Goal: Use slope fields to describe and/or sketch solutions to differential equations.
Let's start with a bit more terminology.
An autonomous differential equation of the form $y^{\prime}=f(y)$ in which the independent variable is missing from the right side. In particular, this means that the slopes corresponding to different points with the same y coordinate must be equal.

Recall from yesterday that if a solution is constant, we call it an equilibrium solution. We classify equilibrium solutions as stable and unstable.

A stable equilibrium solution is one in which solutions that start "near" the equilibrium solution move toward the equilibrium solution.

An unstable equilibrium solution is one in which solutions that start "near" the equilibrium solution move away from the equilibrium solution.

A slope field (or direction field) for a differential equation of the form $y^{\prime}=F(x, y)$ is a sketch of short line segments of slope $F(x, y)$ drawn at several points (x, y).

Let's jump right in!

1. Sketch the solution curve of the differential equation $y^{\prime}=x+y$ satisfying the initial condition $(0,1)$.
(a) Sketch the slope field for the differential equation $y^{\prime}=x+y$

(b) Sketch the solution curve through $(0,1)$.
2. Below is a direction field for the differential equation $y^{\prime}=\tan \left(\frac{\pi y}{2}\right)$.

(a) Sketch the graphs of the solutions that satisfy the given initial conditions.

$$
y(0)=1 \quad y(0)=0.2 \quad y(0)=2 \quad y(1)=3
$$

(b) Find and classify all of the equilibrium solutions.

