Goal: Compute areas and arc length in polar coordinates.

Arc Length

Suppose a curve \mathscr{C} is given by parametric equation x(t) and y(t). What is the formula for the arc length of the curve between t = a and t = b?

Let's consider a polar curve $r = f(\theta)$, $a \le \theta \le b$. We can consider θ as our parameter. How can we set up our parametric equations for x and y in terms of just θ ?

In hopes of substituting into the arc length formula, differentiate both equations above (with respect to θ) using the product rule to obtain $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$.

Now, compute the expression that lives inside the square root in our arc length formula.

$$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 =$$

Assuming that f' is continuous, we can now put all the pieces together. The length of a curve with polar equation $r = f(\theta), a \le \theta \le b$ is

$$L =$$

Area

Let's think way back to how we defined the area under a curve in Calculus I. We took little slices of x-change and estimated the area under the curve with a rectangle using the area formula

$$A = (\text{length})(\text{width}) = f(x) \cdot \Delta x.$$

Next, we took smaller and smaller Δx to get an integral! We're going to do the same thing but for polar coordinates.

First, if we change θ a little bit, we end up tracing out a sector of a circle (as opposed to a rectangle). The area of a sector of a circle of radius r and central angle θ (measured in radians) is given by

$$A = \frac{1}{2}r^2\Delta\theta.$$

Your text walks through the full Riemann sum description but we'll jump right to the end. Let \mathscr{R} be the region bounded by the polar curve $r = f(\theta)$ and the rays $\theta = a$ and $\theta = b$, where f is a positive and continuous function and $0 < b - a < 2\pi$. The area of the polar region \mathscr{R} is given by

$$A =$$

We can also find the areas between polar curves, but finding intersections can be tricky so remember, *always draw a picture!*

1. Find the length of the cardioid $r = 1 + \sin \theta$.

2. Find the area of the region that is bounded by $r = \theta^2$, $0 \le \theta \le \pi/4$.

3. Find the length of the curve $r = \theta^2$, $0 \le \theta \le 2\pi$.

4. Find the area of the region enclosed by one loop of the curve $r = \cos(2\theta)$.

5. Here are a few more area and arc length questions for you to show your mastery!

(i) Find the area inside the region bounded by $r = 3 + 3\sin\theta$.

- (ii) Consider the curve $r = 2 \csc \theta$.
 - (a) Convert this curve into rectangular coordinates. This will give us a parametrization with θ serving the role of t.
 - (b) What is the slope of the curve at any point (x, y)?
 - (c) Find the length of the curve from $\theta = \pi/6$ to $\theta = \pi/2$.

(iii) Find the arc length of the cardioid $r = 3 + 3\sin\theta$.

- (iv) $\stackrel{\text{\tiny{int}}}{\simeq}$ Consider the curves $r = 1 + \sin \theta$ and $r = 3 \sin \theta$.
 - (a) Sketch the curves.
 - (b) Find the values of θ where the curves intersect.
 - (c) Find the area of the region inside both curves.
 - (d) Find the area of the region inside $r = 3 \sin \theta$ and outside $r = 1 + \sin \theta$.

