ) =

n+m∑
i=0

aiT
i, g(T ) =

n∑
i=0

biT
i, h(T ) =

m∑
i=0

ciT
i.

Then we have

an+m = bncm

an+m−1 = bncm−1 + bn−1cm

...

an = bnc0 + bn−1c1 + · · ·+ b0cn.

(Here cj is taken to be 0 if j > m.) Since bn is assumed to be 1, the first equality
shows that cm ∈ R. The second then shows that cm−1 ∈ R, and so on until we
have established that c0 ∈ R.

Example 8.8. It can be instructive to consider Proposition 8.4 and Lemma 8.6
the case where X = S = SpecC and L = OX .

Remark 8.9. In the case where π : X → S is a smooth relative curve; i.e., a smooth
proper morphism such that every geometric fiber is connected, and dimension 1,
more can be said. If σ′ : S′ = Spec(k)→ AX/S(L)(n) is a geometric point inducing

a reduced spectral curve X̃ ′(σ′) over Spec k, then h−1(σ′) is the the compactified Pi-

card stack, parameterizing rank 1, torsion-free sheaves on X̃ ′(σ′) [Sch98, Prop. 5.1].

If X̃ ′(σ′) is assumed further to be an integral curve, which is the case considered in
[BNR89, Prop. 3.6], then the key point is that in the notation of Proposition 8.4,
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for π′∗M to be locally free, and thus torsion-free, it must be that M is torsion-free.
Then, since X ′ is a smooth curve over k, any torsion-free sheaf is locally free, and
thus for any torsion-free sheaf on X ′, the push-forward is locally free. The case of a

general spectral curve X̃ ′(σ′) is considered in [Sch98]; the connection between slope
stability of Higgs bundles on X ′ and slope stability of rank 1 torsion free sheaves

on X̃ ′(σ′) in the sense of Oda–Seshadri is also considered there. See also [Nit91,
Thm. 6.1].

9. Morphisms of stacks in algebraic geometry

As explained in Definition 6.10, many reasonable properties of morphisms in our
presite S may be extended to S-representable morphisms of stacks. However, not
every morphism of algebraic stacks that deserves to be called quasicompact or étale
or smooth (to name just a few) is necessarily schematic.

In Section 6.5, we saw how to extend the notion of smoothness to morphisms
between algebraic stacks, but this definition required the choice of a presentation of
the stack in question. Since stacks representing moduli problems rarely come with
an easily described presentation, it would be better to have an intrinsic definition
of smoothness.

To give such a definition, as well as definitions of other geometric properties or
morphisms between algebraic stacks, will be the purpose of this section.

Warning 9.1. We caution that although many of the definitions given here make
sense for arbitrary morphisms of CFGs, or for arbitrary morphisms of stacks, they
should not necessarily be regarded as reasonable generalizations from schemes with-
out a further algebraicity assumption.

The characterization of smoothness we give in Section 9.7, for example, is only
reasonable for morphisms of algebraic stacks (or at least morphisms representable
by algebraic stacks) and not necessarily for all stacks.

9.1. Injections, isomorphisms, and substacks. In Definition 4.7 we gave the
definition of an injection and of an isomorphism of stacks. We have not given a
special name to morphisms of algebraic stacks that are only faithful (rather than
being fully faithful or equivalences, respectively) when viewed as functors, because
we already have one:

Lemma 9.2. A morphism of algebraic stacks f : X → Y that is objectwise a
faithful functor is representable by algebraic spaces.

By saying f : X → Y is objectwise a faithful functor we mean that for each
scheme S the induced functor of groupoids f(X) : X (S)→ Y(S) is faithful.

Proof. Suppose that Z is an algebraic space and Z → Y is a morphism. Let XZ be
the base change, which is algebraic by Corollary 6.32. The projection XZ → Z is
also faithful. But if Z is viewed as a stack then, for any scheme S, the fiber Z(S) is
equivalent to a set. Since XZ(S) is equivalent to a subcategory of Z(S), this means
that XZ(S) is equivalent to a set, which means that XZ is an algebraic space. �

Definition 9.3 (Open and closed substacks). Let X be a stack over S. A substack
U ⊆ X (resp. Z ⊆ X ) is called an open substack (resp. closed substack) if for every
scheme W , the fiber product U ×X W (resp. Z ×X W ) is representable by an open
(resp. closed) subscheme of W .
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9.2. The underlying topological space.

Definition 9.4 (Topological space of a stack). Let X be a stack on the category
S of schemes. For each scheme S, write |S| for the underlying topological space of
S. The underlying topological space of X is the universal topological space |X | that
receives a continuous map |S| → |X | for each map S → X .

In other words, |X | = lim−→
S→X

|S| is the colimit of the spaces |S|, taken over all

maps from schemes S to X .

Remark 9.5. In [Sta15, Tag 04XE], the underlying topological space was defined
only for algebraic stacks, but [Sta15, Tag 04XG] makes sense for arbitrary categories
fibered in groupoids and agrees with the definition given here because the underlying
set of a colimit of topological spaces is the colimit of the underlying sets.

The topology on the underlying set was only defined in [Sta15, Tag 04XL] for
algebraic stacks. However, the topology of loc. cit. agrees with Definition 9.4.
Recall that a subset of |X | is called open if its preimage under a fixed flat, finite
presentation, surjective map U → X is open. This topology is clearly at least as
fine than the topology we have defined, so we verify that every subset of |X | that
is open in the sense of [Sta15, Tag 04XL] is open in the sense of Definition 9.4.

Indeed, if U → X is flat and locally of finite presentation then for any V → X ,
the map U ×X V → V is also flat and of finite presentation. The preimage in |V |
of the image of |U | in |X | is the same as the image of |U ×X V | in |V |. Since
U ×X V is flat of finite presentation over V , its image in |V | is open, so the image
of |U | in |X | pulls back to an open subset of |V |. This holds for any V → X so the
image of |U | in |X | is open, by definition of the colimit topology. As the topology
in loc. cit. is uniquely characterized by this property, it must agree with |X |, as
defined in Definition 9.4.

9.3. Quasicompact and quasiseparated morphisms.

Definition 9.6 (Quasicompact morphisms). We call a stack X over S quasicompact
if every covering of X (Definition 6.2) by open substacks has a finite subcover. A
morphism of stacks X → Y is quasicompact if X ×Y Z is quasicompact for all
quasicompact schemes Z and all morphisms Z → Y. A morphism of stacks X → Y
is quasiseparated if the diagonal morphism X → X ×Y X is quasicompact.

9.4. Separation and properness. We will not actually discuss the separatedness
or properness of morphisms of algebraic stacks in any examples in this survey, but
we include the definitions for the sake of completeness.

Since smooth morphisms of schemes are always locally of finite type, Section 6.5
shows that there is a unique way to make sense of locally finite type morphisms
of algebraic stacks that is stable under base change and composition and local to
the source and target. Technically, this breaks our promise to give only intrinsic
definitions in this section. However, in the noetherian situation, finite type coincides
with finite presentation, which is characterized intrinsically in Section 9.6.

Definition 9.7 (Proper and separated morphisms of algebraic stacks). A morphism
of algebraic stacks X → Y is said to be proper if it is an isomorphism or it is
separated, of finite type, and universally closed. It is said to be separated if its
diagonal X → X ×Y X is proper.
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Remark 9.8. Definition 9.7 is not as circular as it appears. The diagonal morphism
of a morphism of algebraic stacks is representable by algebraic spaces (Lemma B.15,
[Sta15, Tag 04XS]), so the definition of separatedness for algebraic stacks depends
only on the definition of properness for algebraic spaces. Iterating Definition 9.7,
we see that definition of properness for algebraic spaces depends on separatedness
for morphisms of algebraic spaces, and therefore, by iterating again, the definition
depends on the definition of properness for diagonals of algebraic spaces. Continuing
further, we see that we must define separatedness for diagonals of algebraic spaces.
But the diagonal of a morphism of algebraic spaces is injective, so the definition
ultimately depends on the definition of separatedness for injections of algebraic
spaces. But the diagonal of an injection is an isomorphism, so is automatically
proper.

9.5. Formal infinitesimal properties.

Definition 9.9 (Infinitesimal extension [Gro67, Def. (17.1.1)]). An infinitesimal
extension or nilpotent extension of a scheme S is a closed embedding S ⊆ S′ such
that the ideal of S in S′ is nilpotent.

Lemma 9.10. Suppose that S ⊆ S′ is an infinitesimal extension and that T → S
is étale. Then there is an infinitesimal extension T ⊆ T ′ and étale map T ′ → S′

inducing T as the fiber product T ′ ×S′ S. Moreover, T ′ is unique up to unique
isomorphism.

Proof. Since T ′ will be unique when it is constructed, this is a local problem in the
Zariski topology on S′: if T ′ has been constructed over a suitable open cover, the
uniquenes will imply that the various T ′s can be glued together. We can therefore
work Zariski-locally in S′, or equivalently in S, since S and S′ have the same Zariski
topology.

The same reasoning shows that we can work Zariski-locally in T as well. This
permits us to assume that S, S′, and T are all affine. By the Jacobian criterion (e.g.,
[Sta15, Tag 00TA, 00T6]), we can assume that S = SpecA and that T = SpecB

where B = A[x1, . . . , xn]/(f1, . . . , fn) and the determinant det ∂fi
∂xj

is a unit of B.

If S′ = SpecA′, we take T ′ = SpecB′ where B′ = A′[x1, . . . , xn]/(g1, . . . , gn) where

gi is an arbitrary lift of fi to a polynomial with coefficients in A′. Then det ∂gi
∂xj

reduces to det ∂fi
∂xj

in B. Since B′ is an infinitesimal extension of B, this means

that det ∂gi
∂xj

is a unit in B′, so by the Jacobian criterion, B′ is étale over A′.

This establishes that T ′ exists locally in the Zariski topology of S′. It remains
to prove the uniqueness of T ′. Suppose that T ′ and T ′′ are two such extensions.
Then by the infinitesimal lifting criterion for étale maps, applied to the diagram

T //

��

T ′

��

u

��

T ′′ //

v

EE

S′

and there are unique lifts u : T ′ → T ′′ and v : T ′′ → T ′. These must compose
to the identity maps, again by the infinitesimal criterion for étale maps, this time
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applied to the diagrams below:

T //

��

T ′

��

T ′′ //

vu
88

id

EE

S′

T //

��

T ′

uv
xx

id

�� ��

T ′′ // S′.

�

Corollary 9.11. Suppose that S ⊆ S′ is an infintisimal extension of schemes.
Then the étale sites of S and S′ are equivalent.

Definition 9.12. A morphism of CFGs f : X → Y is said, respectively, to be
formally unramified, formally étale, or formally smooth if every commutative dia-
gram (9.1) below, in which S ⊆ S′ is an infinitesimal extension of schemes, admits
at most one (up to unique isomorphism), exactly one (up to unique isomorphism),
or at least one lift étale-locally in S.

(9.1)

S //

��

X

��

S′ //

>>

Y.

We explicate a bit the meaning of ‘étale-locally’ in the definition. To say that
X → Y is formally smooth means that, given any lifting problem (9.1), there is an
étale cover {Sα → S} such that, denoting by S′α the unique infintesimal extension
of Sα lifting S (by Lemma 9.10), the diagram

(9.2)

Sα //

��

S //

��

X

��

S′α

77

// S′ // Y

admits a lift for every α.
To say that X → Y is formally unramified means, first, that that given any two

lifts of (9.1), there is a cover of S by Sα such that the induced lifts of (9.2) are
isomorphic, and, second, that any two isomorphisms between lifts of (9.1) agree
after passage to a suitable étale cover of S.

To be formally étale is the conjunction of these properties.

9.6. Local finite presentation. It was observed in [Gro66, Prop. 8.14.2] that a
scheme X is locally of finite presentation if and only if whenever A = lim−→Ai is a
filtered colimit of commutative rings, the natural map

(9.3) lim−→X(Ai)→ X(A)

is a bijection. The same formula characterizes algebraic stacks that are locally of
finite presentation, provided one interprets a filtered colimit of groupoids correctly.
It is therefore reasonable to use (9.3) as the definition of local finite presentation
for stacks that are not known to be algebraic.

To make sense of the filtered colimit of groupoids in equation (9.3), one can take

Obj lim−→X (Ai) =
⋃
i

ObjX (Ai)
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and, for any objects ξ ∈ X (Ai) and η ∈ X (Aj),

Hom(ξ, η) = lim−→
k≥i,j

HomX (Ak)(ξk, ηk)

where ξk and ηk denote pullbacks of ξ and η, respectively, to X (Ak).
In order to formulate local finite presentation for morphisms of stacks, it is

useful to introduce the pro-object “ lim←−” SpecAi associated to a filtered system
of commutative rings Ai. By definition, “ lim←−” SpecAi is the covariant functor

on schemes (and stacks) obtained by taking the filtered colimit of the functors
represented by the SpecAi. What this actually means is that one should interpret
a morphism

“ lim←−” SpecAi → X

to a scheme (or stack) as an object of

lim−→Hom(SpecAi, X) = lim−→X(Ai);

i.e., as compatible systems of morphisms SpecAi → X.

Remark 9.13. In more technical terms, the quotation marks indicate that one is
taking a colimit in the category of covariant functors valued in sets (or groupoids).
We absolve ourselves of responsibility for the notation [sga72b, p. 81].

Definition 9.14. A morphism X → Y of stacks in the étale topology on schemes
is said to be locally of finite presentation if whenever A = lim−→Ai is a filtered colimit

of commutative rings, then every commutative diagram of solid lines (9.4) can be
completed uniquely by a dashed arrow.

(9.4)

SpecA //

��

X

��

“ lim←−” SpecAi //

99

Y

Remark 9.15. Observe the resemblance between the lifting diagram (9.4) and the
lifting diagram (9.1). This allows us to reason formally about étale maps and local
finite presentation maps at the same time.

Under this analogy, Lemma 9.16 below is the analogue of Lemma 9.10.

Lemma 9.16. Suppose that a ring A is the filtered colimit of rings A`. Set S =
SpecA and S` = SpecA`. Then for any affine1 étale map T → S there is for some
` an affine scheme T` admitting an étale map T` → S`, and this map is unique up
to unique isomorphism and enlargement of `.

Proof. Suppose that T = SpecB is affine and étale over S. By the Jacobian
criterion, there is an open cover of T by finitely many subsets U = SpecC where
C = A[x1, . . . , xn]/(f1, . . . , fn) and det ∂fi

∂xj
is a unit of C. Since we are proving

a uniqueness statement and only finitely many such subsets are involved, we may
treat the subsets individually. We may therefore assume that T = U .

For k sufficiently large, the coefficients of the fj all appear in the image of Ak
in A, so that we may form the ring Bk = A[x1, . . . , xn]/(g1, . . . , gn) for some lifts

g1, . . . , gn of f1, . . . , fn to Ak. The determinant det ∂gi
∂xj

maps to the unit det ∂fi
∂xj

1In fact, quasicompact and quasiseparated would suffice.
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in B. Pick t ∈ B inverse to det ∂fi
∂xj

. As B = lim−→`≥k B`, the element t must be in

the image of some B` with ` ≥ k. Furthermore t ∂gi∂xj
must equal 1 in all sufficiently

large B`. This implies that by taking ` sufficiently large, the image of det ∂gi
∂xj

is a

unit. Thus B` is étale over A` for all sufficiently large `, and B` induces B over A.
We must still prove that B` is unique up to enlargement of `. Suppose that Ck

were étale over Ak, also inducing B over A. Since B` is of finite presentation over
A` and Ck is of finite presentation over Ak, the isomorphism lim←−B` ' B ' lim←−Ck
must come from an isomorphism Bm ' Cm defined over some m that is ≥ k and
≥ `. This map is necessarily unique up to further enlargement of m (see [Gro66,
Thm. (8.8.2) (i)] for more details). �

Definition 9.17. By an étale map “ lim←−”Ui → “ lim←−” SpecAi, we mean a family of
maps Ui → SpecAi that are étale for all sufficiently large i.

In terms of this definition, Lemma 9.16 says any étale map U → “ lim←−” SpecAi is
induced from an étale map “ lim←−”Ui → “ lim←−” SpecAi, and that this map is unique
up to a unique, suitably defined, isomorphism.

Remark 9.18. Lemma 9.16 says, in a sense that we do not attempt to make precise,
that the étale site of SpecA is the colimit of the étale sites of the SpecAi, whenever
A is the filtered colimit of the Ai. See [sga72c, Thm. 8.3.13].

9.7. Smooth, étale, and unramified morphisms.

Definition 9.19 (Unramified, étale, smooth][Gro67, Def. (17.3.1)]). A morphism
of algebraic stacks f : X → Y is said, respectively, to be unramified, étale, or
smooth if it is locally of finite presentation and formally unramified, formally étale,
or formally smooth.

We have now defined smooth morphisms between algebraic stacks in two ways.
On one hand, we have defined smooth morphisms in Definition 6.23 as the unique
extension of smoothness from morphisms of schemes in a way that is stable under
composition and base change and local to the source and target. On the other
hand, we have defined smoothness intrinsically for morphisms of algebraic stacks
in Definition 9.19.

We are obliged to verify that they are equivalent. It is sufficient to show that
local finite presentation and smoothness are stable under composition and base
change and local to the source and target, as these definitions clearly agree with
the usual definitions in the category of schemes and the extension in Definition 6.23
was uniquely characterized by these properties.

Lemma 9.20. Let P be one of the following properties of morphisms of stacks in
the étale topology on schemes:

(i) formal smoothness,
(ii) formal unramifiedness,

(iii) formal étaleness, or
(iv) local finite presentation.

Then P is stable under composition and base change and is local to the source and
target.

Proof. We omit the verification for composition and base change, since these are
formal and straightforward.
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All of these properties may be phrased in terms of existence or uniqueness (or
both) of lifts of a diagram

(9.5) S //

��

X

��

S′

>>

// Y
In the case of formal unramifiedness, formal étaleness, or formal smoothness, S′ is
an infinitesimal extension of S. In the case of local finite presentation, we have a ring
A that is the filtered colimit of rings Ai, and S = SpecA and S′ = “ lim←−” SpecAi.

The only fact we will use here is that if S → S′ is the left side of one of these
diagrams and T → S is an étale map, then there is a unique (up to unique iso-
morphism) extension of T to an étale map T ′ → S′. In the case where S → S′ is
an infinitesimal extension, this is Lemma 9.10; in the case where S = SpecA and
S′ = “ lim←−” SpecAi with the Ai filtered and lim−→Ai = A, this is Lemma 9.16.

We prove locality to the target. Consider a lifting problem (9.5), and assume
that Y ′ → Y is a covering map such that the base change X ′ → Y ′ is P. We may
freely replace S by an étale cover, so we may assume that the map S′ → Y factors
through Y ′. This induces a factorization of S → X through X ′. Property P for X ′
over Y ′ gives a lift f in diagram (9.6), which yields g by composition.

(9.6)

S //

��

X ′ //

��

X

��

S′ //

f
>>

g

77

Y ′ // Y
Now we prove locality to the source. Again, consider a lifting problem (9.5)

and suppose that X0 → X is a cover that is formally smooth over Y. Since we
can replace S by an étale cover, we can assume that S → X factors through X0.
Formal smoothness of X0 over Y gives a lift f in diagram (9.7), which gives us g
by composition.

(9.7)

S //

��

X0

��

X

��

S′

f

FF

g

>>

// Y
�

10. Infinitesimal deformation theory

In this section we introduce some deformation theory, with a view towards Artin’s
criterion for a stack to be algebraic. Roughly speaking, deformation theory is the
study of families of objects over Artin rings. To get a concrete idea, consider the
Kodaira–Spencer approach to deforming a complex manifoldX over the unit disk by
extending the given transition functions τij of the manifold to transition functions

τ̃ij = τij + τ
(1)
ij t + τ

(2)
ij t

2 + · · · , where t is the parameter on the disk (for each

fixed t, one obtains a manifold with the given transition functions). Deformation
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theory would then be the problem of iteratively accomplishing this formally, by first

extending up to t (e.g., τij +τ
(1)
ij t mod t2), and then extending up to t2, and so on.

In the process, one would observe that the first order deformations are governed by
H1(X,TX) (called the tangent space), and that once one has extended to first order,
the ability to extend to second order would be goverened by H2(X,TX) (called an
obstruction space).

In general, deformation theory aims to abstract this to the setting of any stack
over schemes (and to deforming over bases other than the unit disk). The heart of
the matter turns out to be defining the tangent space to a stack, and an obstruction
theory to a stack. We take an abstract point of view and identify precisely the
condition, homogeneity, on a CFG that gives it a well-behaved tangent space. The
advantage of this abstraction is that the existence of a well-behaved tangent space,
and obstruction theory, can be used to prove that a stack is algebraic, as we will
discuss in Section 11.

10.1. Homogeneous categories fibered in groupoids. After introducing ho-
mogeneity and demonstrating its basic properties, our goal will be to show that the
stack of Higgs bundles is homogeneous, without relying on its algebraicity. In this
first section we stick to the abstract setting, and also introduce the tangent space
to a stack. We discuss the pertinent deformation theory in the following section,
§10.2, where we establish that the stack of Higgs bundles in homogeneous.

10.1.1. The tangent bundle of a stack. The following definition reprises Defini-
tion 9.9:

Definition 10.1 (Square-zero extension). An infinitesimal extension of schemes
is a closed embedding S ⊆ S′ such that the ideal IS/S′ is nilpotent. A square-zero

extension is an infinitesimal extension S ⊆ S′ such that I2
S/S′ = 0.

The utility of square-zero extensions is twofold: every infinitesimal extension
can be factored as a sequence of square-zero extensions, and square-zero extensions
behave ‘linearly’, in the sense that deformations and obstructions over square-zero
extensions are classified by linear-algebraic data. These observations may be viewed
as a functorial perspective on Taylor series.

The most important examples of infinitesimal extensions are the trivial ones:

Definition 10.2 (Dual numbers). The ring of dual numbers is D = Z[ε]/(ε2).
For any scheme S, we write S[ε] = S ×SpecZ SpecD. More generally, if V is a
quasicoherent sheaf of OS-modules, we write D(V ) for the sheaf of OS-algebras,

OS + εV = Sym•(εV )/(ε2 Sym2 V ),

whose underlying sheaf of abelian groups consists locally of symbols f + εv with
f ∈ OS and v ∈ V and has multiplication law

(f + εv)(g + εw) = fg + ε(fw + gv).

We write S[εV ] for the scheme whose underlying topological space is S and whose
sheaf of rings is D(V ); i.e., S[εV ] = Spec

S
D(V ).

There is a canonical morphism S[εV ]→ S corresponding to the following homo-
morphism of sheaves of rings:

OS → OS + εV

f 7→ f + 0ε
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Unless otherwise specified, when it is necessary to equip S[εV ] with the structure
of a scheme over S, we do so with this morphism.

Remark 10.3. The construction of S[εV ]→ S commutes with base change in S. It
can therefore be extended to apply to any CFG, as follows. If X is a CFG and V is
a quasicoherent sheaf on X , then we define X [εV ](S) to the category of pairs (ξ, δ)
where ξ ∈ X (S) and δ is a section of S[εξ∗V ] over S. When V = OX , we write X [ε]
rather than X [εOX ]; in this case

X [ε] = X ×SpecZ SpecD.

Definition 10.4 (Tangent bundle). Let X be a CFG over S/S. We give R[ε] the
structure of an S-scheme via the canonical projection R[ε] → R → S, and the
relative tangent bundle of X over S is the category fibered in groupoids TX/S over
S/S with

TX/S(R) = X
(
R[ε]

)
for each S-scheme R.

Remark 10.5. If X is a presheaf, then TX/S is also a presheaf. In the case of
S = SpecZ we write TX = TX/ SpecZ.

The idea to study the tangent space this way, and to think of the spectrum of
the ring of dual numbers as a pair of infinitesimally nearby points, goes back at
least to Weil [Wei53, §2].

Proposition 10.6. For any morphism of schemes X → S, we have

TX/S = Spec
X

(Sym• ΩX/S)

Proof. This reduces to the affine situation, where it comes down to the following

identities: given a ring k and algebras k → A
φ→ B, then

Homk -alg,φ(A,B[ε]) = Derk(A,B) = HomA -mod(ΩA/k, B)

= HomA -alg(Sym•ΩA/k, B),

where the first group of homomorphisms consists of the k-algebra homomorphisms
that reduce to φ modulo ε. �

Corollary 10.7. When X is a smooth scheme over C, then TX/ SpecC is a vector
bundle over X and coincides with any familiar definition of the tangent bundle.

Corollary 10.8. When X is an algebraic stack over S, so is TX/S.

Proof. It is almost immediate that TX/S is a stack in the étale topology: If we have

an étale cover of R by Ui then the Ui[ε] form an étale cover of R[ε]. Étale descent for
the maps Ui[ε]→ X to R[ε]→ X yields étale descent for Ui → TX/S to R→ TX/S .
To see that TX/S is an algebraic stack, note that if X0 → X is a smooth cover of
X by a scheme then then TX0/S → TX/S is also a smooth cover. �

Warning 10.9. We will see in a moment (item (i) on p. 72) that there is a pro-
jection TX/S → X , as one expects, but that it is not necessarily representable by
algebraic spaces! This is because the objects parameterized by X may possess in-
fintisimal automorphisms. Nevertheless we will see that the fibers of TX/S over X
behave like ‘groupoids with vector space structure’. This is why we insist on calling
TX/S the tangent bundle: it has all the features of a vector bundle except for being
a set!
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10.1.2. Homogeneity.

Theorem 10.10 ([Wis11, Prop. 2.1]). Let S be a scheme. Suppose that Q ⊆ Q′ is
an infinitesimal extension of S-schemes and f : Q → R is an affine S-morphism.
Then there is a universal (initial) S-scheme R′ completing diagram (10.1):

(10.1)

Q �
� inf.

//

faffine

��

Q′

��

R // R′

Furthermore, R′ is also universal (initial) among algebraic S-stacks completing the
diagram. The underlying topological space of R′ is the same as that of R and viewing
OQ′ and OR′ as sheaves on Q and R respectively,

OR′ = OR ×
f∗OQ

f∗OQ′ .

In particular, if R = SpecA (hence Q and Q′ are also affine, say Q = SpecB and
Q′ = SpecB′) then

R′ = Spec(A×
B
B′).

The universality here means that for any algebraic stack X the natural map
displayed in equation (10.2) is an equivalence of groupoids:

(10.2) X (R′)→ X (R) ×
X (Q)

X (Q′)

Proof. We will prove this in the case where R is also an infinitesimal extension
of Q, which implies that the étale sites of Q, Q′, R, and R′ are all equivalent
(Corollary 9.11).

First, note that schemes are homogeneous. Indeed, suppose we have a commu-
tative diagram

Q �
�

//

��

Q′

��

R // X

where X is a scheme. All of Q, Q′, and R have the same underlying topological
space, so we denote by f the continuous map from that space to the underlying
topological space of X. The maps of schemes give homomorphisms of sheaves of
rings:

f−1OX //

��

OQ′

��

OR // OQ
By the universal property of OR′ = OR ×OQ OQ′ , there is a unique factorization

f−1OX → OR′ , which gives the desired, uniquely determined, map R′ → X.
To extend this to algebraic stacks, it is sufficient by Definition 6.27 to show that

whenever X is a stack admitting a smooth cover by a homogeneous stack, X is
homogeneous.
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Suppose that we have a commutative diagram

Q �
�

//

��

Q′

��

R // X
where X has a smooth cover X0 → X and X0 is homogeneous. Since we are trying
to prove a uniqueness assertion, it is sufficient to work étale-locally on Q. Replace
Q by an étale cover such that the map Q → X factors through X0. Since X0 is
formally smooth over X , we can assume, after refining the cover further, that the
maps Q′ → X and R → X also lift to X0, extending the lift already constructed
over Q. By the homogeneity of X0, there is a unique map R′ → X0 compatible
with the maps from Q, Q′, and R. Composing with the projection to X gives the
desired map R′ → X . �

Definition 10.11 (Pushout). Suppose that Q ⊆ Q′ is an infinitesimal extension
of S-schemes and f : Q → R is an affine S-morphism. We refer to the scheme R′

in Theorem 10.10 as the pushout of Q ⊆ Q′ along the map f : Q→ R.

A CFG is said to be homogeneous if it behaves like an algebraic stack with
respect to (10.2):

Definition 10.12 (Homogeneous CFG). A CFG (not necessarily an algebraic
stack) is said to be homogeneous if for every pushout as in Definition 10.11, we
have (10.2) is an equivalence of categories.

Remark 10.13. This definition is a natural extension of [sga72a, Def. VI.2.5], which
was stated only in the context of artinian algebras. For much of what we have to
say, we will only be interested in homogeneity with respect to morphisms Q → R
that are isomorphisms on topological spaces. However, in practice, it is little more
difficult to verify homogeneity in the generality we have formulated it.

As we have seen in Theorem 10.10, homogeneity is a necessary condition for
a stack over schemes to be algebraic. It is not sufficient, but in the presence of
a reasonable finiteness condition, it does guarantee formal representability by an
algebraic stack (see Theorem 11.10).

The following theorem is very helpful for checking homogeneity. It was asserted
by Schlessinger in [Sch68, Lem. 3.4] but proved there only for free modules; Milnor
gave a proof for projective modules [Mil71, Thms. 2.1–2.3]; a proof in the general
case can be found in [Fer03, Thm. 2.2].

Theorem 10.14 (Schlessinger, Milnor, Ferrand). Let Q be the CFG whose fiber
over a scheme S is the category of flat, quasicoherent OS-modules. Then Q is
homogeneous.

In language closer to the original statements, this says that if one has a cartesian
diagram of commutative rings

B B′
inf.oo

A

OO

A′

OO

oo
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in which B′ → B (and therefore also A′ → A) is a nilpotent extension then it is
equivalent to specify either of the following data:

(i) a flat A′-module M ′, or
(ii) a flat A-module M , a flat B′-module N ′, a flat B-module N , and an A-

module map M → N and a B′-module map N ′ → N inducing by adjunction
isomorphisms M ⊗A B → N and N ′ ⊗B′ B → N of B-modules.

One direction of the correspondence sends M ′ to M = M ′⊗A′ A, N ′ = M ′⊗A′ B′,
N = M ′⊗A′ B with the canonical maps M ′⊗A′ A → M ′⊗A′ B and M ′⊗A′ B′ →
M ′⊗A′ B. The other direction has M ′ = M ×N N ′.

10.1.3. Tangent bundle to a homogeneous stack. To begin to appreciate the signif-
icance of homogeneity, consider that in general, the tangent bundle of a stack, and
even the tangent bundle of a presheaf, need not be a very well behaved object: it
might not even be a vector space. However, the tangent space of a homogeneous
stack has all of the familiar structure one expects:

(i) (projection to base) The map Z[ε]/(ε2) → Z sending ε to 0 induces closed
embeddings R → R[ε] for all schemes R. For any S-scheme R, we use this
to obtain a morphism TX/S(R) = X (R[ε]) → X (R), whence a projection
TX/S → X . (This does not require homogeneity.)

(ii) (zero section) The map Z → Z[ε]/(ε2) induces R[ε] → R. This gives a map
X (R) → X (R[ε]) = TX/S(R), whence a section X → TX/S of the aforemen-
tioned projection. This is the zero section in the vector bundle when TX/S is
a vector bundle. (This does not require homogeneity.)

(iii) (addition law) We have Z[ε1, ε2]/(ε21, ε1ε2, ε
2
2)

∼−→ D×Z D given by

x+ yε1 + zε2 7→ (x+ yε1, x+ zε2).

In addition to the two projections D×Z D→ D, there is a third map sending
both ε1 and ε2 to ε. We obtain a commutative diagram whose outer square is
cartesian (in fact the upper right and lower left are cartesian as well):

Z Z[ε1]oo

Z[ε]

ii

Z[ε2]

OO

Z[ε1, ε2]/(ε1, ε2)2ε1 7→0
oo

ε2 7→0

OO

ε1,ε2 7→ε
ii

Applying this to any S-scheme R, we obtain a pushout diagram with an extra
morphism σ : R[ε]→ R[ε1, ε2], where R[ε1, ε2] = R× Spec(D×Z D) (it is also
the vanishing locus of ε1ε2 in R[ε1][ε2]):

R R[ε1]//

R[ε]
))

R[ε2]
��

R[ε1, ε2]//
��))

Now consider maps from the diagram above into our homogeneous stack X ;
the map X (R[ε1, ε2]) → X (R[ε1]) ×X (R) X (R[ε2]) is an equivalence of cate-
gories.
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Combining these facts, and abbreviating TX/S to T , we have a diagram:

T (R) ×
X (R)

T (R) = X (R[ε1]) ×
X (R)
X (R[ε2])

∼←− X (R[ε1, ε2])
X (σ)−−−→ X (R[ε]) = T (R)

This gives the fibers of TX/S(R) → X (R) an addition law; i.e., given an
R-point R → X , the collection of all extensions R[ε] → X has an induced
addition law. This coincides with the addition law of the vector space structure
in the familiar situation where X is a smooth scheme and R is the spectrum
of a field.

(iv) (scalar multiplication) If λ ∈ Γ(R,OR), there is an induced map:

OR + εOR // OR + εOR
f + εv � // f + ελv

giving a map R[ε]→ R[ε]. Applying X , this induces a map

TX/S(R)→ TX/S(R)

commuting with the projection to X (R). This is the action of scalars in the
vector space structure when R is a point and X is smooth.

(v) (vector space structure) The axioms of a vector space can be verified in similar
ways, occasionally making use of D×Z D×Z D = Z[ε1, ε2, ε3]/(ε1, ε2, ε3)2. We
leave these verifications to the reader.

(vi) (Lie bracket) The Lie bracket will not be used in the rest of the paper, and
may be skipped. There is a map

D⊗
Z
D = Z[ε1, ε2]/(ε21, ε

2
2)→ Z[ε1, ε2]/(ε1, ε2)2 = D×

Z
D

sending ε1ε2 to 0. There is also an isomorphism

(D⊗
Z
D) ×

Z[ε1,ε2]/(ε1,ε2)2
(D⊗

Z
D) ∼= (D⊗

Z
D)×

Z
Z[ε1ε2]/(ε1ε2)2

sending (a, b) on the left to (a, (a mod (ε1, ε2))+b−a) on the right (this choice
of isomorphism will give rise to the choice of a sign for the Lie bracket). This
all leads to a commutative diagram, in which both the small square and the
outer rectangle are cartesian:

(10.3) Z[ε1, ε2] Z[ε1][ε2]oo Z[ε1ε2]
tt

Z[ε1][ε2]

OO

Z[ε1][ε2]×Z[ε1,ε2] Z[ε1][ε2]
∼oo

OO

Z[ε1][ε2]×Z Z[ε1ε2]

OO

Suppose v, w ∈ TX (X ) are vector fields on X . We view them as maps (see
Definition 10.2 and Remark 10.3 for notation):

v : X [ε1]→ X
w : X [ε2]→ X .

We obtain two morphisms

id×v : X [ε1]×X X [ε2]→ X [ε2]

w × id : X [ε1]×X X [ε2]→ X [ε1];
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note that the fibered product is over the standard projections on both factors.
Note that X [ε1]×X X [ε2] = X [ε1][ε2] = X ×Spec(D⊗D) = X ×SpecZ[ε1, ε2].

The two compositions v(id × w), w(v × id) : X [ε1]×X X [ε2] → X are
retractions (they agree with the identity when restricted to the canonical
inclusion of X in X [ε1]×X X [ε2]) that agree with one another when restricted
to X [ε1, ε2] ⊆ X [ε1]×X X [ε2]. In other words, they give us a commutative
diagram, dual to (10.3):

(10.4)

X [ε1, ε2] //

��

X [ε1][ε2]

��

��

X [ε1][ε2] //

00

X [ε1][ε2]qX [ε1,ε2] X [ε1][ε2]

(( X
All of the morphisms restrict to the identity on X . Now we restrict under the
inclusion X [ε1ε2] ⊂ X [ε1][ε2]×X [ε1,ε2] X [ε1][ε2] to get

[v, w] : X [ε1ε2] ⊂ X [ε1][ε2]qX X [ε1ε2]
∼−→ X [ε1][ε2]qX [ε1,ε2] X [ε1][ε2]→ X

The point is that the homogeneity of X ensures the existence of the dashed
arrow above, and the composition of the dashed arrow with the canonical
inclusion of X [ε1ε2].

For the reader’s convenience, we include a verification that this does indeed
compute the Lie bracket when X is representable by an affine scheme SpecA.
In that case, v and w correspond to derivations δ1 and δ2 from A to itself. We
consider these as ring homomorphisms:

id + εiδi : A→ A+ εiA

The map v(id× w) is dual to the composition

A
id+ε1δ1−−−−−→ A+ ε1A

id⊗(id+ε2δ2)−−−−−−−−→ A+ ε1A+ ε2A+ ε1ε2A

sending f ∈ A to f+ε1δ1(f)+ε2δ2(f)+ε1ε2δ2 ◦δ1(f). To be clear, the second
map is obtained from id+ε2δ2 by application of A[ε1]⊗A (−) = Z[ε1]⊗Z (−) =
(−)[ε1] and carries f0 + ε1f1 to (f0 + ε2δ2(f0)) + ε1(f1 + ε2δ2(f1)). The map
w(v×id) sends f to f+ε1δ1(f)+ε2δ2(f)+ε1ε2δ1◦δ2(f). Taking the difference
of these recovers the derivation δ2δ1 − δ1δ2.

Suppose ξ is a k-point of X . The discussion above shows that TX (ξ) has all the
trappings of a k-vector space structure, except that TX (ξ) is a groupoid that may
not be equivalent to a set. Nevertheless, it is useful to think of TX (ξ) as a ‘2-vector
space’. In fact, given a scheme R and a morphism ξ : R → X , we can extract two
important invariants from this groupoid:

T−1
X (ξ) := AutTX (ξ)(0)

T 0
X (ξ) := TX (ξ)/isom

Here 0, the zero section 0 : R → TX (ξ), corresponds to an object of the groupoid
TX (ξ), and AutTX (ξ)(0) is the automorphism group of that object. Likewise,
TX (ξ)/isom is the set of isomorphism classes of objects of the groupoid. The fol-
lowing lemma is a formal consequence of the discussion above:
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Lemma 10.15. When k is a field and ξ : Spec k → X , the sets T−1
X (ξ) and T 0

X (ξ)
are k-vector spaces.

It will be important to have a relative variant of the tangent bundle:

Definition 10.16 (Relative tangent bundle). Let f : X → Y be a morphism of
CFGs over S. We define the relative tangent bundle Tf = TX/Y to be the kernel of
the morphism of stacks TX/S → TY/S . In other words, the relative tangent bundle
is the fiber product of stacks

TX/Y = TX/S ×
TY/S

Y = TX/S ×
f−1TY/S

X

where the morphisms Y → TY/S and X → f−1TY/S are the zero sections. In
slightly more concrete terms, a section of TX/Y is a section of TX/S , together with
an isomorphism between its image in TY and the zero section.

10.1.4. Relative homogeneity.

Definition 10.17 (Relative homogeneity). Let f : X → Y be a morphism of CFGs
over S. We say that f is homogeneous, or that X is homogeneous over Y, if for any
scheme S and any morphism S → Y, the CFG XS = X ×Y S is homogeneous.

Another way of formulating the definition is that for any cocartesian diagram
(10.1) and any compatible objects (we leave it to the reader to formulate compati-
bility precisely)

η′ ∈ Y(R′) η ∈ X (R) ξ′ ∈ X (Q′) ξ ∈ X (Q)

there is a η ∈ X (R′) inducing all of them, and this η is unique up to unique
isomorphism.

The following lemma is proved by a standard formal argument:

Lemma 10.18. (i) Let f : X → Y and g : Y → Z be morphisms of CFGs over
S. If g is homogeneous then f is homogeneous if and only if gf is.

(ii) The base change of a homogeneous morphism of CFGs is homogeneous.

10.2. Deformation theory. When we speak of the deformation theory of a stack
X we mean extending morphisms R → X to morphisms R′ → X , where R′ is an
infinitesimal extension of R. The definition of the tangent space of a stack in §10.1.1
connects the tangent space of a stack X to the deformation theory of the objects it
parameterizes. Indeed, if ξ ∈ X (k) then TX (ξ) over ξ is precisely the groupoid of
extensions of ξ to ξ′ ∈ X

(
k[ε]/(ε2)

)
.

We now work out several examples that will be used in the construction of the
moduli of Higgs bundles. Our main focus is on using the deformation theory to
show that various stacks are homogeneous.

10.2.1. Deformations of morphisms of vector bundles. Here we discuss the defor-
mation theory for morphisms of vector bundles. From our perspective, the main
point is Lemma 10.20 (see also Remark 10.21) on homogeneity.

Let π : X → S be a flat family of schemes over S and let E and F be two vector
bundles on X. Let H = H omX/S(E,F ) be the S-sheaf of morphisms from E to
F (see §7.5.2).

We compute the tangent space TH /S(ξ) of H over S at an R-point ξ : ER → FR,
where R→ S is an S-scheme, and ER and FR are the pullbacks of E and F to R.
An element of TH /S(ξ) is an extension of the S-map R→H to R[ε] such that the
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composition R[ε] → H → S is the same as the composition R[ε] → R → S of the
canonical retraction R[ε] → R and the fixed map R → S. In other words, it is a
morphism of vector bundles ER[ε] → FR[ε] that reduces to u modulo ε.

The vector bundle ER[ε] is identified with ER + εER, and similarly for FR[ε].
Notice that ξ(e0 + εe1) = ξ(e0) + εξ(e1) gives one such morphism ER[ε] → FR[ε]

that reduces to ξ modulo ε. If ξ′ is any other then the difference ξ′ − ξ is a
map ER → εFR ∼= FR, so we get an identification TH /S(ξ) ' H (R). As this
identification is natural, we get

TH /S = H ×
S

H .

Of course, it is no surprise that the tangent space of H is H itself, since H already
has a linear structure. We have

T−1
H /S(ξ) = 0

T 0
H /S(ξ) = Hom(ER, FR)

This gives the tangent space to H over S, but does not explain the higher order
infinitesimal structure. For that we must pose a more general lifting problem: given
ξ ∈H (R) and an arbitrary square-zero extension R′ of R as an S-scheme, can ξ be
lifted to ξ′ ∈ H (R′)? To answer this question, we consider it locally in XR, that
is, we cover X by open subsets U with corresponding extensions U ′ over R′ and ask
for extensions of ER

∣∣
U
→ FR

∣∣
U

to ER′
∣∣
U ′
→ FR′

∣∣
U ′

. We make two observations:

(i) there is a cover of XR′ by open sets U ′ such that ξ
∣∣
XR∩U ′

extends to a mor-

phism EU ′ → FU ′ .
(ii) if ξ′ and ξ′′ are any two extensions, then ξ′−ξ′′ may be viewed as a morphism

ER → FR ⊗ π∗J where J is the ideal of R in R′ and, by abuse of notation,
π : XR → R is the morphism obtained from π : X → S by pullback.

These observations combine to imply that there is a Hom(ER, FR ⊗ π∗J)-torsor P
on X (in the Zariski topology) whose sections are in bijection with the lifts of ξ
to H(R′) (those who would rather avoid the language of torsors may obtain the
following lemma by a Čech cohomology calculation). This yields a deformation-
obstruction theory:

Lemma 10.19 (cf. [FGI+05, Thm. 8.5.3 (a)]). Let X be an S-scheme, let E and
F be vector bundles on X, and let R ⊆ R′ be a square-zero extension of S-schemes
with ideal J . Associated to any homomorphism ξ : ER → FR there is an obstruction
ω ∈ H1(XR,Hom(ER, FR ⊗ π∗J)) whose vanishing is equivalent to the existence of
an extension of ξ to some ξ′ : ER′ → FR′ . If there is at least one extension then the
set of all extensions possesses a simply transitive action of H0(XR,Hom(ER, FR ⊗
π∗J)) = Hom(ER, FR ⊗ π∗J).

Beyond its finite dimensionality, the particular deformation-obstruction theory
is not actually necessary for the proof of algebraicity. What is important is homo-
geneity:

Lemma 10.20. The functor H omX/S(E,F ) is homogeneous.

Proof. If f : Q → R is an affine morphism of S-schemes and Q ⊆ Q′ is a square-
zero extension of S-schemes, let R′ be the pushout (as in Theorem 10.10), with
f ′ : Q′ → R′ denoting the tautological morphism. (Since Q and Q′ have the
same underlying topological space, we do not bother to introduce notation for the
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inclusion Q ⊆ Q′.) Since Q and Q′, as well as R and R′ have the same underlying
topological space, and we have a natural morphism FQ′ → FQ, we can push forward
to obtain a morphism f ′∗FQ′ → f∗FQ. Using adjunction we have have that the
identity f∗FR = FQ induces a morphism FR → f∗FQ. Thus we obtain a fibered
product f ′∗FQ′ ×f∗FQ FR.

Assume we have v ∈ H(R) and u′ ∈ H(Q′), both extending u = f∗v. Then u′

gives us

f ′
∗
ER′ = EQ′

u′−→ FQ′ = f ′
∗
FR′ ,

whence ER′ → f ′∗f
′∗FR′ = f ′∗FQ′ by adjunction. We also have a map ER′ → ER

v−→
FR. These induce the same map ER′ → f∗FQ so we get a map

η′ : ER′ → f ′∗FQ′ ×
f∗FQ

FR

by the universal property of the fiber product.
On the other hand, the canonical map γ : FR′ → f ′∗FQ′ ×f∗FQ FR is an iso-

morphism, by Theorem 10.14, or directly: γ is an isomorphism modulo J , since
it reduces to the identity FR = f∗FQ×f∗FQ FR, and the kernel of reduction is the
fiber product of the kernels, namely (f∗FQ⊗π∗J)×0 0 = FR⊗π∗J . Therefore γ is
an isomorphism by the 5-lemma. To conclude we can view η′ as a map ER′ → FR′

by composition with γ−1. �

Remark 10.21. As was pointed out above (see Proposition 7.20), under mild hy-
potheses, a result of Lieblich implies that H omX/S(E,F ) is an algebraic space over
S, locally of finite type. In particular, this also shows that H omX/S(E,F ) is ho-
mogeneous. However, Lieblich’s proof relies on the homogeneity, so this reasoning
is actually circular.

10.2.2. Deformations of vector bundles. Here we discuss the deformation theory for
vector bundles; see also [FGI+05, Prop. 6.5.1]. The main points are Corollary 10.23
and Lemma 10.25 (see also Remark 10.26).

Let π : X → S be a family of schemes over S. Suppose that R is an S-scheme
and E ∈ FibX/S(R) is a vector bundle over XR. Let R′ be a square-zero S-scheme
extension with ideal J . We ask whether E can be extended to E′ ∈ FibX/S(R′),
and if so, in how many ways. Again we make several observations:

(i) there is a cover of XR′ by open subsets U ′ such that E
∣∣
XR∩U ′

can be extended

in at least one way to a vector bundle on U ′;
(ii) if E′ and E′′ are two extensions of E

∣∣
XR∩U ′

to U ′ then there is a cover of U ′

by open subsets V ′ such that E′
∣∣
V ′
' E′′

∣∣
V ′

as extensions of E
∣∣
XR∩V ′

;

(iii) if u, v : E′
∣∣
V ′
→ E′′

∣∣
V ′

are two isomorphisms of extensions of E
∣∣
XR∩V ′

then

u and v differ by a homomorphism E
∣∣
XR∩V ′

→ E
∣∣
XR∩V ′

⊗ π∗J .

Choosing a suitable cover, we therefore obtain a Čech 2-cocycle for the sheaf of
groups Hom(E,E⊗π∗J). This is a coboundary if and only if a deformation exists.
A more careful analysis shows that the isomorphism classes of all deformations then
correspond to 1-cocycles modulo coboundaries. Here is the statement in its usual
form:

Lemma 10.22 (cf. [FGI+05, Thm. 8.5.3 (b)]). Fix a flat family of schemes π :
X → S and a square-zero S-extension R ⊆ R′ with ideal J . A vector bundle E
on XR induces an obstruction ω ∈ H2

(
XR,Hom(E,E ⊗ π∗J)

)
whose vanishing
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is equivalent to the existence of an extension of E to XR′ . If ω = 0, the set of
isomorphism classes of extensions is a principal homogeneous set under a natural
action of H1

(
XR,Hom(E,E⊗π∗J)

)
. The automorphisms (as an extension) of any

given extension are canonically H0
(
XR,Hom(E,E ⊗ π∗J)

)
.

In particular, this lemma gives the tangent space of FibX/S :

Corollary 10.23. Suppose that R is an S-scheme and E is a vector bundle over
XR. We have TFibX/S (E) = BHom(E,E)(XR) where E is the universal vector

bundle on FibX/S and the prefix B denotes the classifying stack (Section C.1). In
particular,

T−1
FibX/S

(E) = Hom(E,E)

T 0
FibX/S

(E) = Ext1(E,E).

Proof. We have just seen that sections of TFibX/S correspond to 1-cocycles for

Hom(E,E) modulo coboundaries. But 1-cocycles modulo coboundaries also classify
torsors. �

The Čech calculations can be abstracted into the observation that properties (i)
– (iii) above imply there is a gerbe G over XR (see e.g., [LMB00, (3.15), p.22]
for the definition of a gerbe) whose sections correspond to extensions of E to
E′ ∈ FibX/R(R′), and that this gerbe is banded by the sheaf of abelian groups
Hom(ER, ER ⊗ π∗J). Giraud classifies banded gerbes cohomologically:

Theorem 10.24 ([Gir71, Thm. IV.3.4.2]). Let G be a gerbe on X, banded by an
abelian group A. There is an obstruction ω ∈ H2(X,A) to the existence of a global
section of G . Should this obstruction vanish, global sections up to isomorphism
form a principal homogeneous set under the action of H1(X,A). Automorphisms
of any given section are in canonical bijection with H0(X,A).

We also record the homogeneity of FibX/S :

Lemma 10.25. For any scheme X, the CFG FibX/S is homogeneous.

Proof. Since S is representable, it is homogeneous by Theorem 10.10. Therefore by
Lemma 10.18, it is sufficient to show that FibX/S is homogeneous over S. We will
content ourselves to sketch the construction of the inverse to the functor

(10.5) FibX/S(R′)→ FibX/S(Q′) ×
FibX/S(Q)

FibX/S(R)

associated to a cocartesian diagram

Q �
�

//

��

Q′

��

R // R′

of S-schemes, where Q→ R is affine and Q ↪→ Q′ is an infinitesimal extension. An
object of the right side of (10.5) consists of vector bundles E′ on XQ′ , F on XR,
and E on XQ, along with identifications E′

∣∣
XQ

= E = F
∣∣
XQ

. By applying [Fer03,

Thm. 2.2] to a cover of XR′ by open affines and then to covers of the intersections
by open affines, we obtain a vector bundle F ′ on XR′ restricting to E′ on XQ′ , to
E on XQ, and to F on XR, as required. �
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Remark 10.26. This also follows from the fact that FibX/S is an algebraic stack,
but, as in Remark 10.21, this reasoning is circular.

Corollary 10.27. Let F be the stack of triples (E,F, σ) where E and F are vec-
tor bundles on X and σ : E → F is a morphism of vector bundles. Then F is
homogeneous.

Proof. We have a morphism F → FibX/S ×S FibX/S . We have just seen that
FibX/S is homogeneous, so by two applications of Lemma 10.18, it follows that
FibX/S ×S FibX/S is homogeneous. Lemma 10.20 says that F is relatively ho-
mogeneous over FibX/S ×S FibX/S , so we may conclude by another application of
Lemma 10.18. �

10.2.3. Deformations of nodal curves. We now discuss the deformation theory of
nodal curves.

Definition 10.28 (Nodal curve). Let S be a scheme. A nodal curve over S is an
algebraic space C and a projection π : C → S that is étale-locally isomorphic to
SpecOS [x, y]/(xy− t) for a local section t of OS . That is, there is an étale cover of
S by affines U = SpecA and an étale cover of π−1U by schemes V , each of which
admits an étale map to SpecA[x, y]/(xy − t) for some t ∈ A.

We shall write N for the stack over schemes whose S-points are the families of
nodal curves over S.

Remark 10.29. A more conventional definition of a nodal curve over S is as a flat
family π : C → S whose fibers are 1-dimensional, reduced schemes whose only
singularities are ordinary double points. It follows from [FK88, Prop. III.2.8] that
the two notions are equivalent.

We will show that nodal curves form a homogeneous stack (Lemma 10.31), com-
pute the tangent space of this stack (Lemmma 10.30), and show that it is formally
smooth (Corollary 10.32). This whole section could easily be adapted to curves
with locally planar singularities (or to more general schemes of finite type with
hypersurface singularities), but for concreteness, we stick to nodal curves.

The method used in the last section to study deformations of vector bundles
works quite well for deformations of smooth curves, and even families of smooth
schemes π : X → S. If S′ is a square-zero extension of S with ideal J , one
discovers that extensions of X to S′ always exist locally, that any two deformations
are locally isomorphic, and that any two deformations are related by a section of
TX/S ⊗ π∗J , from which it follows by a Čech calculation (as in the last section)

that (see [FGI+05, Thm. 8.5.9 (b)]):

(i) there is obstruction to the existence of a flat extension X ′ over S extending
X lying in H2(X,TX/S ⊗ π∗J);

(ii) should a deformation exist, the isomorphism classes of flat extensions form a
torsor under H1(X,TX/S ⊗ π∗J);

(iii) automorphisms of a fixed flat extension are canonically H0(X,TX/S ⊗ π∗J).

The deformation theory of nodal curves introduces a new complication: It is still
the case that deformations exist locally, and one can easily compute that automor-
phisms of deformations can be identified with sections of TX/S ⊗ J . However, it
is no longer the case any two deformations are locally isomorphic, since the node
xy = 0 has a 1-parameter family of first order deformations xy = λε. A naive Čech
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calculation will therefore not suffice, but with a little more effort, we will see that
the deformations and obstructions for nodal curves can be classified in much the
same way as for smooth curves.

Suppose that C is an S-point ofN . An S-point of TN lying above C is a cartesian
diagram (10.6), in which C ′ is an S[ε]-point (see Definition 10.2 for notation) of N :

(10.6)

C //

π

��

C ′

��

S // S[ε].

We consider the more general problem of extending an S-point C of N to a S[εJ ]-
point:

C //

π

��

C ′

��

S // S[εJ ].
{{

Here J is a quasicoherent sheaf on S and C ′ is an S[εJ ]-point of N . Since there
is a canonical retraction S[εJ ] → S, we can consider C ′ as an S-scheme. As C is
the closed sub-scheme of C ′ determined by π∗J (with π∗J2 = 0), we may form the
exact sequence (10.7):

(10.7) 0→ π∗J → OC ⊗
OC′

ΩC′/S → ΩC/S → 0

The right exactness of this sequence follows from general principles and does not
depend on the fact that C is a nodal curve. To see the left exactness, we may work
étale-locally and assume:

S = SpecA S′ = SpecA′

C = SpecB C ′ = SpecB′

B = A[x, y]/I B′ = A′[x, y]/I ′

I = (xy − t) I ′ = (xy − t′)
In fact, the local structure of nodes implies we can arrange for C and C ′ to be étale
over A[x, y]/I and A′[x, y]/I ′, respectively. Then the sequence (10.7) on C is pulled
back via the étale (and in particular flat) map C → SpecB from the corresponding
sequence over SpecB. For the sake of proving (10.7) is exact, we can therefore
replace C with SpecB and C ′ with SpecB′ without loss of generality.

Our diagram of rings is

B = A[x, y]/(xy − t) B′ = A′[x, y]/(xy − t′)oo

A

OO

++

A′ = A[εJ ].oo

OO

We are trying to show the exactness of

(10.8) 0→ B ⊗A J → B ⊗
B′

ΩB′/A → ΩB/A → 0.
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The left exactness of (10.8) is equivalent to showing that, for every injective 2 B-
module M , the map HomB(B ⊗B′ ΩB′/A,M) → HomB(B ⊗A J,M) is surjective;
i.e., every B-module homomorphism B⊗A J → M extends to a morphism B ⊗B′
ΩB′/A → M . Using tensor-hom adjunction, and the universal property of the
module of Kähler differentials, this translates into the statement that, every A-
module homomorphism J →M should extend to an A-derivation B′ →M :

B′ = A[εJ][x,y]
(xy−t′)

∂

%%
J

ϕ
//

?�

·ε
OO

M.

First we will extend ϕ to a derivation

δ′ : A[εJ ][x, y]→M.

To do this, we will invoke the identifications

HomA(J,M) = HomA -alg,IdA(A[εJ ], A[εM ]) = DerA(A[εJ ],M).

On the left, we take a homomorphism ϕ : J → M and send it to the ring homo-
morphism IdA⊕ϕ : A ⊕ εJ → A ⊕ εM . The group in the middle consists of the
A-algebra homomorphisms that are the identity on the first term. On the right, we
just project to get a derivation. Similarly, we have indentifications

HomA -alg,IdA(A[εJ ][x, y], A[εM ]) = DerA(A[εJ ][x, y],M).

In summary, the homomorphism ϕ : J → M induces a ring homomorphism ϕ̃ :
A[εJ ] → A[εM ]. We can extend this to ϕ̂ : A[εJ ][x, y] → A[εM ] by sending x and
y to any element of M . This then gives a derivation δ′ as desired.

The choices of such extensions δ′ are a torsor under DerA(A[x, y],M), and we
will adjust δ′ by such a derivation so that it descends to a derivation B′ → M .
The obstruction to descending δ′ to B′ is the homomorphism δ′

∣∣
I′

, so we want to

find a derivation δ ∈ Der(A[x, y],M) such that the restriction of δ to I ′ (via the
composition I ′ ⊆ A′[x, y]→ A[x, y]) agrees with δ′.

To execute this, let us take a fixed extension δ′. Then δ′(I ′J) ⊆ I ′δ(J)+Jδ(I ′) =
0 because M is a B-module, and therefore I ′M = JM = 0. This implies δ

∣∣
I′

descends to I ′/JI ′ = I. We also have δ′(I ′
2
) = I ′δ′(I ′) = 0, for the same reason,

so δ′ gives us a homomorphism u : I/I2 →M .
Now, we have an exact sequence

0→ I/I2 → B ⊗
A[x,y]

ΩA[x,y]/A → ΩB/A → 0,

either by [Ser06, Thm. D.2.7, p. 310] or a direct verification. Since M is injective,
the homomorphism u : I/I2 → M extends to a derivation δ : A[x, y] → M (again
we are using tensor-hom adjunction and the universal property of the sheaf of
Kähler differentials). Trivially extending δ to A′[x, y] we obtain a derivation δ′ − δ
on A′[x, y]. We have that δ′ − δ = 0 on I ′ essentially by construction. Moreover,
δ′ − δ agrees with δ′

∣∣
J

= ϕ on J because δ vanishes there. Thus δ′ − δ descends

2Recall that a morphism M ′ →M of modules over a ring A is injective if and only if for every

injective A-module I , HomA(M, I)→ HomA(M ′, I) is surjective. To see this, choose an inclusion
M ′ ↪→ I for some injective module I. Then we get a map M → I extending the inclusion M ′ ⊆ I,

so M ′ →M must be injective.
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to a derivation in DerA(B,M) that agrees with ϕ on J , as required. We conclude
that (10.7) is exact.

Conversely, given any extension of OC-modules

0→ π∗J → Ω′ → ΩC/S → 0

we can define an extension of C/S to S[εJ ]. Namely, one may define

OC′ = OC ×ΩC/S Ω′,

where the map from OC to ΩC/S is the universal differential, d. This is clearly
an OC-module, but it is not a priori obvious that OC′ is equipped with a ring
structure. The ring structure can be constructed easily by factoring d as

OC
id+εd−−−−→ OC+εΩC/S −→ ΩC/S

and recognizing that

OC′ ' OC ×OC+εΩC/S (OC+εΩ′).

Here the map on the right is

OC + εΩ′ → OC + εΩC/S

a+ ω′ 7→ a+ ω̃′

where we are using the given map Ω′ → ΩC/S , ω′ 7→ ω̃′; this is the standard map
taking

HomOC (Ω′,ΩC/S)→ HomOC -alg,Id(OC [εΩ′],OC [εΩC/S ]).

This above description of OC′ is as a fiber product of rings, hence is naturally
equipped with a ring structure.

The map

C ′ → S[εJ ]

is given topologically by C → S, and at the level of sheaves by a map

OS[ε] = OS ⊕ εJ → OC′ = OC ×OC⊕εΩC/S (OC⊕εΩ′).

We are given maps OS → OC , and J → Ω′. The map OS ⊕ εJ → OC is defined by
the given map on the first term, plus the zero map on the second term. The map
OS [εJ ] → OC [εΩ′] is given by the map OS [εJ ] → OC [επ∗J ], and then the natural
map OC [επ∗J ] → OC [εΩ′]. These maps agree on composition to OC [εΩC/S ], and
so define a morphism to the fibered product.

One can check that these processes are inverses of one another, and so this
yields an equivalence of categories between the tangent space of N at C/S and the
category of extensions of ΩC/S by π∗J .

Lemma 10.30. Let π : C → S be an S-point of the stack N of all nodal curves.
Then

TN (C/S) = Ext(ΩC/S ,OC),

where we write Ext(A,B) for the groupoid of extensions of B by A. In particular,

T−1
N (C/S) = HomOC (ΩC/S ,OC) = Γ(C, TC/S)

T 0
N (C/S) = Ext1

OC (ΩC/S ,OC).



STACKS AND HIGGS BUNDLES 83

Observe that the discussion above never made use of the assumption that C be
proper over S. Thus Ext1(ΩC/S ,OC) may be interpreted as the associated sheaf
of the presheaf of isomorphism classes of local deformations of C. This allows us
to interpret the 5-term exact sequence of the local-to-global spectral sequence for
Ext(ΩC/S ,OC) deformation theoretically:

0→ H1(C, TC/S)→ Ext1(ΩC/S ,OC)→ Γ(C,Ext1(ΩC/S ,OC))→ H2(C, TC/S).

If S is affine then H2(C, TC/S) = 0 because C has relative dimension 1 over S. The

first term of the sequence may be interpreted, via a Čech calculation, as the set of
isomorphism classes of locally trivial deformations of C. Somewhat imprecisely, we
have:

0→ (loc. triv. defs. of C)→ (defs. of C)→ (defs. of nodes of C)→ 0.

When S is not affine, the final term H2(C, TC/S) may be interpreted as the ob-
struction to finding a deformation of the curve realizing specified deformations of
the nodes.

Now we turn to the more general problem of extending a curve over a general
square-zero extension S ⊆ S′ with ideal J :

(10.9)

C

π

��

// C ′

��

S // S′

We will make use of homogeneity:

Lemma 10.31. The CFG of all nodal curves (not necessarily proper!) is homoge-
neous, as are the substack of all proper nodal curves, the substack of curves of fixed
genus, and the substack of canonically polarized curves.

Proof. Let Q ⊆ Q′ be an infinitesimal extension of schemes and Q → R an affine
morphism. Form the pushout R′ of Q′ and R under Q using Theorem 10.10. Letting
N denote the stack of all nodal curves, we construct the inverse to the map (10.10).

(10.10) N (R′)→ N (Q′) ×
N (Q)

N (R)

Suppose that C is a nodal curve over Q, that C ′ is an extension of C to Q′, and that
C = D×RQ for nodal curve D over R and observe that C ⊆ C ′ is an infinitesimal
extension and C → D is affine, so we can also form the pushout D′ of C ′ and D
under C (Theorem 10.10).

By Theorem 10.14, D′ is flat over R′ and D′×R′ R = D, D′×R′ Q′ = C ′, and
D′×R′ Q = C. We argue that D′ is a nodal curve over R′. Since the fibers of D′

over R′ are the same as the fibers of D over R, the fibers of D′ over R′ are nodal
curves. We have already seen that D′ is flat over R′, so we therefore only need to
check that D′ is locally of finite presentation over R′.

One can verify easily that local generators and relations forOD as an algebra over
OR lift to local generators and relations for OD′ as an algebra over OR′ , implying
it is locally of finite presentation as well.

This proves the homogeneity of the stack of all nodal curves. For the remaining
statements, note that they are stable under infinitesimal deformation. �

Now we return to the problem of completing (10.9):
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(i) The problem of completing (10.9) can be solved locally in C. Indeed, one may
find a cover of S by affine open subschemes U = SpecA and elements t ∈ A
such that π−1U has a cover by open affines V , each of which is étale over
SpecB, with B = A[x, y]/(xy − t). If U ′ = SpecA′ is the open subset of S′

whose preimage in S is U then one may form B′ = A′[x, y]/(xy − t′) where t′

is any lift of t to A′. Then SpecB′ is a deformation of SpecB to SpecA′ and
this lifts uniquely to a deformation of V by [Gro67, Thm. (18.1.2)].

We may thus select local deformations V ′ for each V in an open cover of
C and attempt to glue.

(ii) Observe that

OS′ ×
OS
OS′ ' OS′ + εJ,

via the map (f, g) 7→ f+ε(g−f), so that S′qS S′ ' S′qS S[εJ ] and therefore
by homogeneity, we have

N (S′) ×
N (S)

N (S′) = N (S′q
S
S′) ' N (S′q

S
S[εJ ]) = N (S′) ×

N (S)
N (S[εJ ]).

In other words, any two extensions of an open subset of C to a nodal curve
over S′ differ by a uniquely determined element of N (S[εJ ]).

(iii) We have already seen that N (S[εJ ]) may be identified with the category of
extensions Ext(ΩC/S , π

∗J). Thus the first obstruction to gluing the defor-
mations U ′ comes from making sure that the isomorphism classes of the de-
formations U ′ agree on overlaps. Since the isomorphism classes form a torsor
under Ext1(ΩC/S , π

∗J), this obstruction lies in H1
(
C,Ext1(ΩC/S , π

∗J)
)
.

(iv) One can arrange very easily for this obstruction to vanish by working locally
in S. Indeed, Ext1(ΩC/S , π

∗J) is quasicoherent and is supported on the nodes
of C, which is finite (and in particular affine) over S. Therefore when S is
affine the first obstruction vanishes.

(v) Now assuming that the first obstruction vanishes we can fix a compatible sys-
tem of isomorphism classes of local deformations. We must determine whether
one can find genuine local deformations within those isomorphism classes in
a compatible way. For each open U ⊆ C in a suitable cover we select a defor-
mation U ′ in the specified isomorphism class. If Ui and Uj are two such open
sets then write U ′ij for the restriction of U ′i to Ui∩Uj . Because we have chosen
the isomorphism classes compatibly, U ′ij ' U ′ji, and we may select such an
isomorphism ϕij . Over triple overlaps the cocycle condition ϕki◦ϕjk◦ϕij = id
obstructs the gluing. As the element ϕki ◦ ϕjk ◦ ϕij lies in the automorphism
group of U ′ijk, which is canonically identified with Γ

(
Uijk,Hom(ΩC/S , π

∗J)
)

we obtain a Čech 2-cocycle in H2
(
C,Hom(ΩC/S , π

∗J)
)
. Once again, this ob-

struction vanishes when S is affine, this time because C has relative dimension
1 over S and the coefficients are taken in a quasicoherent sheaf.

Corollary 10.32. The stack of all nodal curves satisfies the formal criterion for
smoothness.

Proof. We have just seen that all obstructions to infinitesimal deformation vanish
over an affine base, which is precisely the formal criterion for smoothness. �

Corollary 10.33. Any algebraic substack of the stack of all nodal curves that is
locally of finite presentation and stable under infinitesimal extensions is smooth. In
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particular, the stack of all proper nodal curves is smooth and the open substack of
all canonically polarized nodal curves is smooth.

Remark 10.34. An observant reader will have noticed that the obstructions to (10.9)
constructed above lie in the graded pieces of Ext2(ΩC/S , π

∗J) induced by the local-
to-global spectral sequence. This is not an accident: There is a single obstruction
in Ext2(ΩC/S , π

∗J) whose vanishing is equivalent to the existence of a solution
to (10.9). We will discuss one way to obtain this obstruction in §10.3.

In fact, one can dispense with the assumption that C be a curve over S and
obtain an obstruction to deformation in Ext2(LC/S , π

∗J) where LC/S is the rel-
ative cotangent complex of C over S, constructed by Illusie [Ill71, Cor. 2.1.3.3,
Thm. 2.1.7]. For a nodal curve, one has LC/S = ΩC/S . In general, LC/S is concen-
trated in nonpositive degrees and ΩC/S is the 0-th homology group.

10.2.4. Simultaneous deformation of curves and vector bundles. Let S be a scheme,
C a curve over S, and E a vector bundle on C. We consider the problem of extending
C and E to the scheme S[εJ ] where J is a quasicoherent sheaf of OS-modules. We
begin by defining a sheaf of modules ΥC(E) on C to play a role analogous to the
one played by the module of differentials when we studied deformations of curves.

For each OC-module F , define Φ(F ) to be the set of pairs (δ, ϕ) where δ : OC →
F is an OS-derivation and ϕ : E → F ⊗E is what we will call a δ-connection. That
is, for any local sections f ∈ OC and x ∈ E, we have

ϕ(fx) = δ(f)⊗x+ fϕ(x).

Then Φ(F ) is naturally a covariant functor of F . There is a natural Γ(C,OC)-
module structure on Φ(F ), in which λ ∈ Γ(C,OC) acts by

λ.(δ, ϕ) = (λδ, λϕ).

There is also an evident exact sequence (10.11).

(10.11) 0→ Hom(E,F ⊗ E)→ Φ(F )→ DerOS (OC , F )

Here the map Hom(E,F ⊗ E) → Φ(F ) sends ϕ to (0, ϕ) and the map Φ(F ) →
DerOS (OC , F ) sends (δ, ϕ) to δ.

For each open set U ⊆ C, setting Φ(F )(U) := Γ(U,Φ(F )) = Φ(F
∣∣
U

), we obtain
a covariant functor

Φ : (OC-mod)→ (OC-mod)

with Φ(F ) = Φ(F )(C), and an exact sequence

0→ HomOC (E∨ ⊗ E,−)→ Φ(−)→ DerOS (OC ,−) = HomOC (ΩC/S ,−),

in the sense that it is exact when applied to any OC-module. In fact, we claim
that this is surjective on the right, and that Φ (and hence Φ) is representable; i.e.,
there is a sheaf of OC-modules ΥC/S(E) such that Φ(−) = HomOC (ΥC/S(E),−),
and Φ(−) = HomOC (ΥC/S(E),−).

Lemma 10.35. The functors Φ and Φ defined above are both representable by
the same sheaf of OC-modules ΥC/S(E) fitting into a short exact sequence (10.12)
inducing (10.11):

(10.12) 0→ ΩC/S → ΥC/S(E)→ End(E)→ 0
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Proof. For the representability we give an explicit construction, although it is pos-
sible to obtain the same result more quickly by an application of the adjoint functor
theorem. As mentioned above, to prove that Φ is representable it is equivalent to
prove that Φ is representable, for which we can work locally in C. We can therefore
assume E = O⊕nC . But then if δ : OC → F is any derivation, it itself gives a
δ-connection by δ×n(x1, . . . , xn) = (δ(x1) ⊗ 1, . . . , δ(xn) ⊗ 1). This gives a natu-
ral bijection between Φ(F ) and DerOS (OC , F )× Hom(E,F ⊗ E) sending (δ, ϕ) to
(δ, ϕ − δ×n). But DerOS (OC ,−) is representable by ΩC/S and Hom(E, (−) ⊗ E)
is representable by E ⊗ E∨. Thus Φ is representable. To check that the sequence
(10.12) in the lemma is exact, it is enough to check locally, which we have just
done. �

Remark 10.36. We can view DerOS (OC , π∗J) = Hom(ΩC/S , π
∗J) as the group of

automorphisms of C[επ∗J ] that act as the identity on C and on π∗J (the group
of ‘infinitesimal automorphisms’). Similarly, we can view the group Φ(π∗J) =
Hom(ΥC/S(E), π∗J) as the group of automorphisms of the pair (C[επ∗J ], E+ εJ ⊗
π∗E), the trivial square-zero extension of (C,E) by J , that act trivially on C, J ,
and E.

In many deformation problems, deformations and obstructions are classified by
analyzing the ways to glue, and the obstruction to gluing, deformations along infin-
itesimal automorphisms. Thus computing the infinitesimal automorphism group of
the objects under consideration goes a long way toward understand how the object
can deform. Indeed, it was by calculating the infinitesimal automorphisms of a
deformation of (C,E) that we arrived at the definition of Φ in the first place.

Now consider an extension (C ′, E′) of (C,E) to S[εJ ]. Let π : C → S be the
projection. We have a canonical projection

(10.13) ΥC′/S(E′)→ ΥC/S(E)

and it is easy to see that this is surjective. This induces an exact sequence

(10.14) 0→ π∗J → OC ⊗
OC′

ΥC′/S(E′)→ ΥC/S(E)→ 0,

where the morphism π∗J → OC ⊗OC′ ΥC′/S(E′) is the composition

(10.15) π∗J → OC ⊗
OC′

ΩC′/S → OC ⊗
OC′

ΥC′/S(E′).

As in the proof of the exactness of (10.7), the right exactness and exactness in
the middle of (10.14) is formal using the universal properties. The left exactness
follows easily from the exactness of (10.7) and (10.12). Indeed, End(E′) is a flat
OC′ -module, so tensoring the short exact sequence (10.12) for E′ on C ′/S with
OC ⊗O′C (−), we obtain the short exact sequence

0→ OC ⊗
OC′

ΩC′/S → OC ⊗
OC′

ΥC′/S(E′)→ OC ⊗
OC′

End(E′)→ 0.

Therefore using also the exactness of (10.7), the morphisms in (10.15) are both
injections. The discussion shows that each extension (C ′, E′) of (C,E) induces an
extension of ΥC/S(E) by π∗J .

Conversely, given such an extension,

(10.16) 0→ π∗J → Υ′ → ΥC/S(E)→ 0
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we can recoverOC′ as δ−1Υ′ = OC′×ΥΥ′, where δ : OC → ΥC/S(E) is the universal
derivation; i.e., derivation δ in the universal pair (δ, ϕ) obtained from the identity
map under the identification Hom(ΥC/S(E),ΥC/S(E)) = Φ(ΥC/S(E)). Likewise,
we can recover E′ by first tensoring (10.16) by E and then pulling back via the
universal δ-connection ϕ:

0 // π∗J ⊗ E // E′ //

��

E //

ϕ
��

0

0 // π∗J ⊗ E // Υ′ ⊗ E // ΥC/S(E)⊗ E // 0

Summarizing the discussion above:

Lemma 10.37. Let G be the stack of pairs (C,E) where C is a nodal curve and E
is a vector bundle on C. Suppose that (C,E) is an S-point of F . Then

TF (C,E) = Ext
(
ΥC/S(E),OC

)
.

In particular,

T−1
F (C,E) = Hom

(
ΥC/S(E),OC

)
T 0
F (C,E) = Ext1

(
ΥC/S(E),OC

)
.

Note that for a nodal curve C/S (or more generally a curve with locally planar
singularities), applying Hom(−,OC) to Lemma 10.35, and utilizing Lemmas 10.37,
10.30, and Corollary 10.23, we obtain a long exact sequence

0 // T−1
FibC/S

(E) // T−1
F (C,E) // T−1

N (C/S)

// T 0
FibC/S

(E) // T 0
F (C,E) // T 0

N (C/S)

// Ext2(End(E),OC) // Ext2(ΥC/S(E),OC) // Ext2(ΩC/S ,OC) // · · ·

Note that if S is affine, then the last row above is 0.

Remark 10.38. There is an explicit treatment of infinitesimal deformations of pairs
(C,E) where C is a curve and E is a line bundle in [Wan12, Thms. 3.1, 4.6], with
infinitesimal automorphisms, deformations, and obstructions lying respectively in
Exti(P1

X/S(E), E), i = 0, 1, 2, where P1(E) is the sheaf of principal parts of E,

and fits in an exact sequence 0 → ΩC/S(E) → P1
X/S(E) → E → 0. The same

formulas do not give a deformation–obstruction theory for the pair (C,E) when
the rank of E is larger than 1.

Remark 10.39. Illusie provides a 2-step obstruction theory for deformations of the
pair (C,E). The primary obstruction is to deforming C, which lies in this case
in Ext1(ΩC/S , π

∗J), and in general in Ext2(LC/S , π
∗J), as we have discussed (see

Remark 10.34). A secondary obstruction in Ext2(P1(E), E) obstructs the existence
of a deformation of E that is compatible with a fixed deformation C ′ of C [Ill71,
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Prop. IV.3.1.5]. This latter obstruction may be constructed as the cup product of
the class [C ′] ∈ Ext1(LC/S , π

∗J) and the Atiyah class [Ill71, §§IV.2.3.6–7].

One can arrive at this 2-step obstruction theory3 from the extension (10.12),
which induces an exact sequence:

Ext2(End(E), π∗J)→ Ext2(ΥC/S(E), π∗J)→ Ext2(ΩC/S , π
∗J)

The first term may of course be identified canonically with Ext2(E,E ⊗ π∗J) since
E is flat.

For the sake of completeness, we also observe homogeneity:

Lemma 10.40. The stack of pairs (C,E) where C is a curve and E is a vector
bundle on E is homogeneous.

Proof. Let X denote the stack of pairs (C,E) as in the statement of the lemma
and let N be the stack of nodal curves. The forgetful map X → N is relatively
homogeneous by Lemma 10.25 and N is homogeneous by Lemma 10.31 so X is
homogeneous by Lemma 10.18. �

10.2.5. Simultaneous deformation of curves, vector bundles, and morphisms of vec-
tor bundles. We will consider a curve C over S, vector bundles E and F on C,
and a homomorphism σ : E → F . We ask in how many ways these data can be
extended to C ′, E′, F ′, and σ′ over S[εJ ] where J is a quasicoherent sheaf on S.
This time, deformations will be controlled by a complex rather than by a module.

Imitating the last section we can construct a quasicoherent sheaf ΥC/S(E,F )
controlling simultaneous deformations of the two vector bundles E and F . This will
be the universal example of a quasicoherent OC-module, equipped with a derivation

δ : OC → ΥC/S(E,F )

and δ-connections,

ϕE : E → ΥC/S(E,F )⊗ E
ϕF : F → ΥC/S(E,F )⊗ F.

As it would be similar to the proof of Lemma 10.35, we will omit an explicit
verification of the existence of such a universal object, as well as the construction
of the natural exact sequence:

0→ ΩC/S → ΥC/S(E,F )→ End(E)× End(F )→ 0

Before studying the question of deforming a homomorphism σ : E → F , we
analyze how we can recover the deformation Hom(E′, F ′) of Hom(E,F ) from de-
formations of E and F , encoded as an extension of ΥC/S(E,F ) by π∗J .

If σ : E → F is an homomorphism of vector bundles we obtain an element

[σ, ϕ] ∈ ΥC/S(E,F )⊗Hom(E,F )

[σ, ϕ] := (idΥC/S(E,F ) ⊗ σ) ◦ ϕE − ϕF ◦ σ : E → ΥC/S(E,F )⊗ F.

As [σ, ϕ] depends linearly on σ, this induces a homomorphism of OC-modules:

ϕHom(E,F ) : Hom(E,F )→ ΥC/S(E,F )⊗Hom(E,F )

3We have only verified the obstruction groups coincide, not the obstruction classes.
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Lemma 10.41. Suppose that Υ′ ∈ Ext
(
ΥC/S(E,F ), π∗J) corresponds to exten-

sions C ′ of C, E′ of E, and F ′ of F . Then there is a cartesian square of sheaves
of abelian groups:

Hom(E′, F ′) //

ϕHom(E′,F ′)

��

Hom(E,F )

ϕHom(E,F )

��

Υ′ ⊗Hom(E,F ) // Υ⊗Hom(E,F )

Proof. For the sake of readability, we will write

Υ = ΥC/S(E,F ) H = HomOC (E,F ) H ′ = HomOC′ (E
′, F ′) ϕ = ϕH

We also observe that we can identify Υ′ = OC ⊗OC′ ΥC′/S(E′, F ′) by Lemma 10.37
(which allows us to identify the exact sequences (10.14) and (10.16)) and then write
ϕ′ for the composition of ϕH′ and reduction modulo π∗J :

ϕ′ : H ′
ϕH′−−→ ΥC′/S(E′, F ′)⊗OC′ H

′ → Υ′ ⊗OC H

Consider the following commutative squares:

OC′ //

ρ+εδ′

��

OC

id+εδ

��

OC + εΥ′ // OC + εΥ

H ′ //

ρ+εϕ

��

H

id+εϕ

��

H + ε(Υ′ ⊗H) // H + ε(Υ⊗H)

We have written ρ for reduction modulo π∗J and δ′ for the composition

OC′ → ΥC′/S(E′, F ′)→ OC ⊗OC′ ΥC′/S(E′, F ′) = Υ′.

We have already seen that the square on the left is cartesian in the discussion of
(10.16) and Lemma 10.37. The square on the right is cartesian as well, since its
horizontal arrows are surjective and we can identify the kernels of both horizontal
arrows with π∗J ⊗H: on the top we have applied ⊗OC′ H

′ to the exact sequence

0→ π∗J → OC′ → OC → 0

noting that H ′ is flat over OC′ , and on the bottom we have applied ⊗OC H to the
exact sequence (10.16), this time noting that H is flat over OC . Each entry in the
square on the right is a module under the ring in the corresponding entry of the
square on the left and the arrows in the square on the right are homomorphisms
with respect to the arrows in the square on the left. It follows that the module
structure on H ′ is induced from the fiber product. The lemma now follows, since
the square

H + ε(Υ′ ⊗H) //

��

H + ε(Υ⊗H)

��

Υ′ ⊗H // Υ⊗H
is cartesian. �

If we fix σ : E → F , then ϕHom(E,F )(σ) ∈ ΥC/S(E,F ) ⊗ Hom(E,F ) induces a
linear map:

(10.17) Hom(E,F )∨ → ΥC/S(E,F ) : Υ•C/S(E,F, σ)
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via evaluation against Hom(E,F ). As indicated write Υ•C/S(E,F, σ) for the com-

plex (10.17), concentrated in degrees [−1, 0].

Remark 10.42. As with ΥC/S(E), one may arrive at the definition of Υ•C/S(E,F, σ)

by contemplating, with a bit of care, the automorphism group of the trivial exten-
sion of (C,E, F, σ) to S[εJ ] (cf. Remark 10.36).

In order to state the next lemma, we recall the category Ext(K•, L) of exten-
sions of a complex K−1 → K0 by a module L is, by definition, the category of
commutative diagrams

K−1

|| ��

0 // L // M // K0 // 0

in which the bottom row is exact [sga72a, §VII.3].

Lemma 10.43. Let F be the stack of quadruples (C,E, F, σ) where C is a nodal
curve, E and F are vector bundles on C, and σ : E → F is a morphism of vector
bundles. At an S-point (C,E, F, σ), we have

TF (C,E, F, σ) = Ext
(
Υ•C/S(E,F, σ),OC

)
and therefore

T−1
F (C,E, F, σ) = Ext0

(
Υ•C/S(E,F, σ),OC

)
T 0
F (C,E, F, σ) = Ext1

(
Υ•C/S(E,F, σ),OC

)
.

Proof. As in the previous sections we will actually prove the analogous state-
ment about extensions to S[εJ ]. Suppose that (C ′, E′, F ′, σ′) is an extension of
(C,E, F, σ) to S[εJ ]. We have a commutative diagram:

OC ⊗OC′ Hom(E′, F ′)∨
∼ //

��

Hom(E,F )∨

��

0 // π∗J // OC ⊗OC′ ΥC′/S(E′, F ′) // ΥC/S(E,F ) // 0

The bottom row is exact, as in the last section. As the upper horizontal arrow is
an isomorphism, we obtain an element of Ext

(
Υ•C/S(E,F, σ), π∗J

)
.

Conversely, suppose we are given an extension:

(10.18)

Hom(E,F )∨

β

yy ��

0 // π∗J // Υ′ // ΥC/S(E,F ) // 0

We may construct

OC′ = δ−1Υ′ = OC ×Υ Υ′

E′ = ϕ−1
E (Υ′ ⊗ E) = E ×Υ⊗E (Υ′ ⊗ E)

F ′ = ϕ−1
F (Υ′ ⊗ F ) = F ×Υ⊗F (Υ′ ⊗ F )
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To get σ′ ∈ Hom(E′, F ′), regard β as an element of Υ′ ⊗ Hom(E,F ). Then the
image of β in ΥC/S(E,F )⊗Hom(E,F ) is [σ, ϕ], by the commutativity of (10.18).
Therefore σ′ = (σ, β) defines an element of

Hom(E′, F ′) = Hom(E,F ) ×
Υ⊗Hom(E,F )

Υ′ ⊗Hom(E,F ).

We leave the verification that these constructions are mutually inverse to the reader.
�

Lemma 10.44. Let F be the stack of quadruples (C,E, F, σ) where C is a nodal
curve, E and F are vector bundles on C, and σ : E → F is a homomorphism of
vector bundles. Then F is homogeneous.

Proof. Let N be the stack of nodal curves. The forgetful map F → N is relatively
homogeneous by Corollary 10.27 andN is homogeneous by Lemma 10.31. Therefore
F is homogeneous by Lemma 10.18. �

10.2.6. Deformations of Higgs bundles. We may apply the method of the previous
section to study deformations of a Higgs bundle φ : E → E ⊗ ωC/S on a nodal
curve C over S. We find that the deformation theory of (C,E, φ) is controlled by
the complex ΥC/S(E, σ), in degrees [−1, 0]:

Hom(E,E ⊗ ωC/S)∨ → ΥC/S(E)

Lemma 10.45. Let (C,E, φ) be a nodal curve of genus g over S equipped with a
Higgs bundle. Then

THShMg (C,E, φ) = Ext
(
ΥC/S(E, σ),OC

)
and

T−1
HShMg

(C,E, φ) = Ext0
(
ΥC/S(E, σ),OC

)
T 0
HShMg

(C,E, φ) = Ext1
(
ΥC/S(E, σ),OC

)
Lemma 10.46. The stack of Higgs bundles on nodal (resp. stable) curves is ho-
mogeneous.

Proof. Let F be the stack of quadruples (C,E, F, σ) where C is a nodal curve over a
tacit base S, E and F are vector bundles on C, and σ : E → F is a homomorphism.
Let E be the stack of pairs (C,E) where C is a nodal curve and E is a vector bundle
on C. Let H be the stack of Higgs bundles on nodal curves.

We have seen in Lemma 10.40 that E is homogeneous and in Lemma 10.44 that
F is homogeneous. Then we have two projections F → E , one sending (C,E, F, σ)
to F and the latter sending (C,E, F, σ) to ωC/S ⊗ E. We can identify H with the
equalizer of these two maps, that is, with the fiber product F ×E×E E , hence is
homogeneous by Lemma 10.18.

Again by Lemma 10.18, we deduce that H → N is relatively homogeneous,
where N denotes the stack of nodal curves. By base change, the stack HShMg

of Higgs bundles on stable curves of genus g is homogeneous over Mg (again by

Lemma 10.18). But we know Mg is homogeneous (Lemma 10.31) so we deduce
that HShMg

is homogeneous as well. �
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10.2.7. Deformations of principal bundles. Suppose that X ⊆ X ′ is a square-zero
extension of schemes by the ideal J and G′ is a smooth algebraic group over X ′.
Denote by G the preimage of X in G′. Let P be an étale G-torsor over X, meaning
that the map G ×X P → P ×X P is an isomorphism, and that P covers X in the
étale topology (Definition A.16). We would like to classify the extensions of P to
G′-torsors over X ′.

Remark 10.47. An algebraic group can have étale torsors that are not torsors in the
Zariski topology (see [Ser95]), so it is important that we have specified étale torsors
here. Since G is smooth, working in the fppf or fpqc topology would not yield any
more torsors: flat descent implies that any G-torsor would be representable by a
smooth algebraic space over X, hence would have a section étale-locally.

Remark 10.48. This discussion of G-torsors generalizes the discussion of §10.2.2:
given a vector bundle E over X, we may take G = GLn and let P to be the G-torsor
of isomorphisms between E and OnX .

Before analyzing the deformation problem, we introduce the (underlying vector
bundle of the) Lie algebra of G. Let e : X → G and e′ : X ′ → G′ denote the
identity sections. We set

g = e∗TG/X
to be the Lie algebra of G. We will also be interested in a closely related ob-
ject. To introduce it, note that the small étale sites of X and X ′ are equivalent
(Lemma 9.10), and that if U is an étale scheme over X we denote by U ′ the unique
(up to unique isomorphism) extension of U to an étale scheme over X ′.

We write G′ét and Gét for the restrictions of G′ and G to this common étale site,
and we introduce g′ for the kernel of the projection from G′ét to Gét:

0→ g′ → G′ét → Gét → 0

In general g′ does not coincide with g, but the following lemma relates them:

Lemma 10.49. Let g and g′ be as above. Then g′ ' g⊗ J as sheaves of groups on
the étale site of X. In particular, g′ is a sheaf of commutative groups.

Proof. We observe that g′ is canonically a torsor under g⊗ J . Indeed, for an open
subset U ⊆ X, denoting by G′e(U) the morphisms U ′ → G′ whose restriction to U
are the identity section, then we have:

g′(U)× g′(U) = G′e(U
′)×G′e(U ′)

= G′e(U
′ qU U ′) by homogeneity of G

= G′e(U
′ qU U [εJU ]) OU ′ ×OU OU ′ ' OU ′ ×OU OU [εJ ], p. 84

= Ge(U
′)×Ge(U [εJ ]) by homogeneity again

= Ge(U
′)× (g⊗ J)(U)

since g is the tangent space to G at the origin. But g′ also has a canonical section
over X coming from e′. Therefore g′ ' g ⊗ J as a g ⊗ J-torsor. In particular, g′

inherits a group structure from g⊗ J .
There is another group structure on g′ by virtue of its construction as a kernel.

These two group structures commute with one another, in the sense that the mul-
tiplication map of either group structure is a homomorphism with respect to the
other, and the identity elements are the same. By a standard argument, this means
the two group structures coincide (and that both are commutative). �
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As in the earlier sections, we make some observations about the local triviality
of this problem:

(i) There is an étale cover of X ′ by maps U ′ → X ′ such that, setting U =
U ′×X′ X, each GU -torsor PU extends to a G′U ′ -torsor on U ′.

(ii) Any two extensions of P to X ′ are isomorphic on a suitable étale cover of X ′.
(iii) If P ′ and P ′′ are two extensions of P and u, v : P ′ → P ′′ are two isomorphisms

between them, then there is a unique map h : P ′ → G′ over X ′ such that
h.u = v (we are denoting the group action map for the torsors with a dot,
and the map h.u is the composition of h × u : P ′ × P ′ → G′ × P ′′ with the
action map G′ × P ′′ → P ′′).

As u and v both reduce to the identity map on P , the map h must reduce
to the constant map P → e. Therefore h factors uniquely through g′:

P ′
h //

��

G′

g′
/ �
?

Furthermore, the induced map h : P ′ → g′ is equivariant with respect to
the natural action of G′ on P ′ and on g′ (by conjugation). Indeed, we have

h(g.x).u(g.x) = v(g.x)

h(g.x)g.u(x) = g.v(x) = gh(x).u(x)

for all x in P ′. It follows that h(g.x) = gh(x)g−1 for all g ∈ G′.
Finally, h : P ′ → g′ factors through the projection P ′ → P = P ′/g′.

This is because g′ is commutative, so h(g.x) = gh(x)g−1 = h(x) whenever
g ∈ g′. Therefore h factors through P ′/g′ = P . Thus h factors uniquely as a
G-equivariant map

P −→ g′ = g⊗ J.
Putting all of this together using the same Čech or gerbe argument from Sec-

tion 10.2.2, we obtain a theory of deformations and obstructions:

Theorem 10.50. Suppose that G is a smooth algebraic group over a scheme X,
that X ′ is a square-zero extension of X, and that G′ is an extension of G to X ′

by the ideal J . Let P be a G-torsor on X. There is an obstruction to extending
P to a G′-torsor on X ′ lying in H2

(
X,HomG(P, g ⊗ J)

)
. Should this obstruction

vanish, deformations are canonically a torsor on X under H1
(
X,HomG(P, g ⊗

J)
)
, and automorphisms of any given deformation are canonically isomorphic to

H0
(
X,HomG(P, g⊗ J)

)
.

In the case of the trivial extension X[ε], so that J = OX , and g = g ⊗ J = g′,
the bundle

p := HomG(P, g)

is known as the adjoint bundle of P .

Remark 10.51. The adjoint bundle can also be constructed as the quotient of P ×g
by the diagonal action of G. To see that these are equivalent, note that a section
of P ×G g corresponds to a G-orbit in P × g, which is the graph of an equivariant
map P → g. Thus the definition of the adjoint bundle given above is equivalent to
the one given in Section 7.8.
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Lemma 10.52. The adjoint bundle p of a G-torsor P over X is isomorphic to the
space of G-invariant vector fields on the fibers of P over X.

Proof. Recall that a vector field on the fibers of P over X is an X-morphism
V : P [ε] → P that lifts the identity on P ⊂ P [ε]. To be invariant means that the
diagram

G× P [ε]
id×V

//

p2

��

G× P

α

��

P [ε]
V // P

commutes, α being the action map and p2 the second projection. Now, the zero
vector field also gives a map P [ε]→ P , and the pair (0, V ) gives an X-morphism

(10.19) P [ε]
(0,V )−→ P ×X P

∼←− G×X P.

The first map is equivariant with respect to the diagonal G-action on P ×X P .
Since the map G×X P → P ×X P sends (g, y) to (gy, y), the second arrow is also
equivariant, provided we let G act by conjugation on itself. The original condition
that P [ε]→ P restrict to the identity on P ⊂ P [ε] means that P ⊂ P [ε]→ P ×X P
factors through the diagonal, and therefore that P ⊂ P [ε]→ G×X P → G factors
through the identity section of G.

Now composing (10.19) with the projection G×X P → G, we get an equivariant
map

P [ε] = P ×X[ε]→ G,

that factors through the identity section of G when restricted to P . This is the
same as to give an equivariant map

P → HomX(X[ε], G)×HomX(X,G) {e} = TG/X ×G {e} = g,

which, by definition is the same as to give a section of the adjoint bundle of P . �

Corollary 10.53. The adjoint bundle p of a G-torsor P has the structure of a sheaf
of Lie algebras. If G is semisimple then the Killing form furnishes an isomorphism
between p and its dual.

Proof. The point is to verify that the bracket of equivariant vector fields on P is
equivariant. This can be done with a diagram chase, using the definition of the Lie
bracket in Section 10.1.3, but we omit it. Then P is locally isomorphic to G so p
is locally isomorphic to g, and this isomorphism preserves the Killing form. If G is
semisimple then g is self dual with respect to the Killing form. �

For the next statement, let X be an S-scheme and let G be a smooth group
scheme over X. Let FibGX/S denote the S-stack whose sections over T are the
G-torsors on XT .

Theorem 10.54. We have TFibG
X/S

(P ) = BHomG(P, g) = Bp where g denotes the

Lie algebra of G. In particular,

T−1
FibG

X/S

(P ) = H0
(
X,HomG(P, g)

)
= H0(X, p)

T 0
FibG

X/S
(P ) = H1

(
X,HomG(P, g)

)
= H1(X, p).
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Proof. Let X ′ = X[ε]. Let P ′ be the trivial extension of P to X ′. Suppose that

P ′′ is another extension. Then IsomP
G′(P

′′, P ′) (isomorphisms respecting the G′-
action and the maps to P ) is a torsor on X ′ under HomG(P, g) as explained in
(iii) above (X ′ has the same étale site as X). The same argument shows that

AutPG′(P
′) = p, so that, given any torsor Q under p = HomG(P, g), we can form

the sheaf of p-equivariant maps from Q to P ′

P ′′ = Homp(Q,P ′).

These constructions are inverse isomorphisms between TFibG
X/S

(P ) and the stack of

torsors under p = HomG(P, g). �

Now suppose that X is a reduced (and therefore Cohen–Macaulay) projective
curve over a field k (i.e., S = Spec k). Then by Serre duality, we have

T 0
FibG

X/S
(P ) = H1(X, p) ' H0

(
X,Hom(p, ωX)

)∨
.

Generalizing Definition 7.26:

Definition 10.55 (G-Higgs bundle). Let X be a reduced projective curve over
a field k, and let G be a smooth algebraic group over k. A G-Higgs bundle on
X is a pair (P,Φ) where P is a G-torsor over X and Φ ∈ Hom(p, ωX), where
p := HomG(P, g).

Remark 10.56. If G is semisimple then p is self-dual (Corollary 10.53), so a G-Higgs
bundle on X can also be viewed as an element of H0(X, p ⊗ ωX), or, in another
popular notation, of H0(X, adP⊗KX). In other words, Definition 7.26 agrees with
Definition 10.55.

In the case where P is the GLn-torsor associated to a vector bundle E, we have
p = End(E), so that

Hom(p, ωX) = Hom(E,E ⊗ ωX),

and T 0
FibG

X/k

(P ) = H1(X, p) ' Hom(p, ωX)∨ = Hom(E,E ⊗ ωX)∨. More gener-

ally, extending the definition of G-Higgs bundles to families of curves, and using
Grothendieck duality, the discussion above proves the following corollary:

Corollary 10.57. Let X be a family of smooth curves over S. Higgs bundles on
X/S correspond to isomorphism classes of relative cotangent vectors for FibX/S
over S. Likewise, G-Higgs bundles on X/S correspond to relative cotangent vectors

over S for the stack FibGX/S of principal G-bundles on X.

10.3. Obstruction theory. In this section, we will consider a stack F (not a priori
algebraic) and a lifting problem

(10.20) S
ξ
//

��

F

S′

>>

in which S′ is a square-zero extension of S′ with ideal J . We are looking for an
obstruction theory that can detect whether this lifting problem has a solution. The
obstruction theory will be an OS-module T 1

F (ξ, J) that depends only on J and
ξ ∈ F(S), not on the particular extension S′. The above lifting problem will then
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produce a natural obstruction ω ∈ T 1
F (ξ, J) whose vanishing is equivalent to the

existence of a lift.
We will see that for moduli problems that are locally unobstructed in a suitable

sense (that includes all of the examples considered here) there is a natural choice
for T 1

F (ξ, J) arising from the infinitesimal deformation theory. This phenomenon
could be better explained in the language of torsors under abelian group stacks,
but to introduce such objects would take us too far afield. We will rely instead on
injective resolutions and Čech methods.

Various definitions of obstruction theories have appeared in the literature [Art74,
§2.6], [BF97, Def. 4.4], [LT98, Def. 1.2], [Sta15, Tag 07YG], [Hal12, Def. 6.6],
[Wis11, Def. 3.2]. From the perspective of derived algebraic geometry, an obstruc-
tion theory arises from the promotion of a moduli problem to a derived moduli
problem [Lur04]. The definition we adopt here is closest to [Hal12].

Definition 10.58. Let F be a stack on the étale site of schemes. An obstruction
theory for F is a system of abelian groups T 1(ξ, J) depending contravariantly on a
scheme S and an element ξ ∈ F(S), and covariantly on a quasicoherent OS-module
J , together with an obstruction map

ω : Exal(OS , J)→ T 1(ξ, J)

that is natural in S and J and has the following property: ω(S′) = 0 if and only if
diagram (10.20) admits a lift.

Above we use the notation Exal(OS , J) for the OS-module of algebras that are
extensions of OS by J with J2 = 0 (see e.g., [Ser06, §1.1] for more details).

We spell out precisely the meaning of naturality in Definition 10.58. Suppose
there is a commutative (not necessarily cartesian) diagram of square-zero exten-
sions (10.21) where R ⊆ R′ has ideal I and S ⊆ S′ has ideal J .

(10.21)

R //

f

��

R′

��

S // S′

Then we get a homomorphism f∗J → I and therefore a morphism:

(10.22) T 1(ξ, J)→ T 1(f∗ξ, f∗J)→ T 1(f∗ξ, I).

We also have obstructions ω(S′) ∈ T 1(ξ, J) and ω(R′) ∈ T 1(f∗ξ, I). The natu-
rality alluded to in Definition 10.58 requires that ω(S′) is carried under the mor-
phism (10.22) to ω(R′).

Our goal in this section will be to illustrate a technique for constructing an
obstruction theory for a stack. For concreteness, we will consider the case where F
is the stack of quadruples (C,E, F, σ) in which π : C → S is a nodal curve, E and F
are vector bundles on C, and σ : E → F is a morphism of vector bundles. However,
apart from the following observations, analogues of which frequently hold for other
stacks, the particular choice of F will not enter into the rest of the discussion:

(1) Fix a scheme S, an S-point ξ = (C,E, F, σ) of F , and a square-zero extension
S ⊆ S′ with ideal J . We obtain a square-zero extension of sheaves of com-
mutative rings on the Zariski site, π−1OS′ → π−1OS , with ideal π−1J . Our
problem can be phrased as the search for a square-zero extension OC′ of OC by
π∗J compatible with the extension π−1OS′ → π−1OS and the homomorphism
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π−1J → π∗J , together with locally free OC′ -modules E′ and F ′ extending E
and F and a morphism σ′ : E′ → F ′ extending σ.

We could replace π−1OS′ by the extension A of π−1OS by π∗J obtained by
pushout:

0 // π−1J //

��

π−1OS′ //

��

π−1OS // 0

0 // π∗J // A // π−1OS // 0

To find an extension of OC by π∗J compatible with A is the same as to
find a π−1OS′ -algebra extension compatible with the homomorphism π−1J →
π∗J . Indeed, an A -algebra extension induces a π−1OS′ -algebra extension by
composition with π−1OS′ → A ; conversely, if B is a π−1OS′ -algebra extension
of OC by π∗J then the map π−1J → B factors through π∗J so the map
π−1OS′ → B factors through A .

Moreover, we may consider an arbitrary square-zero extension A of π−1OS
by an OC-module J and define Fξ(A ) to be the category of quadruples
(OC′ , E′, F ′, σ′) where OC′ is an extension of OC by J , compatible with A ;
both E′ and F ′ are locally free OC′ -modules extending E and F , respectively;
and σ′ : E′ → F ′ is a morphism of OC′ -modules extending σ.

We observe that Fξ is a homogeneous functor. This allows us to define

T−1
F (ξ,J ) and T 0

F (ξ,J ).
(2) There is a complex Υ• of OC-modules with quasicoherent cohomology such

that

TF (ξ,J ) = Ext(Υ•,J ).

In other words, the infinitesimal deformations and automorphisms of ξ should
be representable by a complex. In the case of interest, Υ• is the complex
Υ•C/S(E,F, σ), constructed in §10.2.5.

For the representability of the obstruction theory by a complex on S, we
will also need the observation that Υ• is perfect as an object of the derived
category. That is, locally in C it can be represented by a bounded complex of
locally free modules. This is even true globally for ΥC/S(E,F, σ).

(3) Whenever J is an injective OC-module and A is a square-zero extension of
π−1OS by J , there is some ξ′ ∈ Fξ(A ). In our situation of interest, we can
see that this is the case by considering the successive obstructions introduced
in earlier sections. There is no local obstruction to deforming curves (Corol-
lary 10.32). The first global obstruction (gluing isomorphism classes of local
deformations) lies in

H1
(
C,Ext1(ΩC/S ,J )

)
= 0.

The obstruction to finding a global deformation inside compatible local isomor-
phism classes lies in

H2
(
C,Hom(ΩC/S ,J )

)
= 0.

Therefore we can find OC′ . Now the obstructions to extending E and F lie in

Ext2
(
End(E)∨,J

)
= 0

Ext2
(
End(F )∨,J

)
= 0.
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Finally, the obstruction to extending σ, once OC′ , E′, and F ′ have been chosen,
lies in

Ext1
(
Hom(E,F )∨,J

)
= 0.

One could also verify the existence of ξ′ directly by choosing local deformations
arbitrarily and using the fact that J is a flasque sheaf to assemble them into
a global deformation. Thus, if one wants to axiomatize the discussion of this
section, one should require that Fξ(A ) be locally nonempty, when regarded as
a CFG over the Zariski site of C.

Now we will build a global obstruction to the existence of ξ′ ∈ F(S′) lifting
ξ ∈ F(S). The obstruction will lie in Ext2(Υ•, π∗J), which we will take as the
definition of T 1

F (ξ, J).
We begin by choosing a resolution

0→ π∗J →J 0 →J 1 → 0

where J 0 and J 1 are sheaves of OC-modules and J 0 is injective. We leave
it to the reader to verify that the construction of the obstruction given here is
independent of the choice of resolution.

We can push out the extension:

0 // π−1J //

��

π−1OS′ //

��

π−1OS // 0

0 //J 0 //

��

A //

��

π−1OS // 0

0 //J 1 // B // π−1OS // 0

Note B is canonically isomorphic to π−1OS + εJ 1 because the map π−1J →J 1

is zero.
The commutative diagram above induces a map:

(10.23) Fξ(A )→ Fξ(B) = TF (ξ,J 1).

The identification with TF (ξ,J 1) comes by virtue of the canonical isomorphism
B ' π−1OS + εJ 1.

Note that Fξ(B) contains a canonical zero element (corresponding to the zero
element of TF (ξ,J 1)), namely the image of ξ under the map Fξ(π−1OS)→ Fξ(B)
induced from the homomorphism π−1OS → π−1OS + εJ 1 = B, so we can speak
of the kernel of (10.23). By definition, this is the fiber product of groupoids
0×Fξ(B) Fξ(A ).

Lemma 10.59. There is a canonical identification between Fξ(π−1OS′) and the
kernel of (10.23).

Proof. The diagram

π−1OS′ //

��

A

��

π−1OS // B
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is cartesain (the bottom arrow is the canonical splitting of the projection B →
π−1OS). Therefore the homogeneity of Fξ implies that

Fξ(π−1OS′) //

��

Fξ(A )

��

Fξ(π−1OS) // Fξ(B)

is also cartesian. But Fξ(π−1OS) = 0, by definition, so this identifies Fξ(π−1OS′)
with the kernel of (10.23). �

As J 0 is injective, Fξ(A ) 6= ∅ (observation 3 on p. 97), so that Ext1(Υ•,J 0)
acts simply transitively on the set

∣∣Fξ(A )
∣∣ of isomorphism classes in Fξ(A ) (by

observation (2) on p. 97). As B is a (canonically) split extension of π−1OS , we
have a (canonical) identification Ext1(Υ•,J 1) =

∣∣Fξ(B)
∣∣. Now we have an exact

sequence in the top row below, with compatible actions illustrated in the bottom
row:

Ext1(Υ•, π−1J) // Ext1(Υ•,J 0) // Ext1(Υ•,J 1) // Ext2(Υ•, π−1J)

∣∣Fξ(π−1OS′)
∣∣ //

		 ∣∣Fξ(A )
∣∣ //

		 ∣∣Fξ(B)
∣∣

Note that Fξ(π−1OS′) may be empty. As the action of Ext1(Υ•,J 0) on
∣∣Fξ(A )

∣∣ is

faithful and transitive, we have that the image of
∣∣Fξ(A )

∣∣ is an Ext1(Υ•,J 0) coset

in Ext1(Υ•,J 1). In other words, it gives a well-defined element of Ext2(Υ•, π−1J)
obstructing the existence of an element of Fξ(π−1OS′). We therefore define

T 1
F (S, J) := Ext2(Υ•, π−1J).

By construction, T 1
F (S, J) is functorial with respect to S (contravariant) and J

(covariant) and the obstruction class is natural.

Definition 10.60 (Representable deformation-obstruction theory). Let F be a
stack in the étale topology on schemes. We will say that a deformation-obstruction
theory T iF , i = −1, 0, 1, is representable at an S-point ξ if there is a complex of
locally free sheaves E• on S, such that for any f : T → S and any quasicoherent
sheaf J on T , we have a natural (in T and in J) identification

T iF (f∗ξ, J) = Exti(f∗E•, J)

for i = −1, 0, 1. We will say it is finitely presentable if the vector bundles in the
complex E• may be chosen to have finite rank.

We say that the deformation theory is locally representable if it is representable
at all points valued in affine schemes. We say it is locally finitely presentable if it is
finitely presentable at all points valued in affine schemes.

Lemma 10.61. Let F be the stack of quadruples (C,E, F, σ) where C is a nodal
curve, E and F are vector bundles over C, and σ : E → F is a morphism of
vector bundles. Then the obstruction theory for F introduced above is locally finitely
presentable.

Proof. Let A be a commutative ring and let ξ = (C,E, F, σ) be an A-point of F .
We want to show that there is a complex of locally free A-modules E• representing
T iF (ξ, J) for i = −1, 0, 1 and all A-modules J . We assume first that A is noetherian.
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Let Ξ• be a bounded above complex of locally free sheaves on C that is dual to
Υ•. Then

T iF (ξ, J) = Exti(Υ•, π∗J) = Hi(C,Ξ• ⊗ π∗J).

Therefore, by [Har77, III.12.2], there is a complex L• of finite rank vector bundles
on S such that4

T iF (ξ, J) = hi(L• ⊗A J).

But now we may take E• to be a complex dual to L• and obtain

Exti(E•, J) = hi(L• ⊗A J)

as required.
Now we pass to the general case. We can always write A as a filtered colimit of

commutative rings of finite type A = lim−→Ai. As F is locally of finite presentation

(Corollary 11.15) there is some index j and some ξj = (Cj , Ej , Fj , σj) ∈ F(Aj)
inducing (C,E, F, σ). Now, T iF (ξ, J) = T iF (ξj , J), with J regarded as an Aj-module
via the map Aj → A. Therefore

T iF (ξ, J) = T iF (ξj , J) = ExtiAj (E
•, J) = ExtiA(A ⊗

Aj
E•, J)

so TF is locally representable at ξ. �

Lemma 10.62. Suppose that X is a stack with a locally finitely presentable ob-
struction theory. Then, for any field-valued point ξ of X , the vector spaces T−1

X (ξ),
T 0
X (ξ), and T 1

X (ξ) are finite dimensional.

Proof. This is immediate, because the vector spaces in question may be identified
with cohomology groups of the dual complex of a complex of finite rank vector
bundles. �

11. Artin’s criterion for algebraicity

Intuition from analytic moduli spaces suggests that moduli spaces should locally
be embedded as closed subspaces of their tangent spaces. For this to apply in an
algebraic context, locally must be interpreted to mean étale-locally for schemes and
algebraic spaces, and smooth-locally for algebraic stacks.

Artin gives criteria under which a stack is locally cut out by polynomial equations
inside its tangent space, thereby ensuring the stack is algebraic. Since Artin’s
original formulation, there have been a number of improvements [Fle81, Lur12,
Pri12, Hal12, HR13]. The statement we give here is close to the form given by
Hall [Hal12], but with some hypotheses strengthened for the sake of transparency:

Theorem 11.1 (Artin’s criterion [Hal12, Thm. A]). Let S be an excellent scheme
and let X be a CFG over the category S/S of S-schemes. Then X is an algebraic
stack over (S/S)et that is locally of finite presentation over S if and only if it has
the following properties:

(1) X is a stack in the étale topology (Definition 3.31).
(2) X is homogeneous (Definition 10.12).
(3) X has finite dimensional tangent and automorphism spaces (Section 10.1).
(4) X is integrable (Definition 11.17).
(5) X is locally of finite presentation (Sections 9.6 and 11.2).

4Loc. cit. requires that Ξ• be a quasicoherent sheaf, but the proof works for a complex as long
as one takes the total complex of the Čech double complex at the bottom of p. 182.
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(6) X has a locally finitely presentable obstruction theory (Definition 10.60).

Remark 11.2. The assumption (3) actually follows from (5) (see Lemma 10.62);
however, we include the hypothesis (3) since it is useful from an expository per-
spective. In particular, a theorem of Schlessinger–Rim (see Theorem 11.10) uses
the hypotheses (2) and (3) on a CFG.

Remark 11.3. Hall only requires the existence of a multistep obstruction theory,
which is an a priori weaker hypothesis than (6). A posteriori, every algebraic
stack has a cotangent complex, whence a single step obstruction theory. In our
case, we actually constructed the obstruction theory for Higgs bundles in pieces in
Section 10.2, but we were able to assemble it into a single-step obstruction theory
in Section 10.3.

Remark 11.4. Property (5) is sometimes phrased, ‘X is limit preserving’.

Remark 11.5. For Property (4), some would say ‘X is effective’ or ‘formal objects of
X may be effectivized’ or ‘formal objects of X can be algebraized’ (in the literature,
the term ‘algebraized’ is sometimes reserved for algebraization over a scheme of
finite type; see Definition 11.22). We picked up the term ‘integrable’ from [BHL],
the intuition being that infinitesimal arcs can be integrated into formal arcs, in the
manner that tangent vectors are integrated to curves on smooth manifolds.

The rest of this section will be devoted to explaining these properties and veri-
fying them for the stack of Higgs bundles and related moduli problems; at the end,
we give a brief explanation of how these properties combine to imply a stack is
algebraic.

11.1. The Schlessinger–Rim criterion. We have seen that homogeneity is a
necessary condition for representability by an algebraic stack. The Schlessinger–
Rim criterion implies that it is sufficient for prorepresentability.

By abstract nonsense, a covariant functor is prorepresentable if and only if it
preserves finite limits. Generally, it is not very practical to check that functors on
Artin rings preserve arbitrary finite limits, ultimately due to the restrictions on
descent for flat modules along non-flat morphisms in Theorem 10.14. Fortunately,
Schlessinger was able to prove that homogeneity, that is, respect for a restricted
class of limits, along with a finite dimensional tangent space, are sufficient to im-
ply a functor is prorepresentable [Sch68]. In this section, we will discuss Rim’s
generalization of Schlessinger’s result to groupoids [sga72a, Exp. VI].

Suppose that X is a CFG on Λ-schemes, where Λ is a complete noetherian local
ring with residue field k, and ξ : Spec k → X is a k-point. Let CΛ be the category
of local artinian Λ-algebras with residue field k. One may interpret C op

Λ as the
category of infinitesimal extensions of Spec k. Let Xξ be the fibered category on
C op

Λ whose fiber over a ring A in C op
Λ consists of all η ∈ X (A) whose image via the

projection A→ k is ξ. Th CFG Xξ gives a formal picture of X near the point ξ.

Remark 11.6. Note that the restriction of the étale topology to C op
Λ is trivial, as

every morphism in C op
Λ has a section over the residue field, and sections of étale

maps extend infintisimally. Therefore all covers in C op
Λ have sections, every presheaf

is a sheaf, and every CFG is a stack. Therefore we can use the terms ‘stack’ and
‘CFG’ interchangeably over C op

Λ .
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Remark 11.7. Typically, we will start with a CFG X over S. This induces a CFG
XC op

Λ
over C op

Λ by restricting to the full subcategory obtained by taking objects over

the spectrum of such a ring. Given an object ξ ∈ X (Spec k), the category Xξ over
C op

Λ has objects the pairs (η, φ) where φ : ξ → η is a morphism of X (necessarily
cartesian) lying above an infintiesimal extension Spec k → SpecA, with A in C op

Λ :

ξ //
_

��

η_

��

Spec k // SpecA

Morphisms in Xξ are defined in the obvious way.

We write ĈΛ for the category of complete local Λ-algebras with residue field k
that are formally of finite type over Λ; i.e., completions of rings of finite type over
Λ.

Recall the notion of a groupoid object of Ĉ op
Λ from Definition C.2 and its asso-

ciated CFG C.6. Note that this coincides with the associated stack from Defini-
tion C.12, since the topology of Ĉ op

Λ is trivial.

Definition 11.8 ([sga72a, Def. VI.2.11]). We say a category fibered in groupoids
over C op

Λ is prorepresentable if it is representable by (i.e., equivalent to) the CFG

associated to a groupoid object U1
s //

t
// U0 in Ĉ op

Λ (Example C.16). The groupoid is

said to be smooth if the morphisms s and t satisfy the formal criterion for smooth-
ness (Definition 9.12).

Remark 11.9. In the above discussion, it is important to note that we are consid-

ering stacks over C op
Λ , not Ĉ op

Λ . In particular, if X is representable by a groupoid

object U1
s //

t
// U0 in Ĉ op

Λ , the morphism U0 → X (Example C.16) is not in gen-

eral defined by an object over U0 (as U0 is not in general in C op
Λ ). However, if

m is the maximal ideal of U0, and Vk is the vanishing locus of mj in U0, we can
write U0 = lim←−k Vk with each Vk in C op

Λ and there is a family of compatible mor-

phisms in Vk → X defined by objects of X over Vk—in other words, an element
of lim←−k X (U0/m

j). Such an element is called a formal element of X over U0 (see

Definition 11.17). We will return to this topic again in §11.3. Note finally that if

U1
s //

t
// U0 is a smooth groupoid object, then the morphism U0 → X is formally

smooth (Proposition C.18).

The following theorem says, essentially, that a stack looks like an algebraic stack
in a formal neighborhood of a point if and only if it is homogeneous:

Theorem 11.10 (Schlessinger [Sch68, Thm. 2.11], Rim [sga72a, Thm. VI.2.17]).
Let X be a fibered category over C op

Λ such that X (k) is a single point. Then X is

prorepresentable by a smooth groupoid object of Ĉ op
Λ if and only if X is homogeneous

and T−1
X and T 0

X are finite dimensional k-vector spaces.

One direction of the implications in the theorem is clear: it is quite easy to

see that the stack associated to a a smooth groupoid object U1
s //

t
// U0 of Ĉ op

Λ is
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homogeneous, since the stacks associated to the Ui are homogeneous. The finite
dimensionality of T−1

X (ξ) and T 0
X (ξ) follows from the finite dimensionality of the

tangent spaces of stacks represented by objects of Ĉ op
Λ , which consists of objects

formally of finite type.

11.2. Local finite presentation. The definition of morphisms locally of finite
presentation was given in §9.6. The proof of the following lemma is formal:

Lemma 11.11. (i) Suppose that g : Y → Z is locally of finite presentation.
Then f : X → Y is locally of finite presentation if and only if gf : X → Z is
locally of finite presentation.

(ii) The base change of a morphism that is locally of finite presentation is also
locally of finite presentation.

There is a repertoire of techniques for proving moduli problems are locally of
finite presentation to be found in [Gro66]. We combine these with Lemma 11.11 to
prove that the stack of Higgs bundles is locally of finite presentation.

Lemma 11.12. The stack of proper nodal curves is locally of finite presentation.

Proof. Let N denote the stack of proper nodal curves. Suppose that a commutative
ring A is the filtered colimit of commutative rings Ai. Put S = SpecA and Si =
SpecAi. Let C be an element of N (A). That is, C is a flat family of nodal curves
over A. We want to show that C is induced by base change from a nodal curve Ci
over Ai for some i, and that (up to increasing the index i) this curve is unique up
unique isomorphism.

First of all, C is of finite presentation over S. By [Gro66, Thm. (8.8.2) (ii)], there
is an index i and a scheme Ci of finite presentation over Ai such that C = Ci×Si S.
It follows from [Gro66, Thm. (8.8.2) (i)] that C is unique up to unique isomorphism
and increase of the index i. By [Gro66, Thm. (8.10.5) (xii)], we can arrange for Ci
to be proper over Si by replacing i with a larger index.

Now C has a cover by open subsets U , each of which admits an étale map
U → V , where V = SpecA[x, y]/(xy− tU ) for some tU ∈ A. Refining the cover, we
can assume that the open subsets U are affine, and hence of finite presentation over
A. As C is quasicompact, this cover can be assumed finite, so by increasing i, we can
assume that tU appears in Ai for all i. By increasing i still further, we can assume
each U is the preimage in C of an open subset Ui ⊆ Ci [Gro66, Prop. (8.6.3)] and
that these open subsets cover Ci [Gro66, Thm. (8.10.5) (vi)]. Now V = Vi×Si S
so by [Gro66, Thm. (8.8.2) (i)], the map U → V is induced from a map Ui → Vi
over Si, at least after increasing i still further. By [Gro67, Prop. (17.7.8) (ii)], we
can ensure that the map Ui → Vi is étale, at least after increasing i. Then Ci is a
family of nodal curves over Si, and the proof is complete. �

Lemma 11.13. Let E be the stack of pairs (C,E) where C is a proper nodal curve
and E is a vector bundle on C and let N be the stack of proper nodal curves. The
projection E → N is locally of finite presentation.

Proof. As before, A is the filtered colimit of commutative rings Ai. We suppose
that (C,E) is an A-point of E and that C is induced from a nodal curve Ci over
Ai. We want to show that, up to increasing i, the vector bundle E is induced from
a unique (up to unique isomorphism) vector bundle Ei over Ci. As E is of finite
presentation, we may increase i to obtain a quasicoherent sheaf of finite presentation
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Ei over Ci inducing E by pullback [Gro66, Thm. (8.5.2) (ii)]. The uniqueness of
Ei follows from [Gro66, Thm. (8.5.2) (i)]. Increasing i still further, we can ensure
that Ei is a vector bundle [Gro66, Prop. (8.5.5)]. �

Lemma 11.14. Let F be the stack of tuples (C,E, F, σ) where C is a nodal curve,
E and F are vector bundles on C, and σ : E → F is a morphism of vector bundles.
Let G be the stack of triples (C,E, F ) as above, and F → G the projection forgetting
σ. Then F is locally of finite presentation over G.

Proof. We assume A = lim−→Ai is a filtered colimit of commutative rings and that

(C,E, F, σ) ∈ F(A) and (Ci, Ei, Fi) ∈ G(Ai) induces (C,E, F ) ∈ G(A). By an
immediate application of [Gro66, Thm. (8.5.2) (i)], we discover that, after increas-
ing i, we can find σi : Ei → Fi inducing σ and that σi is unique up to further
increasing i. �

Combining Lemmas 11.11, 11.12, 11.13, and 11.14, we obtain

Corollary 11.15. The stack of tuples (C,E, F, σ) where C is a nodal curve, E
and F are vector bundles on C, and σ : E → F is a morphism of vector bundles is
locally of finite presentation.

Corollary 11.16. The stack of Higgs bundles is locally of finite presentation.

Proof. This is deduced from the previous corollary by the same argument as in
Lemma 10.46. �

11.3. Integration of formal objects. Let A be a complete noetherian local ring
with maximal ideal m. A formal A-point of X is an object of the inverse limit
lim←−kX(A/mj). It can be checked easily that for any scheme X, the function

(11.1) X(A)→ lim←−X(A/mj)

is a bijection. It is only slightly more difficult to verify this gives an equivalence
when X is an algebraic stack, provided that one interprets the limit of groupoids
correctly. One efficient way of describing the limit is as the category of sections of
X over the subcategory

Spec(A/m)→ Spec(A/m2)→ Spec(A/m3)→ · · ·
of C op

Λ .
Lifting a formal A-point of X to an A-point of X may be seen as an analogue of

integrating a tangent vector to a curve. We must require a formal point, as opposed
to merely a tangent vector, because not every tangent vector can be integrated on
a singular space.5

Definition 11.17 (Integrating formal points). Let X be a fibered category over
the category of schemes and let A be a complete noetherian local ring with maximal
ideal m. By a formal A-point of X we mean an object of the category

lim←−
j

X (A/mj).

5Many formulations of Artin’s criterion only require (11.1), when applied to a stack X , to

have dense image. This strengthens the analogy to integrating tangent vectors, since there is
not a unique curve with a given tangent vector. However, it is generally no more difficult to

prove (11.1) is an equivalence than it is to prove it has dense image.
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We say that a formal A-point of X can be algebraized, or that it can be effectivized,
or that it is integrable if it lies in the essential image of the functor

X (A)→ lim←−
j

X (A/mj).

If every formal A-point of X can be algebraized, for every complete noetherian local
ring A, then we say formal objects of X can be algebraized, or can be effectivized,
or are integrable.

For a long time, the main algebraization theorem was Grothendieck’s existence
theorem, which asserts that formal objects of the stack of coherent sheaves on a
proper scheme can be algebraized:

Theorem 11.18 (Groth. existence [FGI+05, Thm. 8.4.2], [Gro61b, Thm. (5.1.4)]).
Let X be a proper scheme over S = SpecA with A a complete noetherian local ring
with maximal ideal m. For each j, let Sj = SpecA/mj and let Xj = X ×S Sj. Then

Coh(X)→ lim←−
j

Coh(Xj)

is an equivalence of categories.

Very recently, Bhatt [Bha14] and Hall and Rydh [HR14] have proved strong
new integration theorems extending Grothendieck’s. Since Grothendieck’s existence
theorem will suffice for the stack of Higgs bundles on curves, we will not need to
state these new results.

Lemma 11.19. Formal families of proper nodal curves can be algebraized.

Proof. Let N denote the stack of proper nodal curves. Let A be a complete noe-
therian local ring with maximal ideal m. Set Aj = A/mj+1 and Sj = SpecAj and
suppose that Cj ∈ N (Sj) are the components of a formal A-point of N . Then
C0 is a curve over the field A0. Pick a very ample line bundle L0 on C0 with
H1(C0, L0) = 0. Extend L0 inductively to a compatible system of line bundles Lj
on each Cj : By Lemma 10.22, the obstruction to extending Lj to Lk+1 lies in

H2
(
C, π∗(mj/mj+1)

)
= mj/mj+1 ⊗H2(C0,OC0

) = 0.

Then Vj = π∗Lj is a (trivial) vector bundle on Sj . Moreover, by Lemma 10.19, the
obstruction to extending a section of Lj to a section of Lk+1 lies in

H1
(
C, π∗(mj/mj+1)⊗ L0

)
= mj/mj+1 ⊗H1(C0, L0) = 0

so Vj
∣∣
S`

= V` for ` ≤ k. There is therefore a (trivial) vector bundle V on S

whose restriction to Sj is Vj for all k. The complete linear series of the Lj give a
system of closed embeddings Cj → P(Vj). We may regard the structure sheaves
OCj as a compatible system of quotients of the structure sheaf of PAj (Vj), so by
Grothendieck’s existence theorem they can be algebraized to a quotient OC of the
structure sheaf of PA(V ). Let C be the corresponding closed subscheme of PA(V ).

By construction C is proper over SpecA. It is also flat by the infinitesimal
criterion for flatness [Eis95, Ex. 6.5]. Therefore it is a family of nodal curves (see
Rem. 10.29). �

Remark 11.20. The above argument can be used more generally to show that formal
families of proper schemes can integrated if the central fiber X has H2(X,OX) = 0.
See [Ser06, Thm. 2.5.13] or [Gro95a, Thm.4] for different ways of organizing the
ideas.
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Lemma 11.21. Let F be the stack of quadruples (C,E, F, σ) where C is a nodal
curve, E and F are vector bundles on C, and σ : E → F is a morphism of vector
bundles. Then formal objects of F can be integrated.

Proof. Suppose A is a complete noetherian local ring with maximal ideal m, set
Aj = A/mj+1. Given a formal family (Cj , Ej , Fj , σj) ∈ F(Aj), we seek an element
(C,E, F, σ) ∈ F(A) inducing it. We may find C by the Lemma 11.19. Note that C is
projective over A and the Ej and Fj are each formal families of coherent sheaves over
C, so by Grothendieck’s existence theorem (Theorem 11.18) they can be algebraized
to coherent sheaves E and F over C. Moreover, both E and F are flat, by the
infinitesimal criterion for flatness, so they are vector bundles. One more application
of Grothendieck’s existence theorem algebraizes the family of homomorphisms of
coherent sheaves σj : Ej → Fj to a homomorphism σ : E → F and the lemma is
complete. �

11.4. Artin’s theorems on algebraization and approximation. The question
of integrability concerns objects of a stack X lying over the spectrum of a complete
local algebra over a field. With the Schlessinger–Rim theorem and integration, we
can factor any morphism Spec k → X through a map SpecA→ X such that A is a
complete noetherian local ring and is formally smooth over X . This is tantalizingly
close to showing X is an algebraic stack: we need too find a factorization that is
genuinely smooth over X .

The distinction between smoothness and formal smoothness is finiteness of pre-
sentation, so we need to find a finite type ring B that is still formally smooth over
X at the k-point, and induces A by completion at a point (this will give smoothness
of the map B → X at the given k-point of B; to extend to smoothness on an open
neighborhood of the k-point, see §11.6).

This may be the subtlest part of the proof of Artin’s criterion. It is resolved
by Artin’s approximation theorem, proved originally by Artin [Art69, Thm. 1.12]
with some technical hypotheses, and in its current form by B. Conrad and J. de
Jong [CdJ02, Thm. 1.5] using a spectacular theorem of Popescu [Pop86, Thm. 1.3].

The algebraization theorem (Theorem 11.23) asserts that under our assumption
that X is locally of finite presentation (Theorem 11.1(5)), given ξ ∈ X (A) in an
appropriate complete local ring with residue field k, one can find a finite type k-
algebra B with a marked point (maximal ideal n), whose completion at the marked
point is A, and an element η ∈ X (B) that agrees to a specifiable finite order with ξ.
That is one may select j beforehand and then find η such that the restriction of η to
B/nj ' A/mj agrees with the restriction ξj of ξ. Even though η ∈ X (B) does not
necessarily restrict to ξ ∈ X (A), it will differ from ξ only up to an automorphism
of A that is the identity modulo mj . In particular, it will still be formally smooth
at the closed point (see the proof of Theorem 11.23).

We begin by introducing notation. Let k be a field and let Λ be a complete
noetherian local ring with residue field k. Recall, we denote by CΛ the category of

local artinian Λ-algebras with residue field k, and by ĈΛ the category of complete
local Λ-algebras with residue field k that are formally of finite type over Λ.

Definition 11.22 (Algebraization over a scheme of finite type). Let X be a CFG

over S and let (A,m) ∈ ĈΛ. We say a formal element η̂ of X over SpecA, i.e.,
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an object of lim←−j X (A/mj), can be algebraized over a scheme of finite type if there

exist:

• a finitely generated Λ-algebra B,
• a k-point s : Spec k → SpecB corresponding to a maximal ideal n ⊆ B,

and,
• an object θ ∈ X (B),

such that

(1) A = B̂n, the completion of B at n, and,
(2) the formal element η̂ is isomorphic to the image of θ under the map

X (B)→ lim←−
j

X (A/mj)

induced by the morphism B → Bn → Bn/n
j = A/mj .

Artin’s algebraization theorem asserts the following:

Theorem 11.23 (Artin’s algebraization theorem). Let X be a CFG that is locally
of finite presentation over an excellent DVR or field Λ. Let (A,m) be a complete
local Λ-algebra with residue field k that is formally of finite type over Λ. If η̄ ∈ X (A)
then there is a finite type Λ-algebra B with a maximal ideal n at whose completion
B is isomorphic to A, along with η ∈ X (B) inducing η̄ ∈ X (A).

The proof is almost an immediate consequence of Artin’s approximation theorem:

Theorem 11.24 (Artin’s approx. [Art69, Thm. 1.12], [CdJ02, Thm. 1.5]). Let X
be a CFG that is locally of finite presentation over an excellent DVR or field Λ. Let
(A,m) be a complete local Λ-algebra with residue field k that is formally of finite
type over Λ. Given η̄ ∈ X (A), there is a finitely generated Λ-algebra B with k-point

s : Spec k → SpecB corresponding to a maximal ideal n and B̂n = A, such that for
any positive integer j there is an element η ∈ X (B) (depending on j) such that the
images of η and η̄ are isomorphic in X (A/mj).

Proof of Theorem 11.23 from Theorem 11.24. Take B and η as in the Approxima-
tion theorem, with j = 2. In other words, η2 and η̂2 are isomorphic in X (A/m2).
Now, inductively, using formal smoothness, we can use diagram (11.2)

(11.2)

SpecA/mj

��

ψj−1
// SpecA

η̄

��

SpecA/mj+1

ψj

88

��

SpecB
η

// X

to construct for all j morphisms ψj : SpecA/mj+1 → SpecA so that η̄ψj ∼= ηj . This
induces a morphism ψ : SpecA→ SpecA so that η̄ψ ∼= η. But ψ is an isomorphism
modulo m2, so it must be surjective, and a surjective endomorphism of a noetherian
ring is an isomorphism (e.g., [Ser06, Lem. C.5]). �
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11.5. Algebraicity of the stack of Higgs bundles. In Lemma 10.44, Lemma
10.43, Lemma 11.21, Corollary 11.15, and Lemma 10.61, we have verified the con-
ditions of Theorem 11.1 for the stack F that parameterizes proper nodal curves
equipped with a homomorphism of vector bundles:

Theorem 11.25. Let F be the stack of quadruples (C,E, F, σ) where C is a nodal
curve, E and F are vector bundles, and σ : E → F is a morphism of vector bundles.
Then F is an algebraic stack.

Analogous arguments show that the stack of Higgs bundles satisfies the axioms,
hence is algebraic. Alternately, one may consider the stacks E1 of pairs (C,E) where
C is a nodal curve and E is a vector bundle on C and E2 of triples (C,E, F ) where C
is a nodal curve and E and F are vector bundles on C. (Note that E2 = E1×M E1.)
Then we can construct the stack of Higgs bundles as the fiber product E1×E2 F
where the map E1 → E2 sends (C,E) to (C,E,E ⊗ ωC). We therefore have

Corollary 11.26. The stack of Higgs bundles on proper nodal curves is an algebraic
stack.

11.6. Outline of the proof of Artin’s criterion. We will briefly summarize the
proof of Theorem 11.1. Since assumption Theorem 11.1(1) is that X is a stack,
the key point is to establish the existence of a smooth representable covering of
X by a scheme. The basic idea of the proof is to begin with an arbitrary point
ξ0 ∈ X (k), valued in a field k, and find a smooth neighborhood U → X of this point
by enlarging Spec k until it is smooth over X . In more concrete terms, U will be a
versal deformation of ξ0. Repeating this for every point of X and taking a disjoint
union of the different U gives a smooth cover of X by a scheme.

We now explain in more detail how the arguments in the previous sections imply
the existence of the schemes U .

Versality at a point

By the Schlessinger–Rim theorem (see Theorem 11.10), the homogeneity of X
(Theorem 11.1(2)) and the finite dimensionality of T−1

X (ξ0) and T 0
X (ξ0) (Theo-

rem 11.1(3)) guarantee that X is prorepresentable at ξ0. That is, there is a formal

groupoid V̂1 ⇒ V̂0, with V̂i = Spec R̂i for complete noetherian local rings R̂i, whose
associated CFG (Definition C.13) agrees with X on infinitesimal extensions of ξ0.

This gives a formal morphism V̂0 → X that is formally smooth (Example C.16).

In other words, we have compatible elements ξj ∈ X (Spec R̂0/m
j+1), where m is the

maximal ideal of R̂0. The assumption that formal objects of X integrate uniquely
(Theorem 11.1(4)) guarantees that this formal morphism comes from a genuine

morphism V̂0 → X , i.e., from an element of ξ ∈ X (Spec R̂0).

Now the map V̂0 → X is formally smooth at ξ0, but it is not of finite type. To
remedy this we can use the local finite presentation of X (Theorem 11.1(5)), which

ensures that V̂0 → X must factor through some scheme V of finite type. Unfortu-
nately, it is not clear we can exert any control over V , even formally, to guarantee
it is formally smooth over X . Fortunately, we may rely on Artin’s algebraization
theorem (Theorem 11.23) to ensure that V is still formally smooth over X at the
central point.
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This does not yet guarantee that the map V → X is smooth: we only have
formal smoothness at one point. The next step will be to show formal smoothness
at a point implies formal smoothness nearby.

Versality in a neighborhood

Write V = SpecR. We know that R is of finite type and we now have a map
η : V → X that we know to be formally smooth at a point lifting ξ. All that is left
is to find an open neighborhood of this point at which the map is actually smooth.
For this we use the obstruction theory T 1

X (Theorem 11.1(6)).
Hall shows that the existence of a locally presentable obstruction theory repre-

senting the automorphisms, deformations, and obstructions of X implies that there
is a relative obstruction theory T 1

V/X for V over X and that T 1
V/X is a coherent

functor.
As V is formally smooth over X at ξ0, we know that T 1

V/X (η, J) = 0 for

any quasicoherent sheaf J on V supported at ξ0. By a theorem of Ogus and
Bergman [OB72, Thm. 2.1], coherent functors over noetherian rings satisfy an ana-
logue of Nakayama’s lemma, which guarantees that T 1

W/X (η
∣∣
W
, J) = 0 for all qua-

sicoherent sheaves on W , where W is the localization of V at the point ξ0. Making
use of the local finite presentation of X (Theorem 11.1(5)), Hall shows that this
implies T 1

U/X (η
∣∣
U
, J) = 0 for all quasicoherent J on an open subset U ⊆ V con-

taining W . Then U → X is locally of finite presentation and satisfies the formal
criterion for smoothness.

Bootstrapping to representability

To conclude that U → X is smooth, we only need to show that it is representable
by algebraic spaces. This is proved by observing that the hypotheses of Theorem
11.1 on X imply relative versions of themselves for the map U → X (cf. Lemma
10.18, Lemma 11.11, and the relative obstruction theory T 1

U/X mentioned above).

The same hypotheses then hold for any base change UZ → Z via any map Z → X .
Taking Z to be a scheme and viewing UZ as a sheaf in the étale topology on schemes
over Z, this reduces the problem to showing that UZ is an algebraic space. Now
we can try to prove the theorem for X = UZ : In effect, Theorem 11.1 is reduced to
the case where X is a sheaf as opposed to a stack.

Now we have a scheme U and a map U → X that is formally smooth and locally
of finite presentation, and we are faced with the same problem: to show U → X is
representable by algebraic spaces. But this time, the relative diagonal of U over X
is injective, so that if we iterate the process one more time, we discover once again
that our task is to prove UZ is an algebraic space. But UZ = U ×X Z is a subsheaf
of U × Z, since the diagonal of X is injective. Therefore taking U × Z to be the
new base scheme and replacing X with U ×Z, we discover we may assume further
that X is even a subsheaf of the base scheme S.

But now, if W → X is any map, we have

W ×X U = W ×S U

since X is a subsheaf of S. Since U → S is schematic—it is a morphism of schemes,
after all—so must be U → X .
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A. Sheaves, topologies, and descent

We collect a few more technical topics surrounding the subject of descent. In
particular, we show that the presence of nontrivial automorphisms always prevents
an algebraic stack from having a representable sheaf of isomorphism classes (Corol-
lary A.7), we give a few more technically efficient ways of thinking about descent
(§A.2), we discuss a bit more about saturations of pretopologies (§A.3) and we
recollect and example of Raynaud showing that genus 1 curves do not form a stack
unless one admits algebraic spaces into the moduli problem (§A.4).

A.1. Torsors and twists. The point of this section is to explain how nontrivial
automorphisms give rise to nontrivial families, and prevent a stack from having a
representable sheaf of isomorphism classes. In other words, moduli functors param-
eterizing isomorphism classes of objects with nontrivial automorphism groups are
never representable.

A.1.1. Locally trivial families and cohomology. In general, one can build a locally
trivial family with fiber X over a base S from cohomology classes in H1

(
S,Aut(X)

)
([Sta15, Tag 02FQ]). If one represents the cohomology class with a Čech cocycle
then it is a recipe for assembling the family from trivialized families on open subsets.
The cocycle condition is precisely the one necessary to ensure that the family can be
glued together, while the coboundaries act via isomorphisms. The cocyle condition
appears in the definition of the gluing condition for a stack in §3.3 for precisely this
reason.

A.1.2. Locally trivial families from torsors over the base. Example 1.6 describes
a special case of a standard method for constructing locally trivial families is via
automorphisms, and covers of the base. Namely, given schemes X1 and S, and an

étale principal Γ-bundle S̃ → S for some discrete group Γ, then for each

φ : Γ→ Aut(X1)

one can construct a (étale) locally trivial family X/S with fibers isomorphic to X1

by setting X = (X1 × S̃)/Γ, where the quotient is via the (free) diagonal action
induced by φ. Alternately, this can be constructed as the space of equivariant

morphisms from S̃ to X1. Using the previous remark, this defines a map

Hom(Γ,Aut(X1))→ H1(S,Aut(X1))

(of course, the cohomology should be taken in a topology in which S̃ is a torsor).

When S̃ → S is a universal cover, we obtain a map Hom(π1(S),Aut(X1)) →
H1(S,Aut(X1)).

Remark A.1. In the discussion above (§A.1.2), it is possible for the isotrivial family
X to be trivial, even if the homomorphism φ is nontrivial. We will highlight one

situation in which the family X can be assured to be nontrivial. Let X1 and S̃ → S
be as in the discussion above (§A.1.2). Let G = Aut(X1), and let G′ ≤ G be a
discrete subgroup. From §A.1.1 and A.1.2 above, we obtain a commutative diagram

(A.1)

Hom(π1(S), G′)
� � // Hom(π1(S), G) //

��

Hom(π1(S), π0(G))

H1(S,G′) // H1(S,G) // H1(S, π0(G))
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where the horizontal maps are the natural maps, and the vertical equalities on
the left and right come from the fact that G′ and π0(G) are totally disconnected.
In summary, we can conclude that a locally trivial family X/S obtained from a
homomorphism φ : π1(S) → G′ will be a nontrivial family so long as the image
of φ in Hom(π1(S), π0(G)) is nontrivial. Note that the kernel of the natural map
H1(S,G′) → H1(S,G) corresponds to principal G′ bundles that can be equivari-
antly embedded in G × S; i.e., the kernel is given by sections over S of the coset
space (G/G′)× S.

Example A.2 (Disconnected automorphism groups). If Aut(X1) is disconnected,
then there exist nontrivial locally trivial families X/S with fibers isomorphic to X1.
This follows immediately from the previous remark, so long as one can find a space
S with π1(S) = Z, or at least that has a nontrivial principal Z-bundle. Indeed, for
any α ∈ Aut(X1) not in the connected component of the identity, one would take
G′ = 〈α〉 and set X/S to be the locally trivial family corresponding to the map
Z → 〈α〉 by 1 7→ α. In the complex analytic setting, we can simply take S = C∗.
However, we can arrange for this even in the category of schemes by joining a pair
of rational curves at two points; this has fundamental group Z in the sense that it
has a simply connected covering space (even in the Zariski topology!) with a simply
transitive action action of Z.

Example A.3 (Finite automorphism groups). If Aut(X1) is finite and nontrivial
(or more generally, has a finite subgroup not contained in the connected component
of the identity), one can easily construct similar examples using finite covers. In-
deed, then G = Aut(X1) contains a nontrivial finite cyclic subgroup G′ = µn (not

contained in the connected component of the identity). Let S = C∗ and S̃ → S be
the cyclic cover z 7→ zn, which is an étale principal µn-bundle. Then, as in (A.1)
of Remark A.1 above, we obtain a diagram

Hom(µn, G
′)

**

Hom(π1(S), G′) �
�
// Hom(π1(S), G) //

��

Hom(π1(S), π0(G))

H1(S,G′) // H1(S,G) // H1(S, π0(G)).

Therefore, a generator of µn = Hom(µn, G
′) determines a nontrivial locally trivial

family given explicitly by X = (X1 × C∗)/µn → S = C∗/µn = C∗, where the
quotient is by the diagonal action under the identifications µn ≤ Aut(X1), and
µn ≤ Aut(C∗) acting by a primitive n-th root of unity.

Example A.4 (Isotrivial families of curves). For every g there exists a relative
curve π : X → S of genus g that is isotrivial, but not isomorphic to a trivial family.
For g = 0, any nontrivial ruled surface X → S provides an example. The previous
Example A.3, and Example 1.6, provide nontrivial isotrivial families for g ≥ 1. For
instance, for g ≥ 2, one could begin with a hyperelliptic curve {y2 = f(x)} carrying
the nontrivial action of µ2 sending y to −y. The construction in Example A.3 yields
the family {ty2 = f(x)}, where t is the coordinate on S = C∗.

A.1.3. Twisting by a torsor. All of the previous examples are special cases of the
general process of twisting by a torsor.

Example A.5 (Twist by a torsor). Suppose that Z is an S-point of a stack X and
that the automorphisms group of Z is a smooth group scheme G over S (in fact, a
flat group scheme is enough if X is an algebraic stack). Let P be a G-torsor.
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As G is smooth, P is smooth over S, and hence has sections over some étale cover
of S. Therefore P is covering in the étale topology. (Note that P → S it is not
necessarily an étale morphism, but this is not an obstacle to using it for descent,
since we may use smooth descent; alternatively, see Appendix A.3.)

By descent, X (S) may be identified with the G-equivariant objects of X (P ). In
particular, let ZP in X (P ) be the pullback of Z to P . Then Z ∈ X (S) corresponds
to ZP with the trivial action of G. However, we can also ask G to act on ZP =
P×SZ by the given action of G on P and by automorphisms on Z, giving an object
Y := P ×G Z := (P ×S Z)/G in X (S) by descent. We call Y the twist of Z by the
torsor P .

We note that the torsor P can be recovered from a twist Y of Z as the sheaf
I somX (Z, Y ). Thus the twist is nontrivial if and only if the torsor P was. More-
over, one has an equivalence of categories between the full subcategory of X (S)
consisting of twists of Z and the category BG(S) consisting of G-torsors on S.

The following theorem was communicated to us by Jason Starr [Sta]. It implies
that if X is a stack in the fppf topology in which there are objects with nontrivial
automorphisms, and X is its associated sheaf of isomorphism classes, then X cannot
be representable by a scheme (Corollary A.7).

Theorem A.6. Let G be an algebraic group of finite type over an algebraically
closed field k. Then there is a scheme S of finite type over k and a nontrivial
G-torsor over S.

Proof. We suppose that G is an algebraic group of finite type and that H1(S,G) = 0
for every scheme S. We wish to show that G = 0. We will break the proof into
several steps.

Step 1: G is connected. We will show that G is connected by showing that any
homomorphism Z → G has image in the connected component of the identity. To
this end, as in Example A.2, let S be a k-scheme with a nontrivial Z-torsor P . For
concreteness, let us take S to be an irreducible rational curve with a single node
(otherwise smooth) and take P to be an infinite chain of copies of the normalization
of S, attached at nodes. Then using the right hand side of the commutative diagram
(A.1), we may conclude every homomorphism Z → G composes to a morphism
Z→ G→ π0(G), with trivial image, and we are done.

We now assume always that G is connected, and proceed to consider Gred ⊆ G,
the maximal reduced closed subscheme (necessarily a subgroup since we work over
an algebraically closed field, e.g., [Sta15, Tag 047R]). By Chevalley’s theorem (see
for instance [Con02, Thm. 1.1] for a modern treatment), there is an exact sequence

1→ Gaff → Gred → A→ 0

where Gaff is smooth connected and affine, and A is an abelian variety. Our next
goal will be to show that Gred = 0; we will do this in several steps.

Step 2: H1(S,Gred) = 0 for all S. For any scheme S, we have an exact sequence:

Hom(S,G)→ Hom(S,G/Gred)→ H1(S,Gred)→ H1(S,G)

We have assumed that H1(S,G) = 0. Furthermore, G→ G/Gred is smooth (since
Gred is) and G/Gred is artinian, so G admits a (not necessarily homomorphic)
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section over G/Gred. This implies Hom(S,G) → Hom(S,G/Gred) is surjective, so
H1(S,Gred) = 0.

Step 3: Gaff is unipotent. Consider the exact sequence

Hom(P1, Gred)→ Hom(P1, A)→ H1(P1, Gaff)→ Hom(P1, Gred) = 0.

As A is an abelian variety, every map from P1 to A is constant and therefore lifts
to Gred. It follows that H1(P1, Gaff) = 0. Let U ⊆ Gaff be the unipotent radical
[Bor91, 11.21, p.157]. Consider the exact sequence:

H1(P1, Gaff)→ H1(P1, Gaff/U)→ H2(P1, U)

Since U is an iterated extension of Gas [Bor91, Chap. V, Cor. 15.5 (ii), p. 205], we
have that H2(P1, U) = 0, whence H1(P1, Gaff/U) = 0.

Let T ⊆ Gaff/U be a maximal torus, and let W be its Weyl group. As Gaff/U
is reductive by definition [Bor91, Chap. IV, 11.21, p.158], there is an injection (in
fact a bijection!)

H1(P1, T )/W → H1(P1, Gaff/U) = 0

by a theorem of Grothendieck [Gro57, Thm. 1.1] (note that Grothendieck works an-
alytically, but his proof of the injectivity is valid algebraically [MT16, Thm. 0.3]).
Thus H1(P1, T ) is finite; although we do not need it, note that since the Weyl
group coinvariants of H1(P1, T ) are trivial if and only if H1(P1, T ) is, we can ac-
tually conclude immediately that H1(P1, T ) = 0. But T ' Grm for some r, and
H1(P1,Gm) = Z. Therefore r = 0. That is, the maximal torus T of Gaff/U is
trivial, so that Gaff is unipotent [Bor91, Chap. IV, Cor. 11.5, p. 148].

Step 4: Gred is affine. Now that we know Gaff is unipotent, we argue that A = 0.
Let S = A1 r {0}. Consider the exact sequence

H1(S,Gred)→ H1(S,A)→ H2(S,Gaff).

Since S is affine, and Gaff is unipotent and therefore an iterated extension of qua-
sicoherent sheaves (associated to Gas), we have H2(S,Gaff) = 0. This implies
H1(S,A) = 0. Choose an integer n relatively prime to the characteristic of k.
Consider the exact sequence

Hom(S,A)
[n]−−→ Hom(S,A)→ H1(S,A[n])→ H1(S,A)

where [n] denotes multiplication by n and A[n] is the n-torsion subgroup. Since S is

rational, every map S → A is constant. In particular, Hom(S,A)
[n]−−→ Hom(S,A) is

surjective. Therefore H1(S,A[n]) injects into H1(S,A) = 0, and so is also 0. Now,
A[n] ' (Z/nZ)2g where g is the dimension of A. We know that H1(S,Z/nZ) =
Z/nZ, so we deduce that g = 0, and therefore A = 0.

Step 4: Gred = 0. Now we know that Gred = Gaff is affine and unipotent. We
can choose an injective homomorphism Gred ⊆ G′ where G′ is smooth affine and
reductive (i.e., embed it in an appropriate GLn). Consider the Gred-torsor G′

over G′/Gred. This must be trivial, since H1(G′/Gred, Gred) = 0 from Step 2, so
G′ ' G′/Gred×Gred as a scheme. But G′ is affine, so this implies G′/Gred is affine.
Therefore Gred is reductive, by Matsushima’s criterion [Ric77, Thm. A]. As it is
also unipotent, this means Gred = 0.

Step 5: G = 0. Since Gred = 0, this means that G = G/Gred is the spectrum of an
artinian local ring. But we can once again choose a closed embedding G ⊆ G′ where
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G′ is smooth and affine (for example, let G act on its ring of regular functions). The
quotient G′/G is also reduced and affine. But H1(G′/G,G) = 0 by assumption, so
that G′ ' G′/G×G as a scheme. As G′ is reduced, this means G is reduced, and
therefore G = 0. �

Corollary A.7. Suppose that X is the presheaf of isomorphism classes in an alge-
braic stack X such that all objects over algebraically closed fields have automorphism
groups that are algebraic groups of finite type over the field. If X is a sheaf in the
fppf topology then X ' X . In particular, if X admits an object over an algebraically
closed field k with a nontrivial algebraic automorphism group of finite type over k,
then X is not representable by a scheme.

Proof. Let x be a k-point of X , where k is algebraically closed. Let G be the
stabilizer group of x. We obtain a monomorphism BG → Xk. If P is any G-
torsor over a scheme S then we obtain a twist S → BG → X (Example A.5). By
definition, the twists agree locally, so that the induced maps to X coincide locally.
But we have assumed X is a sheaf, so that the maps agree globally as well. But the
torsor can be recovered, up to isomorphism, from the twist, so all G-torsors over
all k-schemes are trivial. Therefore by Theorem A.6, G is trivial, so no point of X
has a nontrivial stabilizer group and X ' X. �

A.2. More on descent. We highlight a few alternate formulations of the descent
properties (Section 3.3.2). The definitions we present here are more efficient than
those given Section 3.3.2, and often lead to more streamlined proofs, but they come
at a cost of abstraction.

A.2.1. Descent using gluing data. In Definition 3.25 we needed a cleavage in order
to be able to write things like Xi

∣∣
Sij

. To do this properly requires keeping track

of a number of canonical isomorphisms, which were intentionally elided in Defini-
tion 3.25. Reliance on a cleavage can be avoided by explicitly choosing a restriction
at each step, instead of insisting on a canonical choice from the beginning. Al-
though this definition avoids the technical deficiencies of Definition 3.25, it only
exacerbates the proliferation of indices. Nevertheless, we will see in §A.2.2 that it
points the way towards a definition that is both technically correct and pleasantly
efficient.

Definition A.8 (Descent datum via gluing data). Let (S, PT ) be a presite and
let {Si → S} be a cover of S in S. A descent datum with respect to this cover
consists of the following data:

(i) objects Xi ∈M(Si), Xij ∈M(Sij), and Xijk ∈M(Sijk) for all indices i, j, k
of the cover;

(ii) morphisms

Xij → Xi Xij → Xj Xijk → Xij Xijk → Xik Xijk → Xjk

in M respectively covering the canonical projections

Sij → Si Sij → Sj Sijk → Sij Sijk → Sik Sijk → Sjk.

The category of descent data with respect to {Si → S}, denoted M(S•), has as
objects the descent data as defined above. A morphism (X•) → (Y•) consists of
morphisms

Xi → Yi Xij → Yij Xijk → Xijk
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for all indices i, j, k, commuting with the sructural morphisms (a more precise
formulation of this condition will appear below in Remark A.11).

Remark A.9. An observant reader may be wondering where the cocycle condi-
tion (3.4) is hiding in Definition A.8. It is built into the commutativity dia-
gram (A.2),

(A.2) Xi

Xij

AA

��

Xijk

OO

oo //

yy �� %%

Xik

]]

��

Xj Xjk
oo // Xk

which itself is forced by the commutativity of the corresponding diagram with each
X replaced by an S, and the fact that every arrow inM is cartesian. The morphism
αij of Definition 3.27 is the composition

Xi

∣∣
Sij

∼←− Xij
∼−→ Xj

∣∣
Sij

with αik and αjk defined similarly. The cocycle condition is the identity of the
compositions

Xi

∣∣
Sijk

∼←− Xij

∣∣
Sijk

∼−→ Xj

∣∣
Sijk

∼←− Xjk

∣∣
Sijk

∼−→ Xk

∣∣
Sijk

Xi

∣∣
Sijk

∼−→ Xjk

∣∣
Sijk

∼−→ Xk

∣∣
Sijk

by virtue of the restriction of Diagram (A.2) to Sijk.

If X is an object ofM(S) then using Axiom (i) of a category fibered in groupoids
(Definition 2.8) we can find induced objects Xi ∈ M(Si), Xij ∈ M(Sij), and
Xijk ∈ M(Sijk) for all indices i, j, k. We also obtain the required morphisms
among these by many applications of Axiom (ii) of a category fibered in groupoids.
By an application of the axiom of choice, we can do this for all objects of M(S•)
and obtain a functor M(S)→M(S•).

Definition A.10 (Effective descent datum via gluing data). A descent datum
X ∈M(S•) forM with respect to a cover {Si → S} is said to be effective if it lies
in the essential image of M(S)→M(S•).

Remark A.11. We give a technical reformulation of Definition A.8, motivated by
the idea that the data we are keeping track of can be organized concisely by the
nerve of subcovers consisting of three open sets; i.e., 2-simplices. Suppose that the
cover {Si → S} is indexed by a set I. Let ∆ be the category of nonempty, totally
ordered, finite sets of cardinality ≤ 3, equipped with a morphism to I. That is, an
object of ∆ is a pair (T, f) where T is a totally ordered finite set with 1 ≤ |T | ≤ 3
(i.e., T is either {0}, {0 < 1}, or {0 < 1 < 2} up to isomorphism) and f : T → I is a
function. A morphism (T, f)→ (T ′, f ′) is an order preserving function g : T → T ′

such that f ′ ◦ g = f .
We introduce abbreviations for certain objects of ∆. Every object of ∆ is

isomorphic to one of the following:

(i) for i ∈ I, we write i for the object ({0}, (0 7→ i)) of ∆;
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(ii) for i, j ∈ I, we write ij for the object ({0 < 1}, (0 7→ i, 1 7→ j));
(iii) for i, j, k ∈ I, we write ijk for the object ({0 < 1 < 2}, (0 7→ i, 1 7→ j, 2 7→ k)).

The cover {Si → S} induces a functor S• : ∆op → S sending x to Sx. In other
words, it sends i to Si and ij to Sij and ijk to Sijk. The morphisms are all the
canonical projections among fiber products.

Now a descent datum, in the sense of Definition A.8 is a functor X• : ∆op →M
such that πX• = S•:

M

π

��

∆
S•

//

X•

==

S

A morphism of descent data X• → Y• is a natural transformation of functors that
projects to the identity natural transformation of S•.

A.2.2. Descent using sieves.
A.2.2.1. Sieves on topological spaces. In fact, there is an even more efficient for-
mulation of the definition of a sheaf. Recall that the if V is an object of OX then
hV is the functor represented by V . It is convenient to work with the related func-
tor, which we again denote by hV , defined as hV (W ) = {ιW,V } if W ⊆ V and
hV (W ) = ∅ otherwise.

Suppose that U ∈ OX . For any open cover U of U , define a presheaf hU :

hU (W ) =
⋃
V ∈U

hV (W ) =

{
{ιW,X} ∃ V ∈ U such that W ⊆ V
∅ else

If F : Oop
X → (Set) is a presheaf then, as hU ⊆ hX (e.g., if W ⊆ U for U ∈ U , then

we use W ⊆ U ⊆ X), we get a morphism

(A.3) F (X)
∼←− Hom(hX ,F )→ Hom(hU ,F ).

The bijectivity of the arrow on the left is Yoneda’s lemma.
The interested reader may prove the following proposition:

Proposition A.12. Let F be a presheaf.

(i) F is separated if and only if (A.3) is an injection for all open covers U of all
U ∈ OX .

(ii) F is a sheaf if and only if (A.3) is a bijection for all open covers U of all
U ∈ OX .

A.2.2.2. Sieves in general.

Definition A.13. Let S be a category and S an object of S. A sieve of S is a
subcategory of S/S that is fibered in groupoids over S/S.

In other words, a sieve of S is a subcategory R ⊆ S/S such that whenever
S′′ → S′ is a morphism in S/S and S′ is in R then S′′ is also in R.

In Example 2.14 we saw how to associate a sieve R to any family of maps
{Si → S}. By a covering sieve we mean a sieve associated to a covering family
in the pretopology. In fact, all of the axioms of a Grothendieck topology can be
formulated purely in terms of sieves [sga72b, Exp. II, Déf. 1.1], but that will not
concern us here.
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Definition A.14 (Descent datum via sieves). Let S be a presite, let π : M → S
be a category fibered in groupoids over S, and let R be a covering sieve of S ∈ S.
A descent datum for M with respect to R is a functor X : R → M lifting the
canonical projection R ⊆ S/S → S (sending an object S′ → S of S/S to S′):

M

��

R � � //

X
00

S/S // S.

Descent data over the sieveR are the objects of a categoryM(R) where a morphism
X → Y is a natural transformation projecting to the identity natural transforma-
tion of the projection R → S.

To construct the functor M(S) → M(R) for a sieve R of S, observe that
M(S) ' M(S/S) by the 2-Yoneda lemma (on the left we mean the fiber of M
over S and on the right we mean the category of morphisms from S/S to M).
Composing this equivalence with the restriction M(S/S) → M(R) induced from
the inclusion R ⊆ S/S induces

M(S) 'M(S/S)→M(R)

Definition A.15 (Effective descent datum via sieves). A descent datum X ∈
M(R) for M with respect to a sieve R is said to be effective if it lies in the
essential image of M(S)→M(R).

A.3. Grothendieck topologies. Grothendieck pretopologies seem quite natural
from the definition of a sheaf, but have the deficiency that many different pre-
topologies can give rise to the same category of sheaves. This is not unlike the way
different bases of a topological space should be considered equivalent. The topology
associated to a pretopology is the finest pretopology that gives the same category
of sheaves (see [FGI+05, Rem. 2.25, Def. 2.47, Prop. 2.49]). In this section, we give
an idea of how this works, providing a review of [FGI+05, §2.3.5], although here
for brevity we define the topology directly, without a discussion of refinements of
pretopologies.

Note that typically a Grothendieck topology is defined in terms of sieves, not
coverings; the point is that the sieves associated to a pretopology are the same
as the sieves associated to the topology obtained from the pretopology [FGI+05,
Prop. 2.48], and therefore both induce the same Grothendieck topology in the sense
of sieves.

For clarity of the discussion in this section, we will refer to coverings {Sα → S}
in a pretopology T on a category S as basic coverings. We start with a definition
(cf. [FGI+05, Def. 2.45]):

Definition A.16 (Coverings with respect to T ). Let T be a pretopology on a
category S. We call a family of morphisms {Sα → S} covering (with respect to T )
if there is a basic covering family {Tβ → S} such that, for each β, there is an α such
that the morphism Tβ → S factors through Sα. The covering family {Tβ → S} is
called a basic covering refinement of {Sα → S}.

Remark A.17. Note that the covering {Sα → S} in Definition A.16 is a covering in
the sense of Definition 6.2.
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Lemma A.18. Assume that S has all fiber products. Let T be a pretopology on S
and let T ′ be the collection of all covering families with respect to T . Then T ′ is
a pretopology on S.

Proof. Property (PT0) is automatic, since S has all fiber products. Likewise (PT3)
is immediate.

If {Sα → S} has a basic covering refinement {Tβ → S} and S′ → S is any
morphism then {Sα×SS′ → S′} has the basic covering refinement {Tβ×SS′ → S′},
hence is in T ′. This proves (PT1).

Suppose that {Sα → S} has a basic covering refinement {Tβ → S}, and each Sα
has a family {Sαγ → Sα} with a basic covering refinement {Tαδ → Sα}. For each
β, choose an α(β) and a factorization of Tβ → S through Sα(β). Then the maps
Tα(β)δ×Sα(β) Tβ → Tβ are covering. As the Tβ cover S, the property (PT2) implies
that the Tα(β)δ cover S. Therefore the Tα(β)δ give a basic covering refinement of
the family Sαγ → S. �

Definition A.19 (Grothendieck topology). A pretopology T is called a (Grothen-
dieck) topology if T ′ = T , in the notation of Lemma A.18. If T is a pretopology
then T ′ is called the associated topology to T .

Remark A.20. In [FGI+05, Def. 2.52] what we call a topology is called a saturated
pretopology.

Example A.21. Let T be the pretopology on topological spaces where the basic
covering families are open covers. Then every surjective local isomorphism has a
section over a suitable open cover, so surjective local isomorphisms are covering in
the associated saturated topology.

Example A.22. Consider the étale pretopology on schemes, defined in Exam-
ple 3.7. Every smooth surjection admits a section over some étale cover, so every
smooth surjection is covering in the associated topology to the étale pretopology.

The following lemma shows that a pretopology and its associated topology have
the same sheaves. Passage to the associated topology may therefore significantly
expand the class of morphisms with respect to which one can use descent.

Lemma A.23 ([FGI+05, Prop. 2.49, Prop. 2.53(iii)]). If T is a pretopology on S
then a presheaf on S is a sheaf with respect to T if and only if it is a sheaf with
respect to T ′.

Proof. Since T ⊆ T ′, it is immediate that sheaves in T ′ are sheaves in T . For
the converse, suppose that F is a sheaf with respect to T and let {Sα → S} be a
covering family (with respect to T ′).

Construct a presheaf F ′ over S by the following formula:

F ′(R) = eq
(∏
α

F (Uα ×S R) ⇒
∏
α,β

F (Uα ×S Uβ ×S R)
)
.

There is a natural map ϕ : F → F ′, which we would like to show is an isomorphism.
Both F and F ′ are sheaves in the pretopology T , so this is a local problem in
T . We can therefore replace S by a basic cover from T . Since {Uα → U} has a
refinement by a basic cover, we can assume that there is a section σ : S → Uα for
some α.
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We can use σ to construct an inverse ψ to the map ϕ : F → F ′. Indeed, if
ξ ∈ F ′(S) then let ξα be its projection on the α component. Then σ∗(ξα) ∈ F (S)
and we set ψ(ξ) = σ∗(ξα). It is immediate that ψϕ(η) = η for all η ∈ F (S).

We check that ϕψ(ξ) = ξ. What we need to check is that, for all indices β,

ξβ = σ∗(ξα)
∣∣
Uβ
.

By assumption, ξ is equalized by the maps to
∏
α,β F (Uαβ), where Uαβ = Uα×SUβ .

Therefore ξα
∣∣
Uαβ

= ξβ
∣∣
Uαβ

. But (σ, idUβ ) determines a section of Uαβ over Uβ , so

we determine that

ξβ = σ∗(ξβ
∣∣
Uαβ

) = σ∗(ξα
∣∣
Uαβ

) = σ∗(ξα)
∣∣
Uβ
,

as required. �

A.4. An example of ineffective descent. The category fibered in groupoidsM1

is not an étale stack! As we will see, it is possible to create a descent datum for
genus 1 curves that is not effective. This is really a deficiency of our definition ofM1

in §2.2.2, by which M1 parameterizes schematic families of smooth, proper curves
of genus 1. The proper thing to do would be to include in our moduli problem
smooth proper families of algebraic spaces (Definition B.6) whose fibers are curves
of genus 1.

To construct an ineffective descent datum for M1, it will help to notice that
every descent datum for S can at least be descended to a sheaf on the big étale site
of S that is locally on S representable by a family of genus 1 curves. This sheaf
is precisely the algebraic space we should have admitted into the moduli problem
for M1. Our task in this section is to construct such a sheaf X that is locally in S
representable by genus 1 curves, but is not globally representable by a scheme.

To begin, note that if X → S is any family of smooth curves of genus 1 over a
base S, then the relative Jacobian J → S of X → S is a family of abelian schemes
of dimension 1 over S. This construction is local on S, so that even if X is merely
a sheaf over S that is locally representable by a family of smooth curves of genus 1,
one obtains a descent datum for a family of elliptic curves over S. But the descent
datum comes with a compatible family of ample line bundles (coming from the
origin of the group structure) so by Theorem 3.38, it can be descended to a family
of elliptic curves over S.

Furthermore, J acts on X making X into a J-torsor. Therefore X is classified up
to isomorphism by an element [X] ∈ H1(S, J) (this can be étale or flat cohomology).
Raynaud shows that, provided S is quasicompact, this element [X] is torsion if and
only if X is projective over S [Ray66, Cor. XIII 2.4 ii)], and that, provided S is
normal, X is projective over S if and only if it is representable by a scheme [Ray66,
Prop. XIII 2.6]. In fact, Raynaud proves these statements more generally about
torsors under abelian varieties:

Theorem A.24 ([Ray66, Cor. XIII 2.4 ii)]). Assume that S is a quasicompact
scheme and let J be a projective abelian variety over S. Then a J-torsor X is
projective if and only if its class in H1(S, J) is torsion.

Theorem A.25 ([Ray66, Prop. XIII 2.6 i)]). Let S be a quasicompact, normal
scheme and J an abelian variety. Then a J-torsor X is representable by a scheme
if and only if it is projective.
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Sketch of a proof of Theorem A.24. First, suppose the class represented by X is
torsion, say n[X] = 0. As n[X] is represented by

[
X/J [n]

]
, where J [n] is the

n-torsion of J , we have a finite map

X → X/J [n] ' J.

This implies X is projective over S, as J is.
Conversely, if X is projective over S, then a relatively ample line bundle L on X

over S induces a relatively ample line bundle L′ on J [Ray66, Lem. XI 1.6]. To see
this, note that the relative Néron–Severi group NSX/S of X over S is isomorphic to
NSJ/S , so that L determines a class in NSJ/S . Any line bundle M on J determines
a line bundle

(A.4) µ∗M ⊗ p∗1M∨ ⊗ p∗2M∨ ⊗ e∗M

(where µ : J × J → J is the addition map, pi are the projections, and e is the
composition of the projection J → S and the zero section) on J ×S J that depends
only on the Néron–Severi class of M . Restricting this to the diagonal of J × J
recovers a line bundle on J whose image in the Néron–Severi group is twice that of
M . Altogether, this gives a map:

NSX/S ' NSJ/S → PicJ/S .

Applying this to L yields a line bundle L′ on J . Moreover, under a local isomor-
phism between J and X, the Néron–Severi class of L′ is double that of L. Thus L′

is relatively ample on J over S.
In general, a relatively ample line bundle M on J induces an isogeny J → Ĵ of

abelian schemes over S (where Ĵ is the dual abelian variety) by way of (A.4), and

hence a morphism H1(S, J)→ H1(S, Ĵ). The image of [X] is the class [X̂], where

X̂ is the Ĵ-torsor consisting of line bundles on X that lie in the same Néron–Severi
class as L′ [Ray66, Cor. XIII 1.2 ii)]. By assumption this torsor is trivial (the line

bundle L⊗2 provides a section), so [X̂] = 0. On the other hand, we have an exact
sequence

H1(S,K)→ H1(S, J)→ H1(S, Ĵ),

where K is the kernel of J → Ĵ , so [X] lies in the image of H1(S,K). Since L is
ample, K is finite, so H1(S,K) is torsion, and therefore so is [X]. �

Sketch of a proof of a special case of Theorem A.25. We will prove a special case
of Theorem A.25, following the proof of [Ray66, Thm. V 3.10], that will suffice to
construct our example. We assume that S is the spectrum of a noetherian local
ring with closed point s and generic point η. Let X be a J-torsor over S. Choose
an effective Cartier divisor D ⊆ X whose complement U ⊆ X is quasi-affine and
meets the closed fiber of X. We will argue that the line bundle L = OX(D) must
be ample.

We make a few observations:

(a) The J-orbit of U is all of X. This is because U meetsXs and Js acts transitively
on Xs, so JU contains Xs. But every point of X specializes to a point of Xs,
since X is proper over S, and JU is open, hence contains all of X.

(b) Let M be the line bundle

(A.5) M = (p1 + p2 + p3)∗L⊗ (p1 + p3)∗L∨ ⊗ (p2 + p3)∗L∨ ⊗ p∗3L
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on J×S J×SX. There is some positive integer n such that M⊗n is the pullback
of a line bundle on J ×S J . As J ×S J is normal, it is sufficient to verify this
over the generic point of S [Gro67, Cor. (21.4.13), Erratum 4.53, p.361]. We
may therefore assume that S = η is the spectrum of a field. If X(η) 6= ∅ then
X ' J and this is a version of the theorem of the cube (see [Mum08, §5, Cor. 6
and §6, Thm., Cor. 2 p.58]); in this case n = 1. If X does not have a section
over η then it will certainly have one over some finite extension p : η′ → η, so
p∗M is the pullback of a line bundle M ′ on Jη′ ×η′ Jη′ . If η′ has degree n over
η then the norm of p∗M is M⊗n and this is the pullback of the line bundle
Normη′/η(M ′) on Jη ×η Jη.

We replace D with nD so that (A.5) is the pullback of a line bundle on
J ×S J without passing to a tensor power.

(c) Restricting (A.5) to a point (g,−g) of J yields an isomorphism of line bundles
on X:

T ∗g L⊗ T ∗−gL ' L⊗2

where Tg denotes translation by g.

To prove the ampleness of L, we must show that, for any point x of X, and any
open neighborhood V of x in X, there is some index n and some f ∈ Γ(X,L⊗n)
such that the open set Xf ⊆ X defined by the nonvanishing of f is contained in V
[Gro61a, Thm. (4.5.2)]. Suppose first that x ∈ U . Let z be the tautological section
of OX(D) that vanishes exactly along D. As U is quasi-affine, there is some affine
open neighborhood W of x in V ∩ U , defined by the nonvanishing of a function h
on U . Then there is some n ≥ 1 such that znh extends to all of X. That is, we
may regard znh as a section without poles of OX(nD) and Wh = W .

If x is not in U , we can at least find a g ∈ J such that Tg(x) ∈ U (by ob-
servation (a), above). Applying the argument above to Tg(x) and Tg(V ), we
can find a section f ∈ Γ(X,L⊗n) such that x ∈ Wf ⊆ Tg(V ) by the argument
above. We have some freedom in the choice of g, and by avoiding a closed set
of possibilities, we can ensure that T−g(x) ∈ U as well. Then we can consider
f ′ = T ∗g f ⊗ T ∗−gzn as a section of T ∗g L

⊗n ⊗ T ∗−gL⊗n ' L⊗2n (by (c), above). Now,

Wf ′ = T−1
g (Wf ) ∩ T−1

−g (Wz) = T−1
g (Wf ) ∩ T−1

−g (U). By our choice of g, we have

x ∈Wf ′ and Wf ′ ⊆ T−1
g Tg(V ) = V , as required. �

Finally, [Ray66, XIII 3.2] proves that there is a genus 1 curve over a normal
noetherian local ring of dimension 2 whose image in H1(S, J) is non-torsion, es-
tablishing the existence of the desired family X → S. Another version of the
construction (and a slightly stronger conclusion) can be found in [Zom15]. We will
summarize Raynaud’s construction.

We begin with a discrete valuation ring R with algebraically closed residue field.
Let T = SpecR and assume that T has a connected, étale double cover T ′ → T .
Let π be a uniformizer for T . For any object Y over T , we will write Y ′ for its base
change to T ′. We write τ for the generic point of T and t for the special point; τ ′

is the generic point of T ′ and t1 and t2 are the two points in the fiber of T ′ over t.
Let E be an elliptic curve over T and let V ⊆ E be the complement of the zero

section in E. Let W be the quotient of V by the inversion in the group law of E, so
W ' A1

T . Let γ : W → W be multiplication by π and let Z be the normalization
in V of the composition

V →W
γ−→W.
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All we will use about Z is the following lemma, whose proof is straightforward:

Lemma A.26. The map f : V → Z is an isomorphism over τ ∈ T and constant
over t ∈ T . Furthermore, Z is normal.

Let s be the unique closed point of Z and let S = SpecOZ,s. Let η′ be the
generic point of S′ and let s1 and s2 the two closed points lying above s. Let Ui be
the complement in S′ of si, and let U12 be their intersection. Then U1 ∪ U2 = S′,
so we use the Mayer–Vietoris sequence to find a class in H1(S′, E′):

H0(U1, E
′)×H0(U2, E

′)→ H0(U12, E
′)→ H1(S′, E′)

Now, U12 = {η′} so H0(U12, E
′) = E′(η′). Recall that we have a map E′ → Z ′ that

is an isomorphism over the generic points. Therefore we have a canonical element
ξ of E′(η′) corresponding to the inclusion of the generic point.

An element of H0(Ui, E
′) can be seen as a rational map from E′ to itself over T ′

that restricts to a constant map over ti. Any such map must in fact factor through
a section of E′ over T ′. Therefore we have

H0(Ui, E
′) = E′(T ′).

Consider the image of ξ in H1(S′, E′). This cannot possibly be torsion, for if
it were then it would have a multiple in the image of H0(U1, E

′) × H0(U2, E
′).

That is impossible, because no multiple of the identity map on an elliptic curve is
a difference of constant maps. Therefore we have found a non-torsion element in
H1(S′, E′). Since S′ is étale over the normal scheme S, it is normal, and therefore
by Theorem A.24, the corresponding sheaf is a descent datum for an elliptic curve
over S′ that is not projective, hence not effective by Theorem A.25.

Raynaud goes a bit further and shows that the base for the descent may be
chosen to be local. Indeed, letting q denote the projection from S′ to S, we have

H1(S′, E′) = H1(S, q∗E
′).

Now, q∗E
′ = q∗q

∗E′ is the Weil restriction of scalars of E′ via the finite, étale map
q, hence is an abelian scheme of dimension 2 over S. It comes with a canonical
inclusion E ⊆ q∗E

′ whose quotient is another elliptic curve F (in fact a quadratic
twist of E). Then we have an exact sequence

H1(S,E)→ H1(S, q∗E
′)→ H1(S, F )

so the non-torsion class ξ ∈ H1(S′, E′) = H1(S, q∗E) determines a non-torsion class
either in H1(S, F ) or in H1(S,E). Either way, we obtain a non-effective descent
datum for genus 1 curves over S.

B. The many meanings of algebraicity

We work over the presite S of étale covers of schemes (over some fixed base
scheme). Many authors have given different definitions of algebraicity. Deligne and
Mumford required a schematic diagonal and an étale cover by a scheme [DM69,
Def. (4.5)], but insisted their definition was not the right one except for quasisep-
arated stacks. Knutson required all algebraic spaces to be quasiseparated [Knu71,
Ch. 2, Def. 1.1]. Artin gave his definition only for stacks that are locally of finite pre-
sentation and required a diagonal representable by algebraic spaces (in the sense of
Knutson) and a smooth cover by a scheme [Art74, Def. (5.1)]. Laumon and Moret-
Bailly defined an ‘algebraic stack (understood quasiseparated)’ by adding quasisep-
aration to Artin’s conditions [LMB00, Def. (4.1)]. The Stacks Project uses Artin’s
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conditions, but without requiring the algebraic spaces to be quasiseparated [Sta15,
Tag 026N].

Recall that in Definition 6.27 we defined algebraic stacks as the smallest class of
stacks on the category of schemes that includes all schemes and includes all stacks
that admit smooth covers by stacks in the class. Our definition is equivalent to the
Stacks Project’s, but usage in the literature varies widely.

B.1. Stacks with flat covers by schemes and stacks over the fppf site. The
étale topology is not the only natural topology on schemes. From the perspective
of descent, at least for quasicoherent sheaves, the flat topologies (fppf and fpqc)
might be even more natural. The fpqc topology presents certain technical issues,
owing to the absence of a sheafification functor, so we will not discuss it.

There are two ways one might try to replace the étale topology with the fppf
topology in our discussion of algebraic stacks. We might try to limit the class of
stacks by insisting they be stacks in the fppf, as opposed to just the étale, topology.
Or, we might enlarge the class of stacks under consideration by permitting them
to have fppf, as opposed to necessarily smooth, covers by schemes. It turns out
that either modification yields the same class of algebraic stacks. We will sketch
the main ideas behind this result.

We start by stating the following lemma whose proof we omit as it is well-known
and not difficult.

Lemma B.1. The class of flat morphisms of schemes is stable under composition
and base change and is local to the source and target in the fppf topology.

The lemma implies that one could develop a theory of flat-adapted algebraic
stacks in the étale topology. The following theorem of Artin explains that to do so
would yield nothing new:

Theorem B.2 ([Art74, Thm. (6.1)], [LMB00, Thm. 10.1], [Sta15, Tag 06DB]).
Let X be a stack in the fppf topology on the category of schemes. If there exists
morphism

U
P−−−−→ X

from an algebraic space U that is representable by algebraic spaces, faithfully flat,
and of finite presentation, then there is such a morphism P that is smooth and
surjective. In particular, X is an SP algebraic stack in the sense of Definition 6.27.

Proof. We give a rough sketch of the proof, following Artin. By an ‘induction on
stackiness’, it is sufficient to assume that the diagonal of X is representable by
algebraic spaces.

We consider the following moduli problem V. Choose a cover of U by a disjoint
union U0 of affine schemes (which is certainly possible, since U is a scheme). Since
U0×X U0 is an algebraic space, we can choose a disjoint union of affine schemes U1

and a smooth cover U1 → U0 ×X U0. Let s and t denote the two projections from
U1 to U0. Let U2 be a smooth cover of the space of triples (α, β, γ) ∈ U1 ×U1 ×U1

such that s(α) = s(γ), t(α) = s(β), and t(β) = t(γ) and β ◦α = γ as isomorphisms
between objects of X .

For any scheme S, we define an S-point of W to be

(i) the choice of a finite union of components Vi ⊆ Ui for each i such that V•
forms a subgroupoid of U•,
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(ii) a finite, locally free, surjective S-scheme Z with a distinguished basis OZ '
OdS , and

(iii) a morphism of groupoids Z• → V•:

Z2

��

////// Z1

��

//// Z0

��

// S

V2
////// V1

//// V0
// X

(iv) where we have set Z0 = Z and Zi = Zi−1 ×S Z for i ≥ 1.

We argue that V is representable by a disjoint union of affine schemes, indexed
by the choice of V•. The algebra structure on OZ is determined by its structure
constants and various identities among them, hence is parameterized by an affine
scheme. The maps Zi → Vi are determined by various elements of OZ and relations
among them (since the Vi are affine schemes). For each commutativity condition we
have a pair of maps Zi → Vi−1 that we wish to coincide. That is a closed condition
(since affine schemes are separated).

Any S-point of V determines a descent datum for a morphism S → X in the
fppf topology. Since X is a stack in the fppf topology, this descends to a morphism
S → X and we obtain a morphism of groupoids V → X . We have just seen that
V is representable by a disjoint union of affine schemes, so it remains to verify this
map is smooth.

Now let W ⊆ V be the open substack where Z0 → V0 ×X S is a local complete
intersection morphism. To see that W is indeed open in V, note that there are
open subsets Wi ⊆ Zi where the maps Wi → Vi are local complete intersection
morphisms. Since the Zi are proper over S, the image in S of the complement of
Wi is closed, so the condition that the fiber of Zi → Vi be a closed immersion and
a local complete intersection morphisms is open on S.

Now we verify that W is locally of finite presentation, formally smooth, and
surjective over X .

To see that W → X is locally of finite presentation, one observes that once a
morphism S → X is specified, a lift toW involves only a finite amount of additional
data.

Next we verify the smoothness, for which we can use the infinitesimal criterion.
Given a lifting problem

S //

��

W

��

S′

>>

// X
in which S is affine and S′ is an infinitesimal extension of S, we have, by definition
a morphism of groupoids Z• → V•, with the Zi finite and locally free over S, that
we would like to extend to Z ′• → V• with Z ′i finite and locally free over S′.

In this case, the map Z0 → U0 is a local complete intersection morphism, and
Z0 is affine, so there is no obstruction to extending it to a morphism Z ′0 → U0 with
Z ′0 finite and locally free over S′. This induces a pair of morphisms Z ′1 ⇒ V0, hence
a map Z ′1 → V0×X V0. Now, V1 → V0×X V0 is smooth, so the map Z1 → V0×X V0

lifts to V1. Now let R ⊆ V1 × V1 × V1 be the set of triples (α, β, γ) such that the
equation β ◦ α = γ makes sense and holds in X . Then we obtain Z ′2 → R and V2

is smooth over R, so Z ′2 → R lifts to V2. An infinitesimal deformation of a local
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complete intersection morphism is still a local complete intersection morphism, and
an infinitesimal deformation of a closed embedding is still a closed embedding, so
we have produced the required extension.

Finally, we have to check W → X is surjective. Let k be the spectrum of an
algebraically closed field and let S = Spec k. Let ξ be a k-point of X . The fiber of
U0 over S is a nonempty algebraic space T . Choose a smooth cover P of T by a
scheme. This scheme is certainly flat over k, so it has a dense open subset where
it is Cohen–Macaulay [Sta15, Tag 045U]. Pick a point p of P where P is Cohen–
Macaulay, and let Z0 be the vanishing locus of a regular sequence at p. Now
let V0 be a component of U0 that contains the image of p under the composition
Z0 → P → T → U0. Then Z0 → V0×X S is a local complete intersection morphism
by construction. Furthermore, we obtain a map Z1 → V0 ×X V0 ⊆ U1. But recall
that Z1 has just one point, by construction, so we choose a component V1 of U1

whose image in U0 ×X U0 contains the image of Z0. Since Z1 is artinian, there is a
lift of Z1 → V0 ×X V0 to V1. Then we repeat the same process to get Z2 → V2 and
we conclude. �

Remark B.3. Note that the condition that X have separated and quasicompact
diagonal does not depend on the presentation.

Corollary B.4. Suppose that G is a flat group scheme over S, acting on an S-
scheme X. Then the stack [X/G] (see §C.1) is algebraic. If G is quasiseparated
over S (e.g., quasiprojective) then [X/G] is a quasiseparated algebraic stack.

Proof. The cover X → [X/G] is a G-torsor, hence is an fppf cover. Therefore
from the theorem, [X/G] is an algebraic stack. We may identify X ×[X/G] X
with X ×S G, under which identification the diagonal map becomes the inclusion
(idX , e) : X → X ×S G, with e denoting the identity section of G over S. This
morphism is certainly representable and separated (it is an injective morphism of
schemes). It is quasicompact if G is quasiseparated over S, since a section of a
quasiseparated morphism is quasicompact [Sta15, Tag 03KP]. �

Next we consider the question of stacks in the fppf topology. Note first that
an algebraic stack in the fppf topology is clearly an algebraic stack in the étale
topology, by restriction. Now we show the converse:

Corollary B.5. Algebraic stacks are stacks in the fppf toplogy.

Proof. Suppose that X is an algebraic stack. Let X ′ be the fppf stackification. By
induction, we can assume that we have already shown the diagonal of X is a relative
fppf sheaf, which means that X → X ′ is injective.

Now let U → X be a smooth cover. We argue that U → X ′ is representable by
algebraic spaces. Indeed, if S → X ′ is any morphism, we can find an fppf cover
T → S such that T → X ′ lifts to X . Then T ×X ′ U = T ×X U since X ⊆ X ′, and
T ×X U is an algebraic space. But the map

T ×X ′ U → S ×X U
is the base change of the fppf cover T → U , so S ×X U has an fppf cover by an
algebraic space. It is therefore an algebraic space, as required.

Furthermore, S ×X ′ U → S is a smooth cover, since smoothness can be verified
locally in the fppf topology and T×X ′U = T×XU → T is a smooth cover. Therefore
U → X ′ is a smooth cover, and as this factors through X , the map X → X ′ is a



126 CASALAINA-MARTIN AND WISE

smooth cover. Now both X and X ′ are stacks in the étale topology, and X → X ′
was already seen to be injective, so X → X ′ is an isomorphism. �

B.2. Other definitions of algebraicity. The following definition collects some
of the most common meanings attributed to algebraicity of a stack on the étale site
of schemes, in roughly chronological order. After giving the definition, we analyze
the relationships among them, as well as to our Definition 6.27.

Definition B.6 (Algebraic stack). Let X be a category fibered in groupoids over
S = Set.

6 We define various notions of algebraic stack using the table below.
Namely, we call X a Deligne–Mumford algebraic stack (resp. Knutson algebraic
space, resp. Artin algebraic stack, etc.) if the diagonal ∆ : X −→ X × X satisfies
the condition specified in the second column of the table on page 127, and there is
a scheme U and a surjection p : U −→ X that satisfies the conditions in the third
column. The morphism p : U → X is called a presentation of X . A morphism
between any such stacks is a morphism of the underlying CFGs.

Warning B.7. There is an unfortunate, confusing point in the nomenclature in-
troduced in Definition B.6. Deligne and Mumford defined an algebraic stack to be
what we have, for the sake of historical verisimilitude, called a ‘Deligne–Mumford
algebraic stack’ above. Artin defined algebraic stacks more inclusively, and the
modern terminology is more inclusive still. Meanwhile, the term Deligne–Mumford
stack has come to refer to algebraic stacks with unramified diagonal. As the term
‘algebraic’ has become ever more inclusive, so has ‘Deligne–Mumford’, so that now
the class of ‘Deligne–Mumford stacks’, while contained in the class of algebraic
stacks, unfortunately includes some stacks that are not ‘Deligne–Mumford algebraic
stacks’ in the sense we defined them here. The relationship among the definitions
is clarified in Figure 1.

6Much of the literature works over the étale site of affine schemes. Since every scheme has an

étale (even Zariski) cover by affine schemes, the notions of stacks agree.
aNote that our definition of representability is different, but equivalent to some of the notions

used in the literature (see Lemma B.11). The notions of quasicompact and separated morphisms of

algebraic spaces defined in §9 carry over directly to all of the notions of algebraic spaces discussed
here. Also, in the sources, the various notions of algebraic spaces are defined for sheaves, rather

than stacks. Here, for uniformity, we have simply added the injectivity hypothesis on the diagonal
(see Lemma 4.8).

b The morphism p : U → X is either assumed to be schematic, or is representable by the same
class of algebraic spaces for which the diagonal is representable by virtue of Lemma B.12. In §9,

we defined surjective, étale, and smooth morphisms of algebraic spaces; these definitions carry

over directly to all of the notions of algebraic spaces discussed here.
cDeligne and Mumford caution that their definition is correct only for quasiseparated stacks

[DM69, Footnote (1), p. 98].
dQuasicompactness of the diagonal immediately implies quasicompactness of the map in

[Knu71, Def. 1.1(c)]. We leave the converse to the reader. See also [Knu71, Tech. Detail 1.p],

cf. Stacks Project Algebraic Spaces.
eArtin gives his definition only under an additional assumption of local finite presentation.
fLaumon and Moret-Bailly ask only for a Laumon–Moret-Bailly algebraic space U and a smooth

surjection onto X [LMB00, Def. (4.1)], but then U has an étale cover by a scheme, so the definition

is equivalent.
gThe Stacks Project requires its algebraic spaces and algebraic stacks to be sheaves in the fppf

topology [Sta15, Tag 025Y, 026O]. This yields an equivalent definition by [Sta15, Tag 076M] in

the case of algebraic spaces and by [Sta15, Tag 076U] in the case of algebraic stacks (see §B.1).
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We call X . . .
if the diagonal ∆ : X → X ×X
is. . . a

and there is a scheme U
and a surjective
morphism p : U −→ X
that is . . . b

a Deligne–Mumford
algebraic (DM algebraic)
stack [DM69,
Def. (4.6)]c

schematic étale.

a Knutson algebraic
space [Knu71,
Def. II.1.1]

injective and quasicompact d schematic and étale.

an Artin algebraic
stack [Art74, Def. (5.1)]e

representable by Knutson
algebraic spaces

smooth.

a Laumon–Moret-Bailly
(LMB) algebraic space
[LMB00, Def. (1.1)]

injective, schematic, and
quasicompact

étale.

a Laumon–Moret-Bailly
Deligne–Mumford (LMB
DM) stack [LMB00,
Def. (4.1)]

representable by
Laumon–Moret-Bailly algebraic
spaces, separated, and
quasicompact

étale. f

a Laumon–Moret-Bailly
(LMB) algebraic stack
[LMB00, Def. (4.1)]

representable by
Laumon–Moret-Bailly algebraic
spaces, separated, and
quasicompact

smooth. f

a Fantechi
Deligne–Mumford (F
DM) stack [Fan01,
Def. 5.2]

schematic and étale.

a Fantechi (F) algebraic
stack [Fan01, Def. 5.2]

schematic and smooth.

a stacks project (SP)
algebraic space [Sta15,
Tag 025Y] g

injective and schematic étale.

a stacks project
Deligne–Mumford (SP
DM) stack [Sta15, Tag
03YO] g

representable by SP algebraic
spaces

étale.

a stacks project (SP)
algebraic stack [Sta15,
Tag 026O] g

representable by SP algebraic
spaces

smooth.
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Remark B.8. A smooth (resp. étale) morphism of algebraic stacks π : Y → X that
is representable by algebraic spaces is surjective if and only if it is covering in the
étale topology. Indeed, π is surjective if and only if its base change to any scheme
is surjective, if and only if its base change to any scheme is covering, if and only if
it is covering. In short, for Definition B.6, in the table on page 127 we could replace
the heading ‘... and there is a scheme U and a surjective morphism p : U → X ...’
with the heading ‘... and there is a scheme U and a cover p : U → X ...’. Indeed, in
the definition, we have either stipulated that p is at least representable by algebraic
spaces, or we obtain this from the condition on the diagonal (see Lemma B.12).

B.3. Remarks on representability. Note that in order to be able to speak about
morphisms representable by the classes of algebraic stacks in Definition B.6, we need
to know that these categories admit fiber products.

Lemma B.9 (cf. [Sta15, Tags 02X2 and 04T2]). All of the classes of stacks in
Definition B.6 admit fiber products and these coincide with fiber products taken on
the underlying CFGs.

Proof. To deal with the entries in Definition B.6 that involve a schematic cover
(DM stack, K algebraic space, LMB algebraic space, FDM stack, F algebraic stack,
SP algebraic space), suppose that X → Z and Y → Z are morphisms of stacks of
the appropriate type. Choose smooth schematic covers (or étale schematic covers,
as the case warrants) X → X , Y → Y, and Z → Z by schemes X, Y , and Z. Set
XZ = X ×Z Z and YZ = Y ×Z Z, as in the diagram below:

XZ

��

''

XZ ×Z YZ //oo

��

YZ

ww

��

X

''

X ×Z Y
ww ''

Y

wwX
((

Z
��

Y
vvZ

The projections XZ → X and YZ → Y are both smooth (or étale, according to the
case) and covering (by base change and composition; Lemma 6.5). Now,

XZ ×
Z
YZ = (XZ × YZ) ×

Z×Z
(Z ×
Z
Z)

so XZ ×Z YZ is a fiber product of schemes, hence is a scheme. Moreover, the map
XZ ×Z YZ → X ×Z Y is a fibered product of smooth (or étale, as the case warrants)
coverings hence is a smooth (or étale) covering. Finally, via composition and base
change, Lemma 6.8 implies the maps XZ → X and YZ → Y are schematic, so the
same applies to XZ ×Z YZ → X ×Z Y from Lemma 6.8(3).

Now this implies that fiber products of SP algebraic spaces are SP algebraic
spaces so that the same argument can be repeated, with ‘representable by algebraic
spaces’ substituted for ‘schematic’ and ‘algebraic space’ substituted for ‘scheme’.
This proves the lemma for SP algebraic stacks and SP DM stacks.

All of the remaining classes in Definition B.6 can be characterized as algebraic
stacks with additional conditions on the diagonal. The conditions imposed on the
diagonal are all properties that are preserved by fibered products of morphisms
(note that properties preserved by composition and fibered product are preserved
by fibered products of morphisms; see the proof of Lemma 6.8(3)), and the diagonal
morphism of a fibered product is the fibered product of the diagonal morphisms. �
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Remark B.10. Using Definition 6.6, we now may speak of morphisms representable
by any of the classes of stacks in Definition B.6.

Although we will not need to do so, it is sometimes convenient to test repre-
sentability by various classes of stacks using smaller classes. The following lemma
shows that the class of affine schemes suffices to address most representability ques-
tions.

Lemma B.11. A morphism of stacks f : X → Y is representable by a class of
algebraic spaces in Definition B.6 (resp. schematic) if and only if for every affine
scheme S = SpecA, the fibered product X ×Y S is representably by an algebraic
space in that class (resp. a scheme).

Proof. All of the properties involved in the various definitions of algebraic space
satisfy étale descent, so they can be verified étale locally. Since algebraic spaces
have étale covers by affine schemes (Theorem B.13) we can check if a morphism
is representable by algebraic spaces in any sense by testing with affine schemes.
The same argument with Zariski descent and schemes takes care of the respected
case. �

If X is a CFG then conditions on the diagonal correspond by base change to con-
ditions on the fiber product S×X×X S for all schemes S and all pairs of morphisms
x, y : S → X . Recall from Example 4.6 that this fiber product may be identified
with IsomX (x, y) and from Lemma 4.8 that a CFG has injective diagonal if and
only if it is equivalent to a sheaf.

Lemma B.12 ([LMB00, Cor. 3.13], [BCE+14, Prop. 5.12], [Sta15, Tag 045G]). Let
M be a CFG over over S. The following conditions are equivalent:

(1) The diagonal morphism M ∆−→ M×M is representable by SP algebraic
spaces (resp. representable by K algebraic spaces, resp. schematic);

(2) For all S in S, and all x, y in M(S), the presheaf Isom(x, y) on S is
representable by an SP algebraic S′-space (resp. K algebraic S-space, resp.
S-scheme);

(3) For all S in S and all x inM(S), the morphism x : S →M (guaranteed by
the Yoneda lemma) is representable by SP algebraic spaces (resp. represent-
able by K algebraic spaces, resp. schematic);

(4) For every SP algebraic space (resp. K algebraic space, resp. scheme) S, we
have that every morphism S →M is SP-representable (resp. K represent-
able, resp. schematic).

B.4. Overview of the relationships among the definitions of algebraicity.
Our definition of an algebraic stack can also be characterized in a similar manner
to Definition B.6.

Theorem B.13. Each type of stack X in the first column below is characterized by
the condition on the diagonal in the second column and the existence of a surjection
p : U → X satisfying the condition in the third column.



130 CASALAINA-MARTIN AND WISE

A stack X is...
if the diagonal ∆ : X → X ×X
is. . .

and there is a scheme U
and a surjective
morphism p : U −→ X
that is . . .

an algebraic space
(Definition 6.28)

injective schematic and étale.

a Deligne–Mumford
stack (Definition 6.28)

unramified
representable by
algebraic spaces and
smooth.

a Deligne–Mumford
stack (Definition 6.28)

representable by
algebraic spaces and
étale.

an algebraic stack
(Definition 6.28)

representable by
algebraic spaces and
smooth.

Sketch. Clearly the stacks described in the table above are algebraic stacks, Deligne–
Mumford stacks, and algebraic spaces, respectively. We now show the converse,
that stacks satisfying the above conditions on the diagonal and the presentation
are stacks of the type claimed. In short, we are asserting that the iteration process
described in Definition 6.27 only needs to be done once.

Suppose X is an algebraic stack. Considering the iterative nature of Definition
6.27, it is clear that X has a smooth cover P : U → X by a scheme U . We need
to show that P is representable by algebraic spaces. This morphism must have
injective relative diagonal (since U×X U is a sheaf of sets and U → U×X U → U×U
is injective), so it is representable by algebraic spaces, as required.

This argument applies also to show that Deligne–Mumford stacks have étale
covers by algebraic spaces.

Suppose now that X is an algebraic space. Then the diagonal of X is injective
and representable by algebraic spaces. In particular, it is locally quasifinite and
separated, so by separated, locally quasifinite descent [Sta15, Tag 02W8], it is
schematic.

To complete the proof, we need to show that algebraic spaces and algebraic
stacks with unramified diagonals have étale covers by schemes. We will show these
statements simultaneously (using an ‘induction on stackiness’), mostly following
[Sta15, Tag 06N3].

We argue that every finite-type point of X has an étale neighborhood that is a
scheme. This will suffice, since if x is a geometric point of X , we can find a smooth
map U → X where U is an affine scheme and x lifts to U . Then this lift has a
specialization to a closed point of U , which induces a point y of X of finite type.
Any étale neighborhood of y will also contain x.

Let x = Spec k be a point of X of finite type. We argue first that there is a
factorization x → y → X where y is unramified over X . Let R = x ×X x. Then
R is flat over x (since x is the spectrum of a field) and of finite type (since the



STACKS AND HIGGS BUNDLES 131

composition u ×X u → u ×X X is the base change of a morphism u → X of finite
type).

Since R is of finite type over x via the first projection, its geometric fiber has
finitely many components. Replacing k with a finite extension, we can therefore
assume that the connected components of R are geometrically connected. Let
R0 ⊂ R be the connected component of the diagonal section. Note that R0 → x×x
is unramified and its fiber over the diagonal x → x × x is injective on geometric
points. But every geometric fiber is either empty or is a torsor under the fiber over
the diagonal, so that every fiber is injective on geometric points. It follows that
R0 → x× x is a injection, so that it defines an equivalence relation on x.

Let y = x/R0 be the quotient of x by this equivalence relation. Since R0 ⊂ R
is open, R0 is flat over x and therefore this is an algebraic space (Theorem B.2)
equipped with a map y → Z. In fact, y must be the spectrum of a field: choose a
smooth cover SpecA→ R0 by a scheme, and let ` be the equalizer of the two maps
k → A. Then ` is a field (since an element of k is equalized by two homomorphisms
if and only if its inverse is). Moreover, we obtain a map y → Spec ` that is covering
and injective in the fppf topology. Therefore it is an isomorphism (see [Sta15, Tag
0B8A]).

Now we argue that y → X is unramified. Indeed, the diagonal map y → y ×X y
pulls back via the fppf cover R0 = x×X x→ y×X y to x×y x = R0, which is open
in R. Therefore y → y ×X y is an open embedding, so y is unramified over X .

Now choose a smooth morphism U → X containing y in its image, with U =
SpecA affine. Let V = U ×X y. Then V is a smooth algebraic space over y and
V → U is unramified. If X is an algebraic space then we have seen that U → X is
schematic, so that V is a scheme; in that case we write W = V . In general, then
we know the diagonal of X is at least representable by algebraic spaces, so V is an
algebraic space. By ‘induction on stackiness’ we may assume that there is a scheme
W and an étale map W → V whose image in X contains the image of y.

Up to an étale extension of `, we can assume that y is the image of an `-point
of W , which we denote w. We take u to be its image in U . The map W → U
is unramified, so the maximal ideal m of w in OW is generated by the image of
the maximal ideal n of u in U . We can therefore choose functions f1, . . . , fd ∈
OU,u whose images in OW,w form a basis for m/m2. Replacing W by an open
neighborhood of w, the vanishing locus of f1, . . . , fd in W will be {w}. In particular,
the vanishing locus is unramified over y. But the locus where U → X is unramified
is open, so that there is an open neighborhood U ′ of u ∈ U where U ′ → X is
unramified. Since it is also smooth, it is étale, as required. �

The implications among all of the definitions are described in Figure 1. They
can all essentially be explained by putting various conditions on the diagonal of
an algebraic stack. In this sense, from an expository perspective, the definition of
an algebraic stack is the basic definition, and the rest can easily be obtained from
this. In practice this is somewhat misleading, however, since one must first define
an algebraic space to define an algebraic stack.

B.5. Relationships among definitions of algebraic spaces. The following im-
plications hold for algebraic spaces:
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DM Alg.

��

+3 SP Alg. ∆ sch.

��

%-
∆ n.r.

qy

F DM +3

��

F Alg.

��

&.
∆ n.r.

qy

Sch. +3
AI

∆ q.c.

��

SP Alg. Sp.

6>

+3
BJ

∆ q.c.

��

SP DM
��

∆ sch.

@H

+3
AI

∆ q.c.+sep.

��

%-
∆ inj

qy
SP Alg.

��

∆ sch.

V^

BJ

∆ q.c.+sep.

��

&.
∆ n.r.

qy

q.s. Sch. +3

KS

LMB Alg. Sp. +3

KS

LMB DM +3

KS

2:

∆ inj

em LMB Alg.

KS

19
∆ n.r.

dl

K Alg. Sp.
��

KS

Figure 1. An arrow from one entry to another signifies that the
class of objects at the arrow’s tail are also of the type at its head.
An arrow with a label means that an object of the type at the tail
satisfying the additional condition named in the label is also of the
type at the head. A double-headed arrow should be interpreted as
a pair of arrows pointing in both directions with the same label;
in other words, the condition in the label makes the conditions at
its ends equivalent.

Sch. +3
AI

∆ q.c.

��

SP Alg. Sp.BJ

∆ q.c.

��

Alg. Sp.+3ks

q.s. Sch. +3

KS

LMB Alg. Sp.

KS

K Alg. Sp.+3ks

An arrow with a label indicates that the implication holds under the additional
assumption indicated on the diagonal. A two headed arrow implies that the defini-
tions are equivalent under the given assumption on the diagonal.

The only arrows that requires justification are the equivalence between LMB
algebraic spaces and K algebraic spaces and the equivalence between algebraic
spaces and SP algebraic spaces.

Lemma B.14. LMB algebraic spaces are the same as K algebraic spaces and SP
algebraic spaces are the same as algebraic spaces.

Proof. It is clear that LMB algebraic spaces are K algebraic spaces and that SP
algebraic spaces are algebraic spaces. For the converse, we only need to show that
the diagonal is schematic. This is [Sta15, Tag 046K]. In fact, the diagonal of an
algebraic space is injective, hence separated and locally quasifinite. Therefore the
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diagonal is schematic, by separated, locally quasifinite descent [Sta15, Tag 02W8].
�

B.6. Relationships among the definitions of algebraic stacks.

Alg.KS

��
LMB Alg. +3

u}
∆ q.c.+sep.

!)
SP Alg. ks

px
∆ sch.

&.
F Alg. ks SP Alg. ∆ sch.

Most of the implications are immediate, so we only make a few comments.

Lemma B.15. The diagonal morphism of an algebraic stack is representable by
algebraic spaces.

Proof. One can check this using Theorem B.13 and a slight modification of the
proof of [Sta15, Tag 04XS]. �

Lemma B.16. Algebraic stacks are the same as SP algebraic stacks.

Proof. From Theorem B.13, we only need to show that the diagonal morphism is
representable by SP algebraic spaces. Since we have shown already that algebraic
spaces are SP algebraic spaces, we conclude using the previous lemma. �

Lemma B.17. An SP algebraic stack with quasicompact and separated diagonal is
an LMB algebraic stack.

Proof. Suppose that X is SP algebraic, with quasicompact and separated diago-
nal. By Lemma B.15, the diagonal morphism for X is representable by algebraic
spaces. An algebraic space is an LMB algebraic space if and only if its diagonal is
quasicompact (see Section B.5). Since the diagonal of X is separated, the double
diagonal is a closed embedding and, a fortiori, quasicompact. Hence the diagonal
of X is representable by LMB algebraic spaces, as required. �

Remark B.18. We expect there are F algebraic stacks that do not have schematic
diagonal, but we do not know of any example. We also expect that there are SP
algebraic stacks that do not admit a smooth schematic morphism from a scheme
(and therefore are not F algebraic stacks), but we do not know of any example. See
Example B.21 for an SP algebraic stack that does not have schematic diagonal.

B.7. Relationships among the definitions of Deligne–Mumford stacks. For
Deligne–Mumford stacks, we have implications:

DMKS

��
LMB DM +3

u}
∆ q.c.+sep.

!)
go

∆ q.c.+sep.

/7SP DM ks
qy

∆ sch.

%-
F DM ks DM Alg.

Most of the implications are immediate, but we focus on the main points:

Lemma B.19. DM stacks are the same as SP DM stacks.
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Proof. From Theorem B.13 we only need to show that a DM stack has diagonal
representable by algebraic spaces (as these are the same as SP algebraic spaces).
However, by Theorem B.13 it is immediate that DM stacks are algebraic stacks, and
we have seen in Lemma B.15 that the diagonal of an algebraic stack is representable
by algebraic spaces. �

Lemma B.20 ([LMB00, Lem. 4.2]). All LMB DM stacks have schematic diagonal.

Proof. Any locally quasifinite, separated morphism that is representable by alge-
braic spaces is schematic [Sta15, Tag 03XX]. �

The rest of the implications are obvious from Theorem B.13 and the two lemmas
above.

Example B.21. We will construct an SP Deligne–Mumford stack without schem-
atic diagonal (i.e., an SP DM stack that is not a DM algebraic stack). Let G be A1

with a doubled origin. This can be regarded as a group scheme over A1 by distin-
guishing one of the two origins as the identity element. If X → A1 is a morphism of
schemes, with X0 the fiber over the origin, then a G-torsor on X is a Z/2Z-torsor
on X0.

We will show that the map p : A1 → BG is not schematic. Indeed, if Z → BG
is any morphism then the base change of p is the total space of the corresponding
torsor. Therefore we have to find a scheme Z over A1 and a G-torsor over Z that
is not representable by a scheme.

To find such a torsor, choose a scheme W and an étale double cover W ′ → W
that does not have a section Zariski-locally. Let Z = A1

W (so that Z0 = W ) and let
P be the G-torsor over Z corresponding to W ′ → Z0.

Remark B.22. In regards to the example above, we expect that there are also F DM
stacks that do not have schematic diagonal (and are therefore not DM algebraic
stacks), but we do not know of any example. We also expect that there are SP
DM stacks that do not admit a smooth schematic morphism from a scheme (and
therefore are not F DM stacks), but we do not know of any example. Example B.21
shows there are SP algebraic stacks that do not have schematic diagonal, and are
therefore not DM algebraic stacks.

B.8. Stacks with unramified diagonal. The implications in Figure 1 regarding
unramified diagonal all follow immediately from the following lemma:

Lemma B.23. An algebraic stack with unramified diagonal is a DM stack.

Proof. Now that we have the identification between algebraic stack and SP algebraic
stacks, and DM stacks and SP DM stacks, this is [Sta15, Tag 06N3]. �

B.9. The adapted perspective. We show how all of the stacks that have ap-
peared in this paper can be described as stacks adapted to a given presite.

B.9.1. Stacks adapted to the étale site of schemes. We have already seen the fol-
lowing. A stack adapted to the étale presite with injective diagonal is the same
thing as an algebraic space. A stack adapted to the étale presite with injective
and quasicompact diagonal is the same thing as an LMB algebraic space. A stack
adapted to the étale presite is the same thing as an F DM stack. A stack adapted
to the étale presite with quasicompact and separated diagonal is the same thing as
an LMB DM stack (Lemma B.20).
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B.9.2. Stacks adapted to the étale site of algebraic spaces. Stacks adapted to the
étale presite of algebraic spaces induce Deligne–Mumford stacks on the étale site of
schemes. Indeed, given a stack in the étale topology on algebraic spaces one obtains
a stack on the étale site of schemes by restriction. Conversely, a stack on the étale
site of schemes extends uniquely to the étale site of algebraic spaces since every
algebraic space has an étale cover by schemes. Using again that every algebraic
space has an étale cover by schemes, the definition of stack adapted to the étale
presite of algebraic spaces agrees with the characterization of Deligne–Mumford
stacks in Theorem B.13.

B.9.3. Stacks adapted to the smooth site of algebraic spaces. Stacks adapted to the
smooth presite of algebraic spaces induce algebraic stacks by restricting from the
category of algebraic spaces to schemes.

B.9.4. Stacks adapted to the fppf site of algebraic spaces. A stack adapted to the
fppf site of algebraic spaces induces an algebraic stack on the étale site of schemes,
by restricting from the category of algebraic spaces to the category of schemes (see
Theorem B.2).

B.9.5. An example of a stack that is not adapted to a presite.

Example B.24. Consider the logarithmic abelian varieties of Kajiwara, Kato, and
Nakayama [KKN08b, KKN08a, KKN13], which are sheaves in the étale topology
and possess logarithmically étale covers by logarithmic schemes but have no such
étale covers (logarithmically étale maps are a more general class of morphisms
including all étale maps but also some blowups and other non-flat morphisms).
However, the logarithmic étale topology is not subcanonical and there is no sub-
canonical topology in which logarithmic abelian varieties are covered by logarithmic
schemes.

B.10. Conditions on the relative diagonal of a stack and bootstrapping.
As we have seen, most of the variations on the definition of an algebraic stacks
outlined in Definition B.6 can be obtained from the definition of an algebraic stack
by imposing conditions on the diagonal. Here we aim to extend the bootstrapping
result of Proposition 6.31 to these other cases. In other words, our goal here is to
show that a stack that is relatively algebraic over an algebraic stack (according to
any of the definitions in Definition B.6) is itself algebraic.

For the next lemma, recall that for a morphism f : X → Y of algebraic stacks,
the diagonal ∆f is representable by algebraic spaces ([Sta15, Tag 04XS]).

Lemma B.25. Let P be a property of morphisms of algebraic spaces that is stable
under composition and base change. Let X ,Y,Z be algebraic stacks over S.

(1) If X f→ Y has property P for ∆f and Y ′ → Y is any morphism, then the

morphism X ×Y Y ′
f ′→ Y ′ obtained from the fibered product has property P

for ∆f ′ .

(2) If X f→ Y and Y g→ Z are morphisms such that ∆f and ∆g have property

P, then for the composition X g◦f→ Y, the diagonal morphism ∆g◦f has
property P.
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(3) If X f→ X ′ and Y g→ Y ′ are morphisms over a stack Z such that ∆f and

∆g have property P, then for the fibered product morphism X ×Z Y
f×idZ g−→

X ′ ×Z Y ′ the diagonal morphism ∆f×idZ g
has property P.

(4) A morphism f : X → Y has property P for ∆f if and only if for every
scheme S and every morphism S → Y, the base change f ′ : X ×Y S → S
has property P for ∆f ′ .

(5) Suppose that property P satisfies the following condition: if If X
f→ Y and

Y
g→ Z are morphisms of algebraic spaces such that g and f ◦ g satisfy

property P, then f satisfies property P. Then If X f→ Y and Y g→ Z are
morphisms such that ∆g and ∆g◦f have property P, then ∆f has property
P.

Proof. This is essentially contained in [Sta15, Tag 04YV]. (1) follows from the 2-
cartesian diagrams:

(B.1) X ′
f ′
//

��

Y ′

��

X
f
// Y

X ′
∆f′
//

��

X ′ ×Y′ X ′

��

X
∆f
// X ×Y X

The diagram on the left induces the diagram on the right, and it then follows from
base change that ∆f ′ has property P.

(2) follows from (1) using the 2-commutative diagram below for the morphisms
f : X → Y and g : Y → Z. The square is a 2-fibered product.

(B.2) X
∆f
//

##

∆g◦f

$$

X ×Y X //

��

X ×Z X

��

Y
∆g

// Y ×Z Y.

(3) is essentially [GD71b, Rem. (1.3.9) p.33], which observes that the conclusion
follows from (1) and (2), together with the fact that given morphisms f : X → X ′

and g : Y → Y ′ over a stack Z, the product X ×Z Y
f×idZ g−→ X ′ ×Z Y ′ is given by

the composition of morphisms obtained from fibered product diagrams:

X ×Z Y
f×idZ idY−−−−−−→ X ′ ×Z Y

idX′ ×idZ g−−−−−−−→ X ′ ×Z Y ′.

(4) If ∆f has property P, this follows from (1). Conversely, assume that for
every scheme S and every morphism S → Y, the base change X ×Y S → S has
property P for its diagonal. By definition, for ∆f : X → X ×Y X to have property
P means that the base change S×X ×Y X X → S has property P. But

S ×
X ×Y X

X = S ×
XS ×S XS

XS

where XS = X ×Y S and by assumption, the diagonal of XS → S has property P.
(5) This follows from diagram (B.2), and the previous parts of the lemma. �



STACKS AND HIGGS BUNDLES 137

Corollary B.26. For any of the classes C of objects introduced in Definition B.6,
if Y is of class C and f : X → Y is representable by objects of C then X is of class
C.

Proof. Lemma 6.32 covers the case of algebraic stacks. For F algebraic stacks
one can easily adapt the proof of Lemma 6.32. The remaining classes C of stacks
introduced in Definition B.6 can can be obtained by imposing various conditions
on the diagonal of an algebraic stack, all of which are stable under composition and
base change. Fix a class of such stacks, and call the necessary conditions on the
diagonal condition P. In particular, Y is of class C means that the diagonal ∆π of
the structure map π : Y → S has property P. If f : X → Y is representable by
objects of C, then from Lemma B.25(4), we have that ∆f has property P. Then by
Lemma B.25(2), we have that ∆π◦f has property P. In other words, X is of class
C. �

Remark B.27. The arguments above show the following, as well ([Sta15, Tag
04YV]). Let f : X → Y be a morphism of algebraic stacks. The morphism f
is representable by LMB algebraic stacks (resp. LMB DM stacks, resp. LMB alge-
braic spaces) if and only if ∆f is quasicompact and separated (resp. quasicompact,
separated, and unramified, resp. quasicompact, separated, and injective).

C. Groupoids and stacks

Stacks are often studied via groupoid objects. In this section we discuss torsors,
groupoid objects, and stacks arising as quotients of groupoid objects. In the end we
show that groupoid objects adapted to a presite, i.e., those where the source and
target maps are coverings in the presite, are essentially the same thing as stacks
adapted to the presite.

C.1. Torsors and group quotients. Let X be in S/S, and let G be a sheaf of
groups over S acting on the right on X:

X ×S G
σ−−−−→ X

We define a CFG over S/S, [X/G] in the following way. The objects over an
S-scheme f : S′ → S are diagrams

P ′

��

// XS′

S′

where P ′ is a GS′ -torsor (principal bundle) over S′, and P ′ → XS′ is a GS′ -
equivariant morphism. Morphisms are defined by pullback. There is a morphism
[X/G] → S given by forgetting everything except the S-scheme f : S′ → S, and
there is an S-morphism q : X → [X/G] given by the trivial GX -bundle

X ×S G

pr1

��

id×σ
// X ×S X

X.
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This induces a 2-cartesian diagram

(C.1)

X ×S G

pr1

��

σ // X

q

��

X
q

// [X/G]

that is a co-equalizer for X ×S G
pr1
//

σ // X (i.e., initial in the category of stacks for

the diagram (C.1)); in other words, [X/G] is a quotient in the category of stacks
for the action of G on X, in the sense that any G-equivariant map out of X factors
through it. Note that if there exists a scheme X/G that is a quotient in the category
of schemes for the action of G on X (i.e., a co-equalizer in the category of schemes),
then there is a morphism

[X/G]→ X/G.

Of particular importance is the trivial action of G on X = S. The quotient
[S/G] is denoted BG. As a CFG, BG consists of the pairs (S′, P ′) where S′ ∈ S/S
and P ′ is a G-torsor over S.

Remark C.1. There is a similar construction for left group actions; in the notation
above, we would have the stack [G\X].

C.2. Groupoid objects and groupoid quotients.

C.2.1. Groupoid objects. Let Gpd denote the category (not 2-category) of small
groupoids. There are functors Obj and Mor from (Gpd) to (Set) sending a groupoid
X, respectively, to its set X0 of objects and its set X1 of morphisms. There are two
canonical morphisms s, t : X1 → X0 sending a morphism to its source and target.
More data are required to specify a groupoid, but these are often left tacit and the

groupoid is usually denoted by a pair of morphisms of sets X1
s
//

t // X0 .

A groupoid object in a category S is defined by taking X1, X0, and all of the
morphisms involved in specifying the groupoid to lie in S (as opposed to Set). If
this is the case, then we obtain functors HomS(−, Xi) from Sop to (Set). This can
all be said more concisely as follows:

Definition C.2 (Groupoid object). A groupoid object of a category S is a functor
X : Sop → (Gpd), along with objects X0 and X1 in S, respectively representing
the composition of functors Obj ◦X and Mor ◦X from Sop to (Set). The groupoid

object X is often denoted X1
s
//

t // X0 . A morphism of groupoids objects is a

morphism (natural transformation) of functors.

Remark C.3. There are morphisms s, t : X1 → X0 associated to a the groupoid
object X in S obtained from the source and target maps associated to a groupoid.
Moreover, associated to a morphism X → Y of groupoid objects in S are mor-
phisms X0 → Y0 and X1 → Y1.

Example C.4 (Constant groupoid object). Let X be any object of S. Define

X0 = X1 = X. Then X1
Id
//

Id // X0 is a groupoid object of S. We call such a

groupoid constant and denote it, abusively, by the same letter X.



STACKS AND HIGGS BUNDLES 139

Example C.5 (Action groupoid). Let G be a group object of S acting on the left
on an object X0. Define ObjX (U) = Hom(U,X0) and let MorX (U) be the set of
all triples (g, x, y) where x, y ∈ ObjX(U) and g ∈ Hom(U,G) is a U -point of G such
that gx = y. The composition of (g, x, y) and (g′, y, z) is the triple (g′g, x, z). This

is known as the action groupoid. It is also typically denoted by G×X0
σ
//

pr2 // X0 .

Example C.6. One can immediately associate a category fibered in groupoids to
any groupoid object. Indeed, suppose that X is a groupoid object of S. Construct
a category X whose objects are pairs (U, ξ) where U is an object of S and ξ ∈
ObjX (U). A morphism (U, ξ)→ (V, η) consists of a morphism f : U → V of S and
a morphism φ : ξ → f∗η of X (U). The composition of (f, φ) : (U, ξ)→ (V, η) and
(g, ψ) : (V, η) → (W, ζ) is (gf, φ ◦ f∗ψ). It is easy to verify that this category is
fibered in groupoids over S with the projection sending (U, ξ) to U .

When S has a topology, this groupoid is rarely a stack, although it is a prestack

if the topology is subcanonical. If S is subcanonical and X1
s
//

t // X0 is a groupoid

object, then it is common to denote the associated prestack by [ X1
s
//

t // X0 ]pre.

There is an abstract process of stackification of prestacks, analogous to sheafification
of presheaves, by which a CFG X is replaced by the initial stack receiving a map
from X . In the situation of groupoid objects, this stack is typically denoted by

[ X1
s
//

t // X0 ] (see e.g., [BCE+14, Def. 3.11, Def. 4.10] for more details on this

approach). Moreover, there is a morphism X0 → [ X1
s
//

t // X0 ] that makes the

following diagram

(C.2) X1
t //

s

��

X0

��

X0
// [X1

s
//

t // X0]

2-cartesian ([Sta15, Tag 04M8]) and essentially a 2-coequalizer for X1
s
//

t // X0 (see

[Sta15, Tag 04MA] for more details on the precise meaning of this). In other words,
the stack provides a “quotient” for the groupoid.

Rather than undertake an explanation of this construction and the attendant
2-universal property, we will give a direct construction of the stack associated to a
groupoid object.

Remark C.7. In the case of left group action, the stack [ G×X0
σ
//

pr2 // X0 ] is

equivalent to the stack [G\X0].

C.2.2. Augmented groupoids.

Definition C.8 (Augmented groupoid object). A groupoid object X of a category
S is said to be augmented toward an object X of S when it is equipped with
a morphism X → X. A groupoid X augmented toward X is often denoted
X1 ⇒ X0 → X.
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If X → X and Y → Y are augmented groupoids, a morphism of augmented
groupoids from X → X to Y → Y is a commutative diagram of groupoid objects
as in (C.3):

(C.3) X //

��

Y

��

X
f
// Y.

Remark C.9. To augment a groupoid X torwards X, it is equivalent to give a
morphism f : X0 → X such that fs = ft.

Definition C.10 (Cartesian morphism of augmented groupoid objects). If S ad-
mits fibered products, a morphism of augmented groupoid objects as in (C.3) is
called cartesian if X0 → X ×Y Y0 and X1 → X ×Y Y1 are isomorphisms.

Example C.11. Suppose that q : X0 → X is a morphism in a category admitting
fiber products. We define a groupoid as follows: ObjX (U) = Hom(U,X0) and
MorX (U) is the set of pairs (f, g) ∈ Hom(U,X0) such that qf = qg. In other
words, MorX is represented by X1 = X0 ×X X0. The composition of the pair
(f, g) and (g, h) is, by definition, the pair (f, h), and the identity of f ∈ ObjX (U)
is the pair (f, f). The groupoid X1 ⇒ X0 is augmented toward X by construction.

Let Gpd+
S denote the category of augmented groupoid objects of S, with cartesian

morphisms. The projection sending an augmented groupoid object (X → X) to
X makes Gpd+

S into a CFG over S.

C.2.3. Stacks associated to groupoid objects. Now suppose that S is equipped with
a pretopology.

Definition C.12 (Presentation of an augmented groupoid obejct). Let S be a pre-
site admitting fibered products. Let X1 ⇒ X0 → X be a groupoid of S augmented
toward X. We call it a presentation of X if X0 → X is covering (Definition 6.2)
and the canonical map X1 → X0 ×X X0 is an isomorphism.

Definition C.13 (Category associated to a groupoid object). Let S be a presite
admitting fibered products. Let X = (X1 ⇒ X0) be a groupoid object of S. We
construct a CFG, X , called the CFG associated to a groupoid object. The objects
of X are triples (U,U , ξ) where U is an object of S, where U → U is a presentation
of U , and where ξ : U →X is a morphism of groupoid objects.

A morphism in X from (U,U , ξ) to (V,V , η) is a cartesian morphism (f, ϕ) of
augmented groupoids from (U → U) to (V → V ) such that η◦ϕ = ξ as morphisms
of groupoids U →X .

The morphism X → S is given by sending (U,U , ξ) to U .

The following lemma asserts that the category X is a CFG; the proof is straight-
forward, so it is omitted.

Lemma C.14. If S admits fiber products, then the category X over S constructed
above is a CFG.

For the following lemma, let Cov denote the category whose objects are covering
morphisms X → U in S and whose morphisms are cartesian squares. If S has fiber
products then the projection Cov → S sending (X → U) to U makes Cov into a
CFG over S (Example 3.21).
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Lemma C.15. Assume that S is a subcanonical presite with fiber products. Let X
be the CFG constructed as above in Definition C.13. If Cov is a stack over S then
so is X .

Proof. We give just a sketch. The idea is to use Lemma 4.9. We start with an
object S of S and the canonical morphism S/S → S. Given a cover R = {Ui → S}
of S and a morphism R → X we need to show how to obtain the lift S/S → X . So,
given groupoid objects Ui over each Ui, along with compatible data over the double
and triple fiber products Uij and Uijk, these descend to a groupoid object S over
S by descending the objects ObjUi and MorUi of Cov and the morphisms between
them (using that Cov forms a stack and that morphisms between representable
objects form sheaves). Then the maps Ui →X descend to S →X by descending
the maps on objects and morphisms, again using the subcanonicity of the site. This
gives the desired morphism S/S → X . �

Example C.16. If X is the groupoid object U1
s //

t
// U0 and X is its associated

stack, there is a canonical map U0 → X , which is covering. We construct the triple
(U0,U0,U0 → X ) giving this morphism as follows. The presentation U0 → U0 is
given by

U1 ×U0
U1

pr1 //

comp
// U1

s // U0;

here the maps for the fibered product are the source and target maps repsectively,
and the bottom arrow comp is the composition morphism taking a pair (α, β) in
U1 ×U0

U1 (over some S) to the composition β ◦ α in U1 (over S). This is a
presentation of U0 since s is covering (the projections s, t : U1 → U0 are always
covering in a groupoid object because of the ‘identity map’ section U0 → U1).

To describe U0 →X , it is convenient to describe U0 as follows. For any scheme
S, U0(S) is the groupoid in which the objects are the morphisms of X (S). The
morphisms from (ξ → ζ) to (η → ω) in U0(S) are the commutative squares

ξ //

��

ζ

η // ω.

That is, there are no morphisms unless ζ = ω. Clearly ObjU0(S) = Hom(S,U1)
and MorU0(S) = Hom(S,U1 ×U0 U1). There is a canonical map U0 → X sending
an object (ξ → ζ) to ξ.

Finally, we show that U0 → X is covering. For a scheme S, a morphism S → X

is a triple (S,S , ξ : S → X ), where S = S1
s′ //

t′
// S0 → S is a presentation. The

morphism S →X induces a morphism S0 → U0. The fact that S0 → S is covering
means that there is a cover {Tα → S} of S that lifts to S0, and therefore composing
gives morphisms Tα → U0. This gives the cover {Tα → S} of S whose compositions
Tα → S → X lift to U0.
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Remark C.17. In fact, there is a cocartesian diagram in the 2-category of stacks:

U1
s //

t

��

U0

��

U0
// X

We will not use this property, so we do not give a proof (see e.g., [BCE+14, Def. 3.11,
Def. 4.10]).

C.3. Adapted groupoid objects and adapted stacks. Here we show that a
stack associated to a groupoid object having source and target that are coverings
in the presite is the same as a stack adapted to the presite; i.e., it is an algebraic
stack. Moreover, the groupoid object induces a presentation of the stack.

Proposition C.18 ([BCE+14, Prop. 5.21]). Let S be a subcanonical presite admit-

ting fibered products. Let U1
s
//

t // U0 be a groupoid object, and set X = [ U1
s
//

t // U0 ].

If P is any property of morphisms in S that is stable under base change and local
(on the target), then:

(1) Assuming the diagonal X → X ×X is S-representable, it has property P if
and only if (s, t) : U1 → U0 × U0 has property P.

(2) Assuming the morphism U0 → X (corresponding to the identity of U0) is
S-representable, it has property P if and only if s (or t) has property P.

Proof. For the first claim, U1 → U0 × U0 is the base change of the diagonal via
U0 × U0 → X × X , so the former inherits property P from the latter. Conversely,
if S → X ×X is any morphism, let

V //

��

W

��

T // S

be the base change of the cartesian diagram

U1
//

��

U0 × U0

��

X ∆ // X × X .

Then V → W has property P by base change. But W → S is a cover, since it is
the base change of U0 × U0 → X × X , so property P descends to T → S. This
applies to any morphism S → X ×X , so ∆ has property P.

For the second claim, there is a cartesian diagram

(C.4) U1
t //

s

��

U0

��

U0
// X
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so s and t inherit property P from U0 → X . Conversely, suppose S → X is any
morphism. Let

V //

��

W

��

T // S

be the base change of (C.4). Then V → W is P by base change. But W → S
is covering (by base change; see Example C.16), so P descends to T → S. This
applies to any S → X , so U0 → X is P, as required. �

Proposition C.19 ([BCE+14, Prop. 4.19, 5.19]). Let S be a subcanonical presite
admitting fibered products. Let X be a stack, let P : U → X be an S-representable
morphism from an object U of S. Then there is an associated groupoid object

U ×X U
pr1
//

pr2 // U in S (see e.g., [BCE+14, Prop. 3.5]). If moreover the morphism

P : U → X is a cover in the sense of Definition 5.2, then X is equivalent to

[ U ×X U
pr1
//

pr2 // U ], and the projections pr1, pr2 are covers in the presite.

Proof. Set U0 = U and U1 = U×X U . Let U be the stack associated to the groupoid
object U = U1 ⇒ U0. We construct a map U → X by descent. Let Z → U be
any morphism, where Z is a scheme. By definition, this corresponds to a groupoid
presentation of Z of Z and a cartesian morphism Z → U . By composition, this
gives a map to the constant groupoid object X , and this descends uniquely to a
map Z → X . This is easily shown to be functorial in Z, hence gives a morphism
U → X .

Now we argue that U → X is an isomorphism if U0 covers X . Indeed, the
map U → X factors through U , so U → X is surjective. On the other hand,
U0 ×U U0 → U0 ×X U0 is an isomorphism. This is the pullback under the cover
U0 ×X U0 → U ×X U of the diagonal U → U ×X U . Therefore the relative diagonal
of U → X is an isomorphism, which is to say that U → X is injective. Combined
with the surjectivity, this means U → X is an isomorphism.

The statement that pr1 and pr2 are covers can be obtained from the 2-cartesian
diagram (C.2). �

Definition C.20 (Groupoid object adapted to a presite). Let S be a subcanonical

presite admitting fibered products. We say a groupoid object U1
s
//

t // U0 is adapted

to the presite if s and t are covers in the presite and the natural morphism U0 →

X = [ U1
s
//

t // U0 ] is S-representable.

Corollary C.21. The stack associated to a groupoid object adapted to a presite
is a stack adapted to the presite; in particular, it is algebraic. Conversely, a stack
adapted to a presite is the stack associated to a groupoid object adapted to the
presite.
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[Ill71] Luc Illusie. Complexe cotangent et déformations. I. Lecture Notes in Mathematics,
Vol. 239. Springer-Verlag, Berlin-New York, 1971.

[KKN08a] Takeshi Kajiwara, Kazuya Kato, and Chikara Nakayama. Logarithmic abelian vari-

eties. Nagoya Math. J., 189:63–138, 2008.
[KKN08b] Takeshi Kajiwara, Kazuya Kato, and Chikara Nakayama. Logarithmic abelian vari-

eties. I. Complex analytic theory. J. Math. Sci. Univ. Tokyo, 15(1):69–193, 2008.

http://arxiv.org/abs/1206.4179
http://arxiv.org/abs/1306.4599
http://arxiv.org/abs/1405.7680


146 CASALAINA-MARTIN AND WISE

[KKN13] Takeshi Kajiwara, Kazuya Kato, and Chikara Nakayama. Logarithmic abelian vari-

eties, III: logarithmic elliptic curves and modular curves. Nagoya Math. J., 210:59–81,

2013.
[Knu71] Donald Knutson. Algebraic spaces. Lecture Notes in Mathematics, Vol. 203. Springer-

Verlag, Berlin-New York, 1971.

[Lie06] Max Lieblich. Remarks on the stack of coherent algebras. Int. Math. Res. Not., pages
Art. ID 75273, 12, 2006.

[LMB00] Gérard Laumon and Laurent Moret-Bailly. Champs algébriques, volume 39 of Ergeb-
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