Goal: Estimate the error when using a Taylor polynomial to approximate a function. Determine when a function f has a representation as a Taylor series.

How can we show that any function actually has a power series representation?
We need to show that $f(x)$ is the limit of the partial sums of the power series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ (that is, show the series converges by the definition and show that it converges to f).

What is the nth partial sum of the Taylor series for f ?

$$
T_{n}(x)=
$$

Recall that this is called the n th-degree Taylor polynomial of f centered at a. So $f(x)$ is equal to its Taylor series if

$$
f(x)=\lim _{n \rightarrow \infty} T_{n}(x)
$$

We can define the remainder $R_{n}(x)$ of the Taylor series as follows:

$$
R_{n}(x)=f(x)-T_{n}(x), \quad \text { so } \quad f(x)=
$$

\qquad
We need the following chain of equalities to hold:

$$
\lim _{n \rightarrow \infty} T_{n}(x)=\lim _{n \rightarrow \infty}\left(f(x)-R_{n}(x)\right)=f(x)-\lim _{n \rightarrow \infty} R_{n}(x)=f(x)
$$

What requirement can we place on $\lim _{n \rightarrow \infty} R_{n}(x)$ to make the above equalities hold?

$$
\lim _{n \rightarrow \infty} R_{n}(x)=
$$

We've just proved another theorem!
Theorem: If $f(x)=T_{n}(x)+R_{n}(x)$, where T_{n} is the nth degree Taylor polynomial of f at a and

$$
\lim _{n \rightarrow \infty} R_{n}(x)=
$$

for $|x-a|<R$, then f is equal to the sum of it's Taylor series on the interval $|x-a|<R$.
So that leaves the question: How can we show that $\lim _{n \rightarrow \infty} R_{n}(x)=0$ for a specific function f ?
Taylor's Inequality: If $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a| \leq d$, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \quad \text { for } \quad|x-a| \leq d
$$

Alternate statement of Taylor's Inequality: If $\left|f^{(n+1)}(x)\right| \leq M$ between a and x, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

In general, this isn't too hard to prove. The text outlines a really nice proof when $n=1$ on page 607 and for your portfolio, you can show that the statement is true for $n=2$.

Let's see Taylor's inequality in action with one of our favorite Taylor series!

1. Prove that e^{x} is equal to the sum of its Maclaurin series for all x.
(a) What is the Maclaurin series for e^{x} ?

$$
e^{x}=
$$

(b) What is the $(n+1)$ st derivative of $f(x)=e^{x}$?

$$
f^{(n+1)}(x)=
$$

(c) Let d be any positive real number such that $|x| \leq d$. What is an upper bound for $\left|f^{(n+1)}(x)\right|$? (That is, choose M. Note that M can depend on d, but it must be independent of n.)

$$
\left|f^{(n+1)}(x)\right| \leq
$$

(d) Fill in the values in Taylor's inequality.

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}=
$$

(e) Now, take a limit of your upper bound!

$$
\lim _{n \rightarrow \infty} \frac{M}{(n+1)!}|x-a|^{n+1}=
$$

(f) Which theorem allows you to conclude $\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=0$?
(g) Conclude that e^{x} is equal to the sum of its Maclaurin series.
(h) Give a expression in terms of a series for e^{π}.
2. Show that $\sin (x)$ is equal to it's Maclaurin series for all x.
3. Let $f(x)=\sin (x)$
(a) State that the Maclaurin series for $f(x)$. For what values of x does the Maclaurin series converge?
(b) Suppose we want to use a partial sum of the Maclaurin series to estimate $\sin (\pi / 3)$. What is $T_{5}(x)$?
(c) What is $f^{(6)}(x)$?
(d) Recall the Maclaurin series is a Taylor series centered at $a=0$. If $|x-0| \leq \pi / 3$, what is the maximum value of $\left|f^{(6)}(x)\right|$?
(e) In Taylor's inequality, the maximum found in part (d) is called M. So we have,

$$
\left|R_{5}(\pi / 3)\right| \leq \frac{M}{(5+1)!}|\pi / 3-0|^{5+1}
$$

Plug in your value for M and simplify to find an upper bound for $\left|R_{5}(\pi / 3)\right|=\left|T_{5}(\pi / 3)-\sin (\pi / 3)\right|$.

