Goal: Evaluate integrals of products of trigonometric functions.

Recall that on the project from last Thursday, you computed various integrals of the form

$$\int \left(\sin(x)\right)^m \left(\cos(x)\right)^n dx.$$

There are several key facts that help us work with the integrand until it is in a form we can compute. List them below and add to this list as you work through problems.

If n is odd, how would you approach the problem? (Try computing a few of the early problems below if you have forgotten!)

If m is odd, how would you approach the problem?

What would you try if both m and n are even?

How can we adapt these strategies to evaluate integrals of the form

$$\int \left(\sec(x)\right)^m \left(\tan(x)\right)^n dx?$$

1. (Review from Thursday) Evaluate
$$\int_{\pi/2}^{3\pi/4} (\sin(x))^5 (\cos(x))^3 dx$$
.

2. Evaluate
$$\int (\tan(y))^3 \sec(y) \, dy$$
.

3. Evaluate
$$\int_0^{2\pi} (\cos(6\theta))^2 d\theta$$
.

4. Evaluate $\int \sec(x) \, dx$.

Hint: Multiply the integrand by the (not at all obvious) "fancy 1" $\frac{\sec(x) + \tan(x)}{\sec(x) + \tan(x)}$.

5. Evaluate $\int (\sec(x))^3 dx$. Hint: Try integrating by parts using $u = \sec(x)$.

6. Evaluate $\int \tan(x) \, dx$.

7. Evaluate $\int (\tan(x))^3 dx$.

- 8. Here is a list of integrals to sharpen your shiny new trigonometric integration tool:
 - (i) $\int \sin(8x) \cos(5x) dx$ Hint: Try using sum and difference formulas. (ii) $\int (\sin(3x))^8 (\cos(3x))^5 dx$

(iii) $\int (\tan(x))^7 (\sec(x))^3 dx$

(iv)
$$\int \cot(x) dx$$

(v) $\int (\cot(x))^3 dx$

(vi)
$$\int \csc(x) dx$$

(vii) $\int (\csc(x))^3 dx$

(viii)
$$\stackrel{\text{\tiny WD}}{\simeq} \int (\tan(x))^5 (\cos(x))^5 dx.$$

(ix)
$$\stackrel{\text{\tiny{dis}}}{\Longrightarrow} \int (\cot(x))^5 \csc(x) \, dx$$