
MATH 2300 More ways to use Taylor Series Notes

Goal: Play with Taylor series!

1. We can use series to evaluate limits! Evaluate lim
x→0

x− ln(1 + x)

x2
.

(a) Find a series representation for
x− ln(1 + x)

x2
.

(b) Take the limit!

2. We can find values of series! Find the sums of the following series.

(a)
∞∑
n=0

(−1)n
x4n

n!

(b)
∞∑
n=1

(−1)n−1
n3n

5n
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3. We can use Taylor series to approximate integrals! Suppose we want to estimate

∫ 1

0

x cos(x3) dx

to within three decimal places (|error| ≤ 0.0005).

(a) Use the Maclaurin series cos(x) =
∞∑
n=0

(−1)n
x2n

(2n)!
to find the Maclaurin series for f(x) =

x cos(x3).

(b) Find the general antiderivative F (x) =

∫
x cos(x3) dx by integrating the Maclaurin series

for f(x).

(c) Remember

∫ x

0

f(t) dt = F (x)− F (0). Show F (0) = 0. Then

∫ 1

0

f(t) dt = F (1).

(d) We have a Maclaurin series for F (x). Using this series, what is F (n+1)(x) for a given n?

(e) What is the maximum value of |F (n+1)(x)| for |x− 0| ≤ 1?

(f) Use Taylor’s Inequality with the value of M you just found to find the number of terms
necessary for |Rn(1)| ≤ 0.0005. (Guess-and-check or graph.)

(g) Find the partial sum for F (1) for the value of n you just found. This is an estimate for∫ 1

0

x cos(x3) dx to within three decimal places.
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4. Here are all sorts of problems related to Taylor series. Soon you will be masters!

(i) Use series to approximate the definite integral

∫ 0.2

0

arctan(x3) + sin(x3) dx to within five

decimal places.

(ii) (Must do all parts) Find the sums of the series below:

(a)
∞∑
n=0

(−1)nπ2n+1

42n+1(2n+ 1)!

(b) 3 +
9

2!
+

27

3!
+

81

4!
+ · · ·

(c)
1

1 · 2
− 1

3 · 23
+

1

5 · 25
− 1

7 · 27
+ · · ·
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(iii) Prove Taylor’s inequality for n = 2, that is, prove that if |f ′′′(x)| ≤ M for |x− a| ≤ d,
then

|R2(x)| ≤ M

6
|x− a|3 , for |x− a| ≤ d

(iv) Show that the function defined by

f(x) =

{
e−1/x

2

if x 6= 0

0 if x = 0

is not equal to its Maclaurin series. Graph the function and comment on it’s behavior near
the origin.

4


