Goal: Formalize how we can represent familiar functions as power series and build new power series representations for functions by integrating or differentiating a known power series.

Theorem: If the power series $\sum c_{n}(x-a)^{n}$ has radius of converge $R>0$, then the function f defined by

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots
$$

is differentiable (and therefore continuous) on ($a-R, a+R$) and
(i) $f^{\prime}(x)=$
(ii) $\int f(x) d x=$

The radii of convergence of the power series in (i) and (ii) are both R.

1. Let's build a power series for $f(x)=\frac{x^{2}}{(1+x)^{3}}$.
(a) What is the antiderivative of $g(x)=\frac{1}{(1+x)^{2}}$? Give it's power series and radius of convergence.
(b) Use part (i) to find a power series for $h(x)=\frac{1}{(1+x)^{2}}$.
(c) Use part (ii) to find a power series for $k(x)=\frac{1}{(1+x)^{3}}$.
(d) Use part (iii) to find a power series for $f(x)=\frac{x^{2}}{(1+x)^{3}}$. What is the radius of convergence?t
2. Our goal is to find a power series representation for $f(x)=\frac{1+x}{1-x}$.
(a) Find the power series for $g(x)=\frac{1}{1-x}$ and its radius of convergence.
(b) Use part (a) to find a power series representation for $h(x)=\frac{x}{1-x}$.
(c) We want to add the two series together to get a series representation of $f(x)$. This will be easier if both series have terms with the same power of x. Use an index shift to rewrite the series for $h(x)$ so that its terms include x^{n}.
(d) Now we want to add the two series together. Try writing each series in expanded form and then writing a new series expression for the sum.
(e) What is the radius of convergence of the final series for $\frac{1+x}{1-x}$?
3. Now that you have a whole new way to think about functions, try these problems on your own!
(i) Find a power series representation for $f(x)=\frac{3}{1-x^{4}}$. What is the radius of convergence?
(ii) Find a power series representation for $g(x)=\frac{x}{9+x^{2}}$.

Hint: Find a representation for $\frac{1}{1+\left(x^{2} / 9\right)}$ first.
(iii) Give the antiderivative of $\arctan \left(x^{2}\right)$ as a power series.
(iv) Find a power series representation for the function $h(x)=\frac{x^{3}}{(1+5 x)^{2}}$. What is the radius of convergence?
(v) $\underset{\sim}{m}$ Find a power series representation for the function $g(x)=\left(\frac{x^{2}}{7-x}\right)^{3}$. What is the radius of convergence?
(vi) $\stackrel{i / 2}{ }$ Find a power series representation for $f(x)=\frac{x^{2}}{a^{4}-x^{4}}$ and give the radius of convergence.

