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Elliptic Curves
Every elliptic curve has an (affine) equation: E : y? = x3+Ax+B (char
# 2,3). Isomorphism classes uniquely identified by j = 1728
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Points form a group under addition.
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Torsion Subgroups

The points of an elliptic curve form a group under addition.
Pictured below, the points of a supersingular elliptic curve over Fq123:

1000 7527, .

200 400 600 800 1000

Color specifies the order of the point in the group E(F1123):

Blue = 1, green = 2, violet = 4, red = 281, orange = 562, black = 1124.
E(K)[N] := points of E defined over K of order N

E[N] = (Z/NZ)?
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Supersingular Elliptic Curves

Definition (Chapter V[Sil09])

E: an elliptic curve defined over a field K of characteristic p # oc.
E is supersingular iff E(IF,)[p"] = Of for all r > 1.

If E/K with char(K)= p # oo is not supersingular, E is ordinary. )

For a given p, there are finitely many isomorphism classes of
supersingular elliptic curves over [F,. J
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Axioms of Crypto for a Mathematician

The goal is for two parties to obtain a shared secret through
public communication.

The shared secret establishes a secure line of communication
We are (I am) interested in algorithms for achieving (1).
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The Trajectory of Supersingular Curves in Crypto

Discrete log problem for elliptic curves
Pairing-based cryptography (not covered here)
Isogeny-based cryptography
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Discrete Log Problem
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Discrete Log Problem: Generally
G : any group, with generator g.

DLP: General
Given g2, g°, determine g#°.

Difficulty depends on the underlying group.

Example: G = (Z/11Z)* J

G = (2). Say 22 = 3, and 2° = 4. What is 23°?
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Discrete Log Problem
°

Discrete Log Problem: Generally

G : any group, with generator g.

DLP: General
Given g2, g°, determine g#°.

Difficulty depends on the underlying group.

®
Il

Example (Z/112z2)*
G = (2). Say 22 = 3, and 2° = 4. What is 23? 23 = 9; =8 b = 2. J

If aand b are computationally hard to find, the DLP is hard.

DLP: Rephrased.
Given x € G = (g), find a such that g% = x.
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Discrete Log Problem
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DLP on Elliptic Curves

Recall: The points of an elliptic curve form a group.
Let[2]P:= P+ P, [3]P:= P+ P+ P, etc.
In the context of DLP, take G = E(F,), P € E(F4) and ask:

DLP: Hard Problem for Elliptic Curves

Given P, [a]P, and [b]P € E(Fg), compute [ab]P.

The best general classical attack is time exponential in log g, so for
large enough q this is computationally hard...
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Discrete Log Problem
°

DLP on Elliptic Curves

Recall: The points of an elliptic curve form a group.
Let[2]P:= P+ P, [3]P:= P+ P+ P, etc.
In the context of DLP, take G = E(F,), P € E(F4) and ask:

DLP: Hard Problem for Elliptic Curves

Given P, [a]P, and [b]P € E(Fg), compute [ab]P.

The best general classical attack is time exponential in log g, so for
large enough q this is computationally hard...
...except for certain classes of supersingular elliptic curves.
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Discrete Log Problem
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MOV Algorithm

[MOV93] The MOV Algorithm translates the Elliptic Curve DLP to a

DLP in a related finite field.

General curves:

Algorithm 2:

Input: An element P € E(F,) of order n, and R € (P).
Output: An integer ! such that R = [P.

1) Determine the smallest integer % such that Fn] C
E(Fg).
2) Find @ € Eln] such that a = e, (P, Q) has order

n.

3) Compute 3 = en(R, Q).

4) Compute I, the discrete logarithm of /3 to the base
ain Fie.

In Table |, k is at most 6!
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Supersingular:

Algorithm 3:
Input: An element P of order n on a supersingular curve
E(F,), and R € (P).
Qutput: An integer [ such that R = [P,
1) Determine k£ and ¢ from Table 1.
2) Pick a random point €' € F(F,:) and ser Q@ =
(ena/n)Q.
3) Compute @ = e, (P, @) and 3 = e (R, Q).
4) Compute the discrete logarithm [” of 3 to the base
a in Fga.
5) Check whether I'P = R. v this is so, mes [ = I/

and we are done. Otherwise, the order of a must
be less than n, so coTo 2).
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Isogeny-Based Cryptography
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Post-Quantum Cryptography

Post-Quantum Cryptography

m NIST: 2015 call for proposals of post-quantum safe cryptography
protocols. Now in Round 3.

m Supersingular Isogeny Graph Cryptography: ~ 15 years old:
original hash function by Charles-Goren-Lauter [CGLO06]; SIKE
key exchange [SIKE]

m CSIDH, OSIDH, SqiSign: more recent supersingular
isogeny-based crypto protocols

Hard Problems
m Path-finding in supersingular ¢-isogeny graph
m Path-finding with additional torsion point information
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Isogeny-Based Cryptography
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Isogenies

Definition

Anisogeny ¢ : E; — E; is a morphism between elliptic curves such
that (Og,) = Og,. Ithasadual ¢ : E; — E;.

Theorem (Corollary 111.4.9 and Proposition 111.4.12 [Sil09])

The kernel of a nonzero isogeny is a finite group. A given finite
subgroup of points uniquely determines a separable isogeny.

Supersingular elliptic curves over F, are all ¢-power isogenous. J
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Isogeny-Based Cryptography
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Supersingular ¢-isogeny graph

p=53,(=3
.
.. m With the right conditions on p,
can be taken to be undirected
& D by identifying isogenies with
their duals
. m Connected

@ m Qut-degree ¢ + 1
® ~ [ 5] nodes

m pis cryptographic size
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Isogeny-Based Cryptography
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Supersingular Isogeny Diffie-Hellman (SIKE)

Alice Public Babette

/\,

vs( PA ) 8(Qa) PB ); A(QB)
"SDA"J J"SDB"
“pa" (Eg) = Ez “pg" (Ea) = E2

v is degree (% and pp is degree (5
E[¢3'] = (Pa, Qa) and E[¢(Z’] = (Pg, Qp)
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Isogeny-Based Cryptography
0000000

Hard Problems
Given E4, E,, find an ¢"-isogeny between them.
Given E, @A(E), and @B(E), (pA(PB), QOA(QB), SOB(PA)7 and
©8(Qa), find pa(vs(E)) = ¢a(pa(E)).
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Isogeny-Based Cryptography
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How to study security?

Deuring Correspondence

m The supersingular (-isogeny Graph Structure
graph has a relationship with

the graph of maximal orders
in a quaternion algebra.

m Relationships between
underlying hard problems
[Eis+18]. The path-finding

m |t is easier to path-find
between I, points of G, ,
[DG16]

m The structure of the subgraph
of Fp-points of G, ; is known

problem is equivalent to [Aer.r19] _ _
computing the Deuring m Public torsion point
correspondence. information could be a

weakness [Pet17] [Que+21].

= The path-finding problem for More investigation is needed.

quaternion algebras has been
solved [Koh+14].
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Summary & Conclusion
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Summary

m Supersingular curves have seen many ups and downs in
cryptography.

m Continued research on these curves is needed and encouraged.

m For more references, see these slides by Steven Galbraith from
the Conference on open questions in cryptography and number
theory, UC Irvine, September 18,2018:
https:
//www.math.auckland.ac.nz/"sgal018/Silverberg.pdf
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Thank You !
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