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Elliptic Curves
Every elliptic curve has an (affine) equation: E : y2 = x3+Ax+B (char
̸= 2,3). Isomorphism classes uniquely identified by j = 1728 4A3

4A3+27B2 .

Points form a group under addition.
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Torsion Subgroups
The points of an elliptic curve form a group under addition.
Pictured below, the points of a supersingular elliptic curve over F1123:

Color specifies the order of the point in the group E(F1123):
Blue = 1, green = 2, violet = 4, red = 281, orange = 562, black = 1124.
E(K )[N] := points of E defined over K of order N
E [N] ∼= (Z/NZ)2
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Supersingular Elliptic Curves

Definition (Chapter V[Sil09])

E : an elliptic curve defined over a field K of characteristic p ̸= ∞.
E is supersingular iff E(Fp)[pr ] = OE for all r ≥ 1.

If E/K with char(K)= p ̸= ∞ is not supersingular, E is ordinary.

For a given p, there are finitely many isomorphism classes of
supersingular elliptic curves over Fp.
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Axioms of Crypto for a Mathematician
1 The goal is for two parties to obtain a shared secret through

public communication.
2 The shared secret establishes a secure line of communication.
3 We are (I am) interested in algorithms for achieving (1).

https://xkcd.com/1269/
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The Trajectory of Supersingular Curves in Crypto

1 Discrete log problem for elliptic curves
2 Pairing-based cryptography (not covered here)
3 Isogeny-based cryptography
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Discrete Log Problem: Generally

G : any group, with generator g.

DLP: General

Given ga, gb, determine gab.

Difficulty depends on the underlying group.

Example: G = (Z/11Z)×

G = ⟨2⟩. Say 2a = 3, and 2b = 4. What is 2ab?

2ab = 9; a = 8,b = 2.

If a and b are computationally hard to find, the DLP is hard.

DLP: Rephrased.

Given x ∈ G = ⟨g⟩, find a such that ga = x .
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DLP on Elliptic Curves

Recall: The points of an elliptic curve form a group.
Let [2]P := P + P, [3]P := P + P + P, etc.
In the context of DLP, take G = E(Fq), P ∈ E(Fq) and ask:

DLP: Hard Problem for Elliptic Curves

Given P, [a]P, and [b]P ∈ E(Fq), compute [ab]P.

The best general classical attack is time exponential in log q, so for
large enough q this is computationally hard...

...except for certain classes of supersingular elliptic curves.
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MOV Algorithm

[MOV93] The MOV Algorithm translates the Elliptic Curve DLP to a
DLP in a related finite field.

General curves:
Supersingular:

In Table I, k is at most 6!
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Post-Quantum Cryptography

Post-Quantum Cryptography
NIST: 2015 call for proposals of post-quantum safe cryptography
protocols. Now in Round 3.
Supersingular Isogeny Graph Cryptography: ∼ 15 years old:
original hash function by Charles-Goren-Lauter [CGL06]; SIKE
key exchange [SIKE]
CSIDH, OSIDH, SqiSign: more recent supersingular
isogeny-based crypto protocols

Hard Problems
Path-finding in supersingular ℓ-isogeny graph
Path-finding with additional torsion point information
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Isogenies

Definition
An isogeny ϕ : E1 → E2 is a morphism between elliptic curves such
that ϕ(OE1) = OE2 . It has a dual ϕ̂ : E2 → E1.

Theorem (Corollary III.4.9 and Proposition III.4.12 [Sil09])

The kernel of a nonzero isogeny is a finite group. A given finite
subgroup of points uniquely determines a separable isogeny.

Supersingular elliptic curves over Fp are all ℓ-power isogenous.
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Supersingular ℓ-isogeny graph

p = 53, ℓ = 3

E0

E50

E46

Eα Eα

With the right conditions on p,
can be taken to be undirected
by identifying isogenies with
their duals
Connected
Out-degree ℓ+ 1
∼ ⌊ p

12⌋ nodes
p is cryptographic size
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Diamonds

E

EA

EB

EC
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Supersingular Isogeny Diffie-Hellman (SIKE)

PublicAlice Babette

E

EA EB

EA

+

φA(PB), φA(QB)

EB

+

φB(PA), φB(QA)

“φA”(EB) ∼= E2 “φB”(EA) ∼= E2

φA φB

"φB""φA"

φA is degree ℓeA
A and φB is degree ℓeB

B
E [ℓeA

A ] = ⟨PA,QA⟩ and E [ℓeB
B ] = ⟨PB,QB⟩
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Hard Problems
1 Given E1, E2, find an ℓn-isogeny between them.
2 Given E , φA(E), and φB(E), φA(PB), φA(QB), φB(PA), and

φB(QA), find φA(φB(E)) ∼= φB(φA(E)).
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How to study security?

Deuring Correspondence
The supersingular ℓ-isogeny
graph has a relationship with
the graph of maximal orders
in a quaternion algebra.
Relationships between
underlying hard problems
[Eis+18]. The path-finding
problem is equivalent to
computing the Deuring
correspondence.
The path-finding problem for
quaternion algebras has been
solved [Koh+14].

Graph Structure
It is easier to path-find
between Fp points of Gp,ℓ
[DG16]
The structure of the subgraph
of Fp-points of Gp,ℓ is known
[Arp+19]
Public torsion point
information could be a
weakness [Pet17] [Que+21].
More investigation is needed.
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Summary

Supersingular curves have seen many ups and downs in
cryptography.
Continued research on these curves is needed and encouraged.
For more references, see these slides by Steven Galbraith from
the Conference on open questions in cryptography and number
theory, UC Irvine, September 18,2018:
https:
//www.math.auckland.ac.nz/~sgal018/Silverberg.pdf
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Thank You !
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