Goal: Evaluate integrals of products of trigonometric functions.

Recall that on the project from last Thursday, you computed various integrals of the form

$$
\int(\sin (x))^{m}(\cos (x))^{n} d x
$$

There are several key facts that help us work with the integrand until it is in a form we can compute. List them below and add to this list as you work through problems.

If n is odd, how would you approach the problem? (Try computing a few of the early problems below if you have forgotten!)

If m is odd, how would you approach the problem?

What would you try if both m and n are even?

How can we adapt these strategies to evaluate integrals of the form

$$
\int(\sec (x))^{m}(\tan (x))^{n} d x ?
$$

1. (Review from Thursday) Evaluate $\int_{\pi / 2}^{3 \pi / 4}(\sin (x))^{5}(\cos (x))^{3} d x$.
2. Evaluate $\int(\tan (y))^{3} \sec (y) d y$.
3. Evaluate $\int_{0}^{2 \pi}(\cos (6 \theta))^{2} d \theta$.
4. Evaluate $\int \sec (x) d x$.

Hint: Multiply the integrand by the (not at all obvious) "fancy 1 " $\frac{\sec (x)+\tan (x)}{\sec (x)+\tan (x)}$.
5. Evaluate $\int(\sec (x))^{3} d x$. Hint: Try integrating by parts using $u=\sec (x)$.
6. Evaluate $\int \tan (x) d x$.
7. Evaluate $\int(\tan (x))^{3} d x$.
8. Here is a list of integrals to sharpen your shiny new trigonometric integration tool:
(i) $\int \sin (8 x) \cos (5 x) d x$ Hint: Try using sum and difference formulas.
(ii) $\int(\sin (3 x))^{8}(\cos (3 x))^{5} d x$
(iii) $\int(\tan (x))^{7}(\sec (x))^{3} d x$
(iv) $\int \cot (x) d x$
(v) $\int(\cot (x))^{3} d x$
(vi) $\int \csc (x) d x$
(vii) $\int(\csc (x))^{3} d x$
(viii) $\frac{\pi}{2}(\tan (x))^{5}(\cos (x))^{5} d x$.
(ix) $\frac{\sqrt[m]{3}}{\int} \int(\cot (x))^{5} \csc (x) d x$

