Goal: Estimate the error when using a Taylor polynomial to approximate a function. Determine when a function f has a representation as a Taylor series.

How can we show that any function *actually* has a power series representation?

We need to show that f(x) is the limit of the partial sums of the power series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ (that is, show the series converges by the definition and show that it converges to f).

What is the *n*th partial sum of the Taylor series for f?

$$T_n(x) =$$

Recall that this is called the *n*th-degree Taylor polynomial of f centered at a. So f(x) is equal to its Taylor series if

$$f(x) = \lim_{n \to \infty} T_n(x)$$

We can define the *remainder* $R_n(x)$ of the Taylor series as follows:

$$R_n(x) = f(x) - T_n(x), \quad \text{so} \quad f(x) =$$

We need the following chain of equalities to hold:

$$\lim_{n \to \infty} T_n(x) = \lim_{n \to \infty} \left(f(x) - R_n(x) \right) = f(x) - \lim_{n \to \infty} R_n(x) = f(x)$$

What requirement can we place on $\lim_{n \to \infty} R_n(x)$ to make the above equalities hold?

$$\lim_{n \to \infty} R_n(x) =$$

We've just proved another theorem!

Theorem: If $f(x) = T_n(x) + R_n(x)$, where T_n is the *n*th degree Taylor polynomial of f at a and

$$\lim_{n \to \infty} R_n(x) =$$

for |x - a| < R, then f is equal to the sum of it's Taylor series on the interval |x - a| < R.

So that leaves the question: How can we show that $\lim_{n\to\infty} R_n(x) = 0$ for a specific function f?

Taylor's Inequality: If $|f^{(n+1)}(x)| \leq M$ for $|x-a| \leq d$, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 for $|x-a| \le d$

Alternate statement of Taylor's Inequality: If $|f^{(n+1)}(x)| \leq M$ between a and x, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$

In general, this isn't too hard to prove. The text outlines a really nice proof when n = 1 on page 607 and for your portfolio, you can show that the statement is true for n = 2.

Let's see Taylor's inequality in action with one of our favorite Taylor series!

- 1. Prove that e^x is equal to the sum of its Maclaurin series for all x.
 - (a) What is the Maclaurin series for e^x ?

$$e^x =$$

(b) What is the (n + 1)st derivative of $f(x) = e^x$?

$$f^{(n+1)}(x) =$$

(c) Let d be any positive real number such that $|x| \leq d$. What is an upper bound for $|f^{(n+1)}(x)|$? (That is, choose M. Note that M can depend on d, but it must be independent of n.)

$$\left|f^{(n+1)}(x)\right| \le$$

(d) Fill in the values in Taylor's inequality.

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1} =$$

(e) Now, take a limit of your upper bound!

$$\lim_{n \to \infty} \frac{M}{(n+1)!} \, |x-a|^{n+1} =$$

- (f) Which theorem allows you to conclude $\lim_{n \to \infty} |R_n(x)| = 0$?
- (g) Conclude that e^x is equal to the sum of its Maclaurin series.
- (h) Give a expression in terms of a series for e^{π} .

2. Show that sin(x) is equal to it's Maclaurin series for all x.

- 3. Let $f(x) = \sin(x)$
 - (a) State that the Maclaurin series for f(x). For what values of x does the Maclaurin series converge?
 - (b) Suppose we want to use a partial sum of the Maclaurin series to estimate $\sin(\pi/3)$. What is $T_5(x)$?
 - (c) What is $f^{(6)}(x)$?
 - (d) Recall the Maclaurin series is a Taylor series centered at a = 0. If $|x 0| \le \pi/3$, what is the maximum value of $|f^{(6)}(x)|$?
 - (e) In Taylor's inequality, the maximum found in part (d) is called M. So we have,

$$|R_5(\pi/3)| \le \frac{M}{(5+1)!} |\pi/3 - 0|^{5+1}$$

Plug in your value for M and simplify to find an upper bound for $|R_5(\pi/3)| = |T_5(\pi/3) - \sin(\pi/3)|.$