Goal: Compute areas and arc length in polar coordinates.

Arc Length

Suppose a curve \mathscr{C} is given by parametric equation $x(t)$ and $y(t)$. What is the formula for the arc length of the curve between $t=a$ and $t=b$?

Let's consider a polar curve $r=f(\theta), a \leq \theta \leq b$. We can consider θ as our parameter. How can we set up our parametric equations for x and y in terms of just θ ?

$$
x=\quad y=
$$

In hopes of substituting into the arc length formula, differentiate both equations above (with respect to θ) using the product rule to obtain $\frac{d x}{d \theta}$ and $\frac{d y}{d \theta}$.

Now, compute the expression that lives inside the square root in our arc length formula.

$$
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}=
$$

Assuming that f^{\prime} is continuous, we can now put all the pieces together. The length of a curve with polar equation $r=f(\theta), a \leq \theta \leq b$ is

$$
L=
$$

Area

Let's think way back to how we defined the area under a curve in Calculus I. We took little slices of x-change and estimated the area under the curve with a rectangle using the area formula

$$
A=(\text { length })(\text { width })=f(x) \cdot \Delta x .
$$

Next, we took smaller and smaller Δx to get an integral! We're going to do the same thing but for polar coordinates.

First, if we change θ a little bit, we end up tracing out a sector of a circle (as opposed to a rectangle). The area of a sector of a circle of radius r and central angle θ (measured in radians) is given by

$$
A=\frac{1}{2} r^{2} \Delta \theta .
$$

Your text walks through the full Riemann sum description but we'll jump right to the end. Let \mathscr{R} be the region bounded by the polar curve $r=f(\theta)$ and the rays $\theta=a$ and $\theta=b$, where f is a positive and continuous function and $0<b-a<2 \pi$. The area of the polar region \mathscr{R} is given by

$$
A=
$$

We can also find the areas between polar curves, but finding intersections can be tricky so remember, always draw a picture!

1. Find the length of the cardioid $r=1+\sin \theta$.

2. Find the area of the region that is bounded by $r=\theta^{2}, 0 \leq \theta \leq \pi / 4$.

3. Find the length of the curve $r=\theta^{2}, 0 \leq \theta \leq 2 \pi$.

4. Find the area of the region enclosed by one loop of the curve $r=\cos (2 \theta)$.

5. Here are a few more area and arc length questions for you to show your mastery!
(i) Find the area inside the region bounded by $r=3+3 \sin \theta$.

(ii) Consider the curve $r=2 \csc \theta$.
(a) Convert this curve into rectangular coordinates. This will give us a parametrization with θ serving the role of t.
(b) What is the slope of the curve at any point (x, y) ?
(c) Find the length of the curve from $\theta=\pi / 6$ to $\theta=\pi / 2$.

(iii) Find the arc length of the cardioid $r=3+3 \sin \theta$.

(iv) $\frac{\sqrt{2}}{2}$ Consider the curves $r=1+\sin \theta$ and $r=3 \sin \theta$.
(a) Sketch the curves.
(b) Find the values of θ where the curves intersect.
(c) Find the area of the region inside both curves.
(d) Find the area of the region inside $r=3 \sin \theta$ and outside $r=1+\sin \theta$.

