Goal: Define a Taylor polynomial for a function f and use this polynomial to approximate f.
In Calculus I, you learned how to approximate function values using lines (linear approximation). Let's start there.

1. Approximate $e^{0.1}$ using only a four-function calculator and your knowledge of calculus.
(a) Use the tangent line approximation with $f(x)=e^{x}$. Compare to the value given by your calculator. (Recall that the formula for a tangent line approximation for $f(x)$ near $x=a$ is given by $f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)$.)
(b) In part (a), we only used the first derivative to approximate $e^{0.1}$. We can get a better estimate by using the second derivative. Write down a polynomial that will match f, f^{\prime}, and $f^{\prime \prime}$ at $x=a$. Use this to approximate $e^{0.1}$ and compare this value with the value given by your calculator.
(c) What properties of f are we modeling with our approximating line and our approximating parabola?
(d) As masters of calculus, how could we get an even better estimate?

The nth degree Taylor polynomial for $f(x)$ centered at $x=a$ is given by

$$
\begin{aligned}
T_{n}(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
\end{aligned}
$$

2. Consider $f(x)=e^{3 x}$.
(a) Write out the fifth degree Taylor polynomial $T_{5}(x)$ for $f(x)=e^{3 x}$ about $x=0$. Express your answer in expanded form and in summation notation.
(b) Use your polynomial to approximate $e^{1.5}$ and evaluate using technology. (This expression is called the 6th partial sum approximation for $e^{1.5}$.)
(c) Express the 20th partial sum approximation for $e^{1.5}$ using summation notation and evaluate using technology.
(d) Express an exact series representation for $e^{1.5}$ and justify why the series you wrote should converge to $e^{1.5}$.
(e) Conjecture an exact series representation in summation notation for $e^{3 x}$. Is this series a power series? What is the interval of convergence?
3. Consider $f(x)=\frac{1}{x^{2}}$.
(a) Write out the fifth degree Taylor polynomial $T_{5}(x)$ for $f(x)=\frac{1}{x^{2}}$ about $x=1$. Express your answer in expanded form and in summation notation.
(b) Use your polynomial to approximate $\frac{1}{(1.2)^{2}}$ and evaluate using technology.
(c) Express the 20th partial sum approximation for $\frac{1}{(1.2)^{2}}$ using summation notation and evaluate using technology.
(d) Express an exact series representation for $\frac{1}{(1.2)^{2}}$ and justify why the series you wrote should converge to $\frac{1}{(1.2)^{2}}$.
(e) Conjecture an exact series representation in summation notation for $\frac{1}{x^{2}}$. Is this series a power series? What is the interval of convergence?
4. The function $f(x)$ is approximated near $x=3$ by the 4th degree Taylor polynomial

$$
T_{4}(x)=1+5(x-3)-2(x-3)^{2}+9(x-3)^{3}-\frac{1}{6}(x-3)^{4}
$$

What are $f(3), f^{\prime}(3), f^{\prime \prime}(3), f^{\prime \prime \prime}(3)$, and $f^{(4)}(3)$?

