Goal: Estimating a series using only finitely many terms, we can bound our error. Also, given a level of precision, we can determine the number of terms we should use in our estimate to guarantee the appropriate level of accuracy.

Suppose we have a series $\sum a_{k}$ that converges by the integral test. Write out the integral test below and underline the hypotheses:

We want to estimate the value of this series using a partial sum. For any positive integer n, write out the partial sum s_{n} below:

How good of an approximation is s_{n} ? We need to estimate the size of the remainder:

$$
R_{n}=\left(\sum_{k=1}^{\infty} a_{k}\right)-s_{n}=a_{n+1}+a_{n+2}+a_{n+3}+\cdots
$$

On the figure below, let $f(x)$ be the function in the integral test that agrees with a_{n} on the integers. Draw three rectangles on the graph which visually represent the sequence elements a_{n+1}, a_{n+2}, and a_{n+3} and which correspond to a right-hand Riemann sum approximation (that is, the rectangle between n and $n+1$ should have height $\left.f(n+1)=a_{n+1}\right)$.

Using an integral, what is an upper bound for R_{n} ?

Using the same figure as above, draw three rectangles on the graph which visually represent the sequence elements a_{n+1}, a_{n+2}, and a_{n+3} and which correspond to a left-hand Riemann sum approximation (that is, the rectangle between $n+1$ and $n+2$ should have height $f(n+1)=a_{n+1}$).

Using an integral, what is a lower bound for R_{n} ?

Remainder Estimate for the Integral Test: Suppose $f(k)=a_{k}$, where f is a continuous, positive, decreasing function for $x \geq n$ and $\sum a_{n}=s$ is convergent. If $R_{n}=s-s_{n}$, then

$$
\leq R_{n} \leq
$$

In the inequality above, replace R_{n} with $s-s_{n}$.

Add s_{n} to all parts to express an interval in which the true value of the series must lie.

1. How many terms of the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ do we need to add to estimate the true value of the series correct to within 3 decimal places?

Suppose we have a series $\sum(-1)^{k-1} b_{k}$ that converges by the alternating series test. Write out the alternating series test below and underline the hypotheses:

We want to estimate the value of this series using a partial sum. For any positive integer n, write out the partial sum s_{n} below:

Based on your intuition, can you bound the remainder from above?

Remainder Estimate for Alternating Series: If $s=\sum(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies $b_{n+1} \leq b_{n}$ and $\lim _{n \rightarrow \infty} b_{n}=0$, then

$$
R_{n}=\left|s-s_{n}\right| \leq
$$

2. Find the sum of the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n!}$ correct to two decimal places.
3. To sharpen your series estimation skills, here are some problems to work on!
(i) Use the sum of the first 10 terms to estimate $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. How good is this estimate? Using this estimate, give an interval in which s must lie. Find a value of n that will ensure that the error in the approximation $s \approx s_{n}$ is less than 0.001 .
(ii) Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 5^{n}}$ is convergent. How many terms of the series do we need to add in order to find the sum to the accuracy \mid error $\mid<0.0001$?
(iii) How many terms of the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ would you need to add to find its sum to within $0.01 ?$
(iv) Is the 103rd partial sum s_{103} of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ an over estimate or an underestimate of the total sum. Explain.
(v) Estimate $\sum_{n=1}^{\infty}(2 n+1)^{-6}$ correct to five decimal places.
(vi) Use $s_{1} 6$ to estimate $\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{n^{2}+1}$ and estimate the error.
(vii) $\stackrel{m}{6}$ Show that $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{8^{n}}$ converges. Estimate the sum correct to four decimal places.
(viii) ${ }^{\underline{3} / \mathrm{S}}$ Use the sum of the first 10 terms to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(\sin (n))^{2}}{n^{3}}$. Estimate the error. Using this estimate (s_{10}), give an interval in which the true value must lie.
