Goal: Play with Taylor series!

1. We can use series to evaluate limits! Evaluate $\lim _{x \rightarrow 0} \frac{x-\ln (1+x)}{x^{2}}$.
(a) Find a series representation for $\frac{x-\ln (1+x)}{x^{2}}$.
(b) Take the limit!
2. We can find values of series! Find the sums of the following series.
(a) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{n!}$
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n 3^{n}}{5^{n}}$
3. We can use Taylor series to approximate integrals! Suppose we want to estimate $\int_{0}^{1} x \cos \left(x^{3}\right) d x$ to within three decimal places $(\mid$ error $\mid \leq 0.0005)$.
(a) Use the Maclaurin series $\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$ to find the Maclaurin series for $f(x)=$ $x \cos \left(x^{3}\right)$.
(b) Find the general antiderivative $F(x)=\int x \cos \left(x^{3}\right) d x$ by integrating the Maclaurin series for $f(x)$.
(c) Remember $\int_{0}^{x} f(t) d t=F(x)-F(0)$. Show $F(0)=0$. Then $\int_{0}^{1} f(t) d t=F(1)$.
(d) We have a Maclaurin series for $F(x)$. Using this series, what is $F^{(n+1)}(x)$ for a given n ?
(e) What is the maximum value of $\left|F^{(n+1)}(x)\right|$ for $|x-0| \leq 1$?
(f) Use Taylor's Inequality with the value of M you just found to find the number of terms necessary for $\left|R_{n}(1)\right| \leq 0.0005$. (Guess-and-check or graph.)
(g) Find the partial sum for $F(1)$ for the value of n you just found. This is an estimate for $\int_{0}^{1} x \cos \left(x^{3}\right) d x$ to within three decimal places.
4. Here are all sorts of problems related to Taylor series. Soon you will be masters!
(i) 弪 Use series to approximate the definite integral $\int_{0}^{0.2} \arctan \left(x^{3}\right)+\sin \left(x^{3}\right) d x$ to within five decimal places.
(ii) (Must do all parts) Find the sums of the series below:
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{4^{2 n+1}(2 n+1)!}$
(b) $3+\frac{9}{2!}+\frac{27}{3!}+\frac{81}{4!}+\cdots$
(c) $\frac{1}{1 \cdot 2}-\frac{1}{3 \cdot 2^{3}}+\frac{1}{5 \cdot 2^{5}}-\frac{1}{7 \cdot 2^{7}}+\cdots$
(iii) $\stackrel{\text { M }}{\sim}$ Prove Taylor's inequality for $n=2$, that is, prove that if $\left|f^{\prime \prime \prime}(x)\right| \leq M$ for $|x-a| \leq d$, then

$$
\left|R_{2}(x)\right| \leq \frac{M}{6}|x-a|^{3}, \quad \text { for } \quad|x-a| \leq d
$$

(iv) $\frac{\pi}{2}$ Show that the function defined by

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is not equal to its Maclaurin series. Graph the function and comment on it's behavior near the origin.

