Goal: Evaluate integrals using substitutions involving trigonometric functions.
Let's jump right in with an example and build a general strategy later.
Example: Evaluate $\int \frac{\sqrt{x^{2}-16}}{x} d x$.
(a) First, let's draw a seemingly random picture. Label the length of the blank side.

(b) Compute $\sec (\theta)$ and solve for x.
(c) Your new expression for x is going to be our substitution. What is $d x$? (Remember the chain rule! Your expression should have a $d \theta$.)
(d) Let's return to our original integral and make these substitutions.

$$
\int \frac{\sqrt{x^{2}-16}}{x} d x=\int \frac{\sqrt{(\quad)^{2}-16}}{(\quad)} \cdot(\quad) d \theta
$$

(e) With our new θ-integral, simplify the expression within the square root until you can utilize the formula $(\tan (\theta))^{2}=(\sec (\theta))^{2}-1$.
(f) Now, you should have an integral that is a product of $\sec (\theta)$'s and $\tan (\theta)$'s which is an integral you can compute! Do that now.
(g) Now, you have a function in terms of θ but our question was asked in terms of x so we need to return to our original variable. You should start by computing $\tan (\theta)$ from our triangle and computing θ using an inverse trigonometric function (and remember that some of these have weird domains).

A General Procedure

1. Set up the right right triangle in preparation to use trigonometric functions. See the diagrams below for the three cases.
2. Solve for x by relating the side involving x with the side involving the constant term.
3. Compute $d x$.
4. Find an expression for the square root term in the same manner as step 2.
5. Now plug in your substitutions and solve the integral (hopefully).

Figure 1: For terms involving $\sqrt{x^{2}+a^{2}}$

Figure 2: For terms involving $\sqrt{x^{2}-a^{2}}$

Figure 3: For terms involving $\sqrt{a^{2}-x^{2}}$
Fill in the missing side lengths of the triangles and complete Step 2 for each of the triangles.

1. Evaluate $\int_{\sqrt{2}}^{2} \frac{1}{t^{3} \sqrt{t^{2}-1}} d t$.
2. Evaluate $\int \frac{x^{3}}{\sqrt{x^{2}+1}} d x$.
3. Evaluate $\int \sqrt{x^{2}+4 x+3} d x$. Hint: You need to complete the square.
4. Here are some integrals to hone your new trigonometric substitution tool:
(i) $\int \frac{1}{x^{2} \sqrt{4-x^{2}}} d x$
(ii) $\int_{-4 / 5}^{-2 / 5} \frac{\sqrt{25-x^{2}}}{x} d x$
(iii) $\int \frac{\sqrt{y^{2}+9}}{y^{4}} d x$
(iv) $\int \frac{1}{x^{2} \sqrt{4-9 x^{2}}} d x$
(v) $\stackrel{\text { i" }}{\int} \int e^{2 x} \sqrt{64-e^{2 x}} d x$
(vi) $\int \frac{\sqrt{1-x}}{\sqrt{x}} d x$
