Goal: Find an expression for $\int_{a}^{b} f(x) g^{\prime}(x) d x$.
Recall that $\int_{a}^{b} f^{\prime}(x) d x=\int_{a}^{b} \frac{d}{d x}[f(x)] d x=f(b)-f(a)$. (This fact is called the Fundamental Theorem of Calculus!) Using this fact, what does the following integral equal?

$$
\int_{a}^{b} \frac{d}{d x}[f(x) g(x)] d x=
$$

Let's look a little closer at the integral we started with. Using the product rule for derivatives, rewrite the integrand. (You should be left with just one integral over a sum of functions.)

$$
\int_{a}^{b} \frac{d}{d x}[f(x) g(x)] d x=\int_{a}^{b}(
$$

$$
\int d x
$$

Now, integrals distribute over sums so let's rewrite our integral one more time but now as the sum of two integrals.

$$
\int_{a}^{b} \frac{d}{d x}[f(x) g(x)] d x=\int_{a}^{b}(\square) d x+\int_{a}^{b}(\quad) d x
$$

From the first equation on this page, we computed the left-hand side of this equation so rewrite the full equation below. (It should have no integrals on the left and two integrals on the right-one that we are looking for!)

Remember what we are looking for: an expression for $\int_{a}^{b} f(x) g^{\prime}(x) d x$. Rearrange the previous equation for this term and you have the formula that we call "Integration by Parts."

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=
$$

You can also do this for indefinite integrals!

1. Solve $\int_{0}^{1} x e^{x} d x$.
2. Evaluate $\int_{0}^{\pi} x \cos (x) d x$.
3. Evaluate $\int_{1}^{5} x^{2} e^{2 x} d x$.
4. Evaluate $\int \sin (x) e^{x} d x$.
5. Here is a list of integrals to sharpen your shiny new Integration-by-Parts tool:
(i) $\int 2 x^{3} \cos \left(\frac{x}{3}\right) d x$
(ii) $\int(2 x-3)^{2} e^{\frac{x}{2}} d x$
(iii) $\int \ln (x) d x$
(iv) $\int 2 x^{4} \ln (x) d x$
(v) $\int \arcsin (x) d x$
(vi) $\int x^{3} 3^{x} d x$
(vii) $\int \frac{\ln (x)}{x^{2}} d x$
(viii) $\int(\ln (x))^{2} d x$
(ix) 骂 $\int \cos (2 x) e^{3 x} d x$
(x) 㴗 $\int \arctan (4 t) d t$
(xi) ${ }^{\text {M/P }}$ Prove that $\int(\ln (x))^{n} d x=x(\ln (x))^{n}-n \int(\ln (x))^{n-1} d x$.

Hint: It may be helpful to first evaluate $\int(\ln (x))^{2} d x$.

