Background	Discrete Log Problem	Isogeny-Based Cryptography	Summary & Conclusion	References

What is...Supersingular Elliptic Curve Cryptography?

A look at the evolving role of supersingular elliptic curves in cryptography

Sarah Arpin, University of Colorado Boulder

sarah.arpin@colorado.edu

What is... A Seminar?

October 21st, 2021

Table of Contents

1 Background

- Elliptic Curves
- How a Mathematician Thinks About Cryptography

2 Discrete Log Problem

- Discrete Log Problem, Generally
- Discrete Log Problem on Elliptic Curves
- MOV Algorithm

3 Isogeny-Based Cryptography

- Supersingular Isogeny Graphs
- 4 Summary & Conclusion

00000 000 00000 00	Background	Discrete Log Problem	Isogeny-Based Cryptography	Summary & Conclusion	References
	00000	000	000000	00	

Elliptic Curves

Every elliptic curve has an (affine) equation: $E: y^2 = x^3 + Ax + B$ (char $\neq 2, 3$). Isomorphism classes uniquely identified by $j = 1728 \frac{4A^3}{4A^3 + 27B^2}$.

Points form a group under addition.

Background	Discrete Log Problem	Isogeny-Based Cryptography	Summary & Conclusion	References
00000	000	000000	00	

Torsion Subgroups

The points of an elliptic curve form a group under addition.

Pictured below, the points of a supersingular elliptic curve over \mathbb{F}_{1123} :

Color specifies the order of the point in the group $E(\mathbb{F}_{1123})$: Blue = 1, green = 2, violet = 4, red = 281, orange = 562, black = 1124. E(K)[N] := points of *E* defined over *K* of order *N* $E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

Sarah Arpin, University of Colorado Boulder

Supersingular Elliptic Curves

Definition (Chapter V[Sil09])

- *E*: an elliptic curve defined over a field *K* of characteristic $p \neq \infty$. *E* is **supersingular** iff $E(\overline{\mathbb{F}}_p)[p^r] = \mathcal{O}_E$ for all $r \ge 1$.
- If E/K with char(K)= $p \neq \infty$ is not supersingular, E is **ordinary**.
- For a given p, there are finitely many isomorphism classes of supersingular elliptic curves over $\overline{\mathbb{F}}_p$.

Axioms of Crypto for a Mathematician

- The goal is for two parties to obtain a shared secret through public communication.
- 2 The shared secret establishes a secure line of communication.
- 3 We are (I am) interested in algorithms for achieving (1).

The Trajectory of Supersingular Curves in Crypto

- Discrete log problem for elliptic curves
- 2 Pairing-based cryptography (not covered here)
- 3 Isogeny-based cryptography

Discrete Log Problem: Generally

G: any group, with generator g.

DLP: General

Given g^a , g^b , determine g^{ab} .

Difficulty depends on the underlying group.

Example: $G = (\mathbb{Z}/11\mathbb{Z})^{\times}$

 $G = \langle 2 \rangle$. Say $2^a = 3$, and $2^b = 4$. What is 2^{ab} ?

Discrete Log Problem: Generally

G: any group, with generator g.

DLP: General

Given g^a , g^b , determine g^{ab} .

Difficulty depends on the underlying group.

Example: $G = (\mathbb{Z}/11\mathbb{Z})^{\times}$

 $G = \langle 2 \rangle$. Say $2^a = 3$, and $2^b = 4$. What is 2^{ab} ? $2^{ab} = 9$; a = 8, b = 2.

If a and b are computationally hard to find, the DLP is hard.

DLP: Rephrased.

Given $x \in G = \langle g \rangle$, find *a* such that $g^a = x$.

DLP on Elliptic Curves

Recall: The points of an elliptic curve form a group. Let [2]P := P + P, [3]P := P + P + P, etc. In the context of DLP, take $G = E(\mathbb{F}_q)$, $P \in E(\mathbb{F}_q)$ and ask:

DLP: Hard Problem for Elliptic Curves

Given P, [a]P, and $[b]P \in E(\mathbb{F}_q)$, compute [ab]P.

The best general classical attack is time exponential in $\log q$, so for large enough q this is computationally hard...

DLP on Elliptic Curves

Recall: The points of an elliptic curve form a group. Let [2]P := P + P, [3]P := P + P + P, etc. In the context of DLP, take $G = E(\mathbb{F}_q)$, $P \in E(\mathbb{F}_q)$ and ask:

DLP: Hard Problem for Elliptic Curves

Given P, [a]P, and $[b]P \in E(\mathbb{F}_q)$, compute [ab]P.

The best general classical attack is time exponential in $\log q$, so for large enough q this is computationally hard...

...except for certain classes of supersingular elliptic curves.

MOV Algorithm

[MOV93] The MOV Algorithm translates the Elliptic Curve DLP to a DLP in a related finite field.

General curves:

Algorithm 2:

Input: An element $P \in E(F_q)$ of order n, and $R \in \langle P \rangle$. Output: An integer l such that R = lP.

- Determine the smallest integer k such that E[n] ⊆ E(F_{q^k}).
- 2) Find $Q \in E[n]$ such that $\alpha = e_n(P, Q)$ has order n.
- 3) Compute $\beta = e_n(R, Q)$.
- Compute l, the discrete logarithm of β to the base α in F_{qk}.

```
In Table I, k is at most 6!
```

Supersingular:

Algorithm 3:

Input: An element P of order n on a supersingular curve $E(F_q)$, and $R \in \langle P \rangle$.

Output: An integer l such that R = lP.

- 1) Determine k and c from Table I.
- 2) Pick a random point $Q' \in E(F_{q^*})$ and set $Q = (cn_1/n)Q'$.
- 3) Compute $\alpha = e_n(P, Q)$ and $\beta = e_n(R, Q)$.
- Compute the discrete logarithm l' of β to the base α in F_{a^k}.
- 5) Check whether l'P = R. IF this is so, THEN l = l'and we are done. Otherwise, the order of α must be less than n, so so to 2).

Post-Quantum Cryptography

Post-Quantum Cryptography

- NIST: 2015 call for proposals of post-quantum safe cryptography protocols. Now in Round 3.
- Supersingular Isogeny Graph Cryptography: ~ 15 years old: original hash function by Charles-Goren-Lauter [CGL06]; SIKE key exchange [SIKE]
- CSIDH, OSIDH, SqiSign: more recent supersingular isogeny-based crypto protocols

Hard Problems

- Path-finding in supersingular ℓ-isogeny graph
- Path-finding with additional torsion point information

Background	Discrete Log Problem	Isogeny-Based Cryptography O●OOOOO	Summary & Conclusion	References

Isogenies

Definition

An **isogeny** $\phi : E_1 \to E_2$ is a morphism between elliptic curves such that $\phi(\mathcal{O}_{E_1}) = \mathcal{O}_{E_2}$. It has a dual $\hat{\phi} : E_2 \to E_1$.

Theorem (Corollary III.4.9 and Proposition III.4.12 [Sil09])

The kernel of a nonzero isogeny is a finite group. A given finite subgroup of points uniquely determines a separable isogeny.

Supersingular elliptic curves over $\overline{\mathbb{F}}_{\rho}$ are all ℓ -power isogenous.

Supersingular *l*-isogeny graph

 $p = 53, \ell = 3$

- With the right conditions on p, can be taken to be *undirected* by identifying isogenies with their duals
- Connected
- Out-degree $\ell + 1$
- $\blacksquare \sim \lfloor \frac{p}{12} \rfloor$ nodes
- *p* is cryptographic size

Background	Discrete Log Problem	Isogeny-Based Cryptography	Summary & Conclusion	References

Diamonds

Background 00000	Discrete Log Problem	Isogeny-Based Cryptography	Summary & Conclusion	Referen

Supersingular Isogeny Diffie-Hellman (SIKE)

Alice Public Babette

 φ_A is degree $\ell_A^{e_A}$ and φ_B is degree $\ell_B^{e_B}$ $E[\ell_A^{e_A}] = \langle P_A, Q_A \rangle$ and $E[\ell_B^{e_B}] = \langle P_B, Q_B \rangle$

Background	Discrete Log Problem	Isogeny-Based Cryptography	Summary & Conclusion	Reference
00000	000	0000000		

Hard Problems

- **1** Given E_1 , E_2 , find an ℓ^n -isogeny between them.
- **2** Given E, $\varphi_A(E)$, and $\varphi_B(E)$, $\varphi_A(P_B)$, $\varphi_A(Q_B)$, $\varphi_B(P_A)$, and $\varphi_B(Q_A)$, find $\varphi_A(\varphi_B(E)) \cong \varphi_B(\varphi_A(E))$.

How to study security?

Deuring Correspondence

- The supersingular *l*-isogeny graph has a relationship with the graph of maximal orders in a quaternion algebra.
- Relationships between underlying hard problems [Eis+18]. The path-finding problem is equivalent to computing the Deuring correspondence.
- The path-finding problem for quaternion algebras has been solved [Koh+14].

Graph Structure

- It is easier to path-find between 𝔽_ρ points of 𝒢_{ρ,ℓ} [DG16]
- The structure of the subgraph of F_p-points of G_{p,ℓ} is known [Arp+19]
- Public torsion point information could be a weakness [Pet17] [Que+21]. More investigation is needed.

Background 00000	Discrete Log Problem	Isogeny-Based Cryptography	Summary & Conclusion	References
-				

Summary

- Supersingular curves have seen many ups and downs in cryptography.
- Continued research on these curves is needed and encouraged.
- For more references, see these slides by Steven Galbraith from the Conference on open questions in cryptography and number theory, UC Irvine, September 18,2018: https:

//www.math.auckland.ac.nz/~sgal018/Silverberg.pdf

Background	Discrete Log Problem	Isogeny-Based Cryptography	Summary & Conclusion	References
00000	000	000000	00	

Thank You !

Background	Discrete Log Problem	Isogeny-Based Cryptography	Summary & Conclusion	References

Reference I

- [Arp+19] Sarah Arpin et al. Adventures in Supersingularland. 2019. arXiv: 1909.07779 [math.NT].
- [DG16] Christina Delfs and Steven D. Galbraith. "Computing isogenies between supersingular elliptic curves over \mathbb{F}_p ". In: Des. Codes Cryptogr. 78.2 (2016), pp. 425–440. ISSN: 0925-1022. DOI: 10.1007/s10623-014-0010-1.
- [Eis+18] Kirsten Eisenträger et al. "Supersingular isogeny graphs and endomorphism rings: reductions and solutions". In: Advances in cryptology—EUROCRYPT 2018. Part III. Vol. 10822. Lecture Notes in Comput. Sci. Springer, Cham, 2018, pp. 329–368.
- [Koh+14] David Kohel et al. "On the quaternion ℓ-isogeny path problem". In: LMS J. Comput. Math. 17.suppl. A (2014), pp. 418–432. DOI: 10.1112/S1461157014000151.

Background 00000	Discrete Log Problem	Isogeny-Based Cryptography	Summary & Conclusion	References

Reference II

- [MOV93] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. "Reducing elliptic curve logarithms to logarithms in a finite field". In: IEEE Trans. Inform. Theory 39.5 (1993), pp. 1639–1646. ISSN: 0018-9448. DOI: 10.1109/ 18.259647.
- [Pet17] Christophe Petit. "Faster algorithms for isogeny problems using torsion point images". In: Advances in cryptology— ASIACRYPT 2017. Part II. Vol. 10625. Lecture Notes in Comput. Sci. Springer, Cham, 2017, pp. 330–353. DOI: 10.1007/978-3-319-70697-9_12.
- [Que+21] Victoria de Quehen et al. Improved torsion point attacks on SIDH variants. 2021. arXiv: 2005.14681 [math.NT].
- [Sil09] Joseph H. Silverman. The arithmetic of elliptic curves. Second. Vol. 106. Graduate Texts in Mathematics. Springer, Dordrecht, 2009, pp. xx+513. ISBN: 978-0-387-09493-9. DOI: 10.1007/978-0-387-09494-6.