Goal: Use separable equations to model exponential growth and decay.
Many of our familiar formulas for modeling growth, decay, cooling, accumulated interest, etc., come from solving a related differential equation!

If $y(t)$ is the value of some quantity y at time t and the rate of change of y with respect to t is proportional to its size at $y(t)$ at any time, then $\frac{d y}{d t}=k y$ where k is some constant. If $k>0$, we call this equation the law of natural growth. If $k<0$, we call this equation the law of natural decay. Suppose $y(0)=y_{0}$ (this will represent some quantity at time zero). Let's solve this initial value problem:

$$
\frac{d y}{d t}=k y, \quad y(0)=y_{0}
$$

There are a few named applications of this concept but we will only discuss two right now. Your text has more information on these and other applications.

Newton's Law of Cooling: Let $T(t)$ be the temperature of an object at time t. Let T_{s} be the temperature of the surroundings. The rate at which the object's temperature is changing is given by

$$
\frac{d T}{d t}=k\left(T-T_{s}\right)
$$

where k is a constant.

1. A freshly brewed (but forgotten) cup of coffee has temperature $95^{\circ} \mathrm{C}$ in a $20^{\circ} \mathrm{C}$ room at 6:00 AM. When its temperature is $70^{\circ} \mathrm{C}$, it is cooling at a rate of $1^{\circ} \mathrm{C}$ per minute. At what time does this occur?

Radioactive Decay: Let $m(t)$ be the mass remaining from an initial mass m_{0} of a radioactive substance after time t. The relative decay rate $-\frac{1}{m} \frac{d m}{d t}$ has been found to be constant. This information gives us the separable equation

$$
\frac{d m}{d t}=k m
$$

where k is constant. (Quick check: In this situation, should k be positive or negative?)
2. The half-life of cesium-137 is 30 years. Suppose we have a $100-\mathrm{mg}$ sample.
(a) Find the mass that remains after t years.
(b) How much of the sample remains after 100 years?
(c) After how long will only 1 mg remain?
3. Here's some more questions to help you become a modeling expert!
(i) A curve passes through the point $(0,5)$ and has the property that the slope of the curve at every point P is twice the y-coordinate of P. What is the equation of the curve?
(ii) A roast turkey is taken from an oven when its temperature has reached $165^{\circ} \mathrm{F}$ and is placed on a table in a room where the temperature is $70^{\circ} \mathrm{F}$. After half and hour, the turkey has cooled to $120^{\circ} \mathrm{F}$. What is the temperature after 45 minutes? When will the turkey have cooled to $90^{\circ} \mathrm{F}$?
(iii) How long will it take an investment to double in value if the interest rate is 6% compounded continuously? What is the equivalent annual interest rate?
(iv) ${ }^{[/ 8}$ In order to determine the age of ancient organic material, scientists use a method called radiocarbon dating. All living things have approximately the same ratio of the stable carbon $12\left({ }^{12} \mathrm{C}\right)$ to the radioactive carbon $14\left({ }^{14} \mathrm{C}\right)$. Once something dies, it stops replenishing its carbon and the radioactive ${ }^{14} \mathrm{C}$ begins to decay. So we can use the current ratio to determine how long ago something stopped replenishing the decaying ${ }^{14} \mathrm{C}$. The half life of ${ }^{14} \mathrm{C}$ is 5730 years. Say a fossil is found that has $35 \%{ }^{14} \mathrm{C}$ compared to the living sample. How old is the fossil?

