Background 0000000000000	Isogeny Graph With Level Structure	Counting Isogenous Conjugates	Conclusion OO	References

Adding Level Structure to Supersingular Elliptic Curve Isogeny Graphs

Sarah Arpin, University of Colorado Boulder

sarah.arpin@colorado.edu

The Ohio State University Number Theory Seminar

November 22nd, 2021

Table of Contents

1 Background

- Elliptic Curves
- Quaternion Algebras
- Cryptographic Motivation
- Isogeny Graph With Level Structure
 Eichler Orders
 - Equivalence of Categories
- 3 Counting Isogenous Conjugates
- 4 Conclusion■ Summary

Supersingular Elliptic Curves

Definition (Chapter V[Sil09])

- Let *E* be an elliptic curve defined over a field *K* of characteristic $p \neq \infty$. *E* is **supersingular** iff one of the following equivalent conditions hold:
 - $[p]: E \to E$ is purely inseparable and $j(E) \in \mathbb{F}_{p^2}$,
 - End(E) is a maximal order in a quaternion algebra.

For a given p, there are finitely many isomorphism classes of supersingular elliptic curves over $\overline{\mathbb{F}}_p$.

Convention

p: a fixed **large** prime (cryptographic size) $p \equiv 3 \pmod{4}$ (minor adjustments for other *p*)

Counting Isogenous Conjugates

onclusion

References

Frobenius Isogeny

p-power Frobenius map
$$\pi_p: E \to E^{(p)}$$

 $\pi_p(x, y) = (x^p, y^p)$

- Induced by the field automorphism
- $a \in \mathbb{F}_p$, then $a^p = a$.

• If
$$E: y^2 = x^3 + ax + b$$
, then
 $E^{(p)}: y^2 = x^3 + a^p x + b^p$

 $\bullet j(E)^p = j(E^{(p)})$

Figure: https://commons. wikimedia.org/wiki/ File:GeorgFrobenius_ (cropped).jpg

Torsion Subgroups

The points of an elliptic curve form a group under addition [Sil09]. Torsion points are points for which some multiple gives \mathcal{O}_E . $E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

Below, a supersingular elliptic curve over \mathbb{F}_{1123} , points colored by order in the group:

Blue = 1, green = 2, violet = 4, red = 281, orange = 562, black = 1124.

Background	Isogeny Graph With Level Structure	Counting Isogenous Conjugates	Conclusion OO	Referen

Isogenies

Definition

An **isogeny** $\phi : E_1 \to E_2$ is a morphism between elliptic curves such that $\phi(\mathcal{O}_{E_1}) = \mathcal{O}_{E_2}$. It has a dual $\hat{\phi} : E_2 \to E_1$.

Theorem (Corollary III.4.9 and Proposition III.4.12 [Sil09])

The kernel of a nonzero isogeny is a finite group. A given finite subgroup of points uniquely determines a separable isogeny.

Theorem (Theorem III.4.10(c) [Sil09])

The degree of a separable isogeny is equal to the size of the kernel.

Convention

Isogenies will be degree ℓ or ℓ^r , with ℓ a small prime.

Supersingular elliptic curves over $\overline{\mathbb{F}}_{\rho}$ are all ℓ -power isogenous.

Supersingular *l*-isogeny graph

 $p = 53, \, \ell = 3$

- With the right conditions on p, can be taken to be *undirected* by identifying isogenies with their duals
- Connected
- Out-degree ℓ + 1
- $\blacksquare \sim \lfloor \frac{p}{12} \rfloor$ nodes

Counting Isogenous Conjugates

onclusion

References

Quaternion Algebras

Figure: https://en.wikipedia.org/wiki/File:Cayley_Q8_quaternion_ multiplication_graph.svg

Definition (Quaternion algebra ramified at p and ∞)

 $B_{p,\infty}$: $\mathbb{Q}\langle i, j, ij \rangle$ such that $i^2 = -1, j^2 = -p$, and ij = -ji

If $E/\overline{\mathbb{F}}_p$ is supersingular, then End(E) is isomorphic to a maximal order in $B_{p,\infty}$.

Quaternion Algebras: A Comparison to Number Fields

Quaternion Algebra	Number Field	
Noncommutative	Commutative	
$B_{ ho,\infty}/\mathbb{Q}$	\mathcal{K}/\mathbb{Q}	
Maximal orders (finitely many)	$\mathcal{O}_{\mathcal{K}}$	
Eichler orders of level N	Orders of conductor $N: \mathbb{Z} + N\mathcal{O}_K$	
Class set of left or right ideals	Class group of ideals	
Class group of two-sided ideals	Class group of ideals	

Deuring Correspondence

A categorical equivalence:

Theorem (Deuring Correspondence, [Deu41])

There is a bijection between isomorphism classes of supersingular elliptic curves over $\overline{\mathbb{F}}_p$ and left ideal classes of a fixed maximal order \mathcal{O} of $B_{p,\infty}$.

Theorem (Deuring Correspondence II)

If $E/\overline{\mathbb{F}}_p$ is supersingular, then there is a maximal order \mathcal{O} of $B_{p,\infty}$ such that $End(E) \cong \mathcal{O}$. This association is either 2-1 or 1-1, depending on the size of the two-sided ideal class group of \mathcal{O} .

The Deuring correspondence is **not** computationally feasible, in terms of runtime.

Background ○○○○○○○○○○○○○○ Isogeny Graph With Level Structur

Counting Isogenous Conjugates

Conclusion

References

Quaternion $\mathcal{G}_{p,\ell}$, p = 53, $\ell = 3$

Cryptographic Motivation

Post-Quantum Cryptography

- NIST: 2015 call for proposals of post-quantum safe cryptography protocols. Now in Round 3.
- Supersingular Isogeny Graph Cryptography: ~ 15 years old: original hash function by Charles-Goren-Lauter [CGL06]; SIKE key exchange [SIKE]

Hard Problems

- Path-finding in supersingular *l*-isogeny graph
- Path-finding with additional torsion point information

References

Supersingular Isogeny Diffie-Hellman (SIKE)

Alice Public Babette

 φ_A is degree $\ell_A^{e_A}$ and φ_B is degree $\ell_B^{e_B}$ $E[\ell_A^{e_A}] = \langle P_A, Q_A \rangle$ and $E[\ell_B^{e_B}] = \langle P_B, Q_B \rangle$

Background	Isogeny Graph With Level Structure	Counting Isogenous Conjugates	Conclusion	Reference
000000000000000000000000000000000000000				

Hard Problems

- **1** Given E_1 , E_2 , find an ℓ^n -isogeny between them.
- **2** Given E, $\varphi_A(E)$, and $\varphi_B(E)$, $\varphi_A(P_B)$, $\varphi_A(Q_B)$, $\varphi_B(P_A)$, and $\varphi_B(Q_A)$, find $\varphi_A(\varphi_B(E)) \cong \varphi_B(\varphi_A(E))$.

How to study security?

Deuring Correspondence

- Relationships between underlying hard problems [Eis+18]. The path-finding problem is equivalent to computing the Deuring correspondence.
- The path-finding problem for quaternion algebras has been solved [Koh+14].

Graph Structure

- Path-finding between 𝔽_p points of 𝒢_{p,ℓ} [DG16]
- The structure of the subgraph of F_ρ-points of G_{p,ℓ} is known [Arp+19]
- Public torsion point information could be a weakness [Pet17] [Que+21]. More investigation is needed.

Finding Cycles in $\mathcal{G}_{p,\ell}$

- The WIN4 project [Ban+19] uses cycles in *G*_{*p*,ℓ} to generate the endomorphism ring
- [Eis+20] provides a new cycle-finding algorithm

Isogeny Graph $\mathcal{E}_{p,\ell}^N$ With Level Structure

Idea: Keep track of $\varphi_A(P_B), \varphi_A(Q_B)$ in the supersingular ℓ -isogeny graph

- Nodes: (*E*, *G*)
 - E: supersingular elliptic curve
 - $G \subset E(\overline{\mathbb{F}}_{\rho})$ of (small) prime order N
- Edges: (E, G) (E', G') corresponding to an ℓ -isogeny φ :
 - $\varphi(E) = E'$
 - $\varphi(G) = G'$

Graph Properties

- (N+1) nodes for every node of $\mathcal{G}_{p,\ell}$.
- $(\ell + 1)$ -regular, just like $\mathcal{G}_{p,\ell}$
- $\mathcal{E}_{p,\ell}^{N}$ is connected, just like $\mathcal{G}_{p,\ell}$

Background Isogeny Graph With Level Structure References 000000 $p = 37, \ell = 2, N = 3$ E_8 $(E_8, 17a^3)$ $(E_8, 20a^3)$ $(E_8, 35a^3)$ $(E_8, 2a^3)$ $(E_{\alpha}, 16a^3)$ $(E_{\alpha}, 23a^3)$ $(E_{\alpha}, 31a^3)$ $(E_{\alpha}, 4a^{3})$ E_{α} $(E_{\overline{\alpha}}, 21a^3)$ $(E_{\overline{\alpha}}, 6a^3)$ $(E_{\overline{\alpha}}, 33a^3)$ $(E_{\overline{\alpha}}, 14a^3)$ $E_{\overline{\alpha}}$

- Black graph on the left: $\mathcal{G}_{p,\ell}$ Supersingular 2-isogeny graph for p = 37
- Colorful graph on the right: $\mathcal{E}^3_{37,2}$ Supersingular 2-isogeny graph for p = 37 with added level structure for N = 3.
- We can see how 2-isogenies act (differently) on 3-torsion points

Counting Isogenous Conjugates

onclusion

References

The Quaternion Picture

What is the endomorphism ring of a node of $\mathcal{E}_{p,\ell}^N$?

 $\mathsf{End}(E,G) := \{ \alpha \in \mathsf{End}(E) : \alpha(G) \subseteq G \}$

Theorem (Arpin)

End(*E*, *G*) is isomorphic to an Eichler order of level |G| of $B_{p,\infty}$.

Equivalence of Categories

S_N

- Objects: Pairs (*E*, *G*) with *E* a supersingular elliptic curve over $\overline{\mathbb{F}}_p$ and an order *N* subgroup $G \subset E[N]$
- Morphisms: $(E, G) \rightarrow (E', G')$ a nonzero isogeny $\psi : E \rightarrow E'$ such that $\psi(G) \subseteq G'$.

 $\blacksquare \mathcal{LM}$

- Objects: invertible left End(E, G)-modules
- Morphisms: nonzero left End(*E*, *G*)-module homomorphisms.

Theorem (Arpin)

Fix $(E, G) \in S_N$. Hom $(-, (E, G)) : S_N^{op} \to \mathcal{LM}$ is a contravariant equivalence of categories.

Counting Isogenous Conjugates

onclusion

References

Correspondence to Eichler Orders

Theorem (Arpin)

Given a pair $(E, G) \in \mathcal{E}_{p,\ell}^N$, there is an Eichler order \mathcal{O} of level N in $B_{p,\infty}$ such that $End(E, G) \cong \mathcal{O}$. This association is either 4-1, 2-1, or 1-1*, depending on the size of the two-sided ideal class group of \mathcal{O} .

*Curves with extra automorphisms (j = 0, 1728) may not conform.

Coincidence of End(E, G)

What are the reasons for 4-1, 2-1, or 1-1 maps from endomorphism rings of pairs (E, G) to Eichler orders? (Arpin)

Four nodes of $\mathcal{E}_{p,\ell}^N$ with isomorphic endomorphism rings: \mathcal{O} :

- $\blacksquare (E,G), \text{ where } G \text{ is the kernel of an isogeny } \varphi_G : E \to E',$
- **2** $(E^{(p)}, G^{(p)})$, where $G^{(p)}$ is the image of G under π_p ,
- **3** (E', G'), where E' is the codomain of φ_G and $G' = \ker(\widehat{\varphi})$,
- 4 $((E')^{(p)}, (G')^{(p)})$, where $(G')^{(p)}$ is the image of G' under π_p

The possibilities for coincidence of the above nodes are:

1 All four distinct.

2
$$(E,G) = (E^{(p)}, G^{(p)})$$
 and $(E', G') = ((E')^{(p)}, (G')^{(p)})$.

3 (E,G) = (E',G') and $(E^{(p)},G^{(p)}) = ((E')^{(p)},(G')^{(p)}).$

4
$$(E,G) = ((E')^{(p)}, (G')^{(p)})$$
 and $(E',G') = (E^{(p)}, G^{(p)})$.

5
$$(E,G) = ((E')^{(p)}, (G')^{(p)}) = (E',G') = (E^{(p)},G^{(p)}).$$

One instance of (4): *N*-isogenous conjugate pairs.

Background 0000000000000	Isogeny Graph With Level Structure	Counting Isogenous Conjugates	Conclusion OO	References

Mirror Paths

Frobenius acts on the $\mathcal{G}_{p,\ell}$: if $\varphi: E_1 \to E_2$ is an ℓ -isogeny, then there exists an ℓ -isogeny $E_1^{(p)} \to E_2^{(p)}$. How do can these paths connect?

- α_i : *j*-invariants in $\mathbb{F}_{p^2} \setminus \mathbb{F}_p$
- *a*: *j*-invariant in \mathbb{F}_p

Option 1: Through an \mathbb{F}_p vertex

Option 2: Through an *l*-isogenous pair of conjugate vertices

How often are paths of the second type?

How often are conjugate *j*-invariants 3-isogenous?

Data: [Arp+19].

How often are conjugate *j*-invariants 3-isogenous?

Data: [Arp+19]. Lower bound: [Eis+20] Eisentraeger, Hallgren, Leonardi, Morrison, Park

A Bound From Quaternion Algebras

N-isogenous pairs give a 2-1 association to Eichler orders, giving an upper bound:

 $4T - (N+1)(\#\mathcal{S}_p)$

How often are conjugate *j*-invariants 3-isogenous?

Data: [Arp+19]. *Lower bound:* [Eis+20] Eisentraeger, Hallgren, Leonardi, Morrison, Park. *Upper bound:* Arpin

An Exact Count

Theorem (Arpin, Chenu-Smith [CS21])

 $\alpha(1)$: number of pairs (E, ψ) , where E is a supersingular elliptic curve and ψ is a degree-N isogeny E to $E^{(p)}$. $2\alpha(1)$ equals the number of pairs of a supersingular elliptic curve E and an embedding $\mathbb{Z}[\sqrt{-pN}]$ into End(E).

$$2\alpha(1) = \begin{cases} \mid \mathcal{C}I(\mathbb{Z}[\frac{1+\sqrt{-pN}}{2}]) \mid + \mid \mathcal{C}I(\mathbb{Z}[\sqrt{-pN}]) \mid & , -pN \equiv 3 \pmod{4} \\ \mid \mathcal{C}I(\mathbb{Z}[\sqrt{-pN}]) \mid & , -pN \equiv 1 \pmod{4} \end{cases}$$

(The factor of two appears because two embeddings which differ by a factor of -1 on the generator $\sqrt{-pN}$ are counted as distinct, whereas the two isogenies $\psi, -\psi$ are not considered distinct.)

Summary

- The structure of $\mathcal{G}_{p,\ell}$ can be analyzed through properties of $\mathcal{E}_{p,\ell}^N$.
- Supersingular isogeny graph cryptographic protocol seems very safe so far, but more research is always needed.
- Counting isogenous conjugate pairs relates to answering questions about the two-sided ideal class group of an Eichler order.

Background	Isogeny Graph With Level Structure	Counting Isogenous Conjugates	Conclusion	References
000000000000	000000	000000	00	

Thank You !

Background 000000000000	Isogeny Graph With Level Structure	Counting Isogenous Conjugates	Conclusion OO	References
Reference	I			

- [Arp+19] Sarah Arpin et al. Adventures in Supersingularland. 2019. arXiv: 1909.07779 [math.NT].
- [Ban+19] Efrat Bank et al. "Cycles in the supersingular ℓ-isogeny graph and corresponding endomorphisms". In: Research directions in number theory—Women in Numbers IV. Vol. 19. Assoc. Women Math. Ser. Springer, Cham, [2019] ©2019, pp. 41–66. DOI: 10.1007/978-3-030-19478-9_2.
- [CS21] Mathilde Chenu and Benjamin Smith. Higher-degree supersingular group actions. 2021. arXiv: 2107.08832 [cs.CR].
- [Deu41] Max Deuring. "Die Typen der Multiplikatorenringe elliptischer Funktionenkörper.". In: Abh. Math. Sem. Hansischen Univ. 14 (1941), pp. 197–272.

Background	

Isogeny Graph With Level Structure

Counting Isogenous Conjugates

Conclusio

References

Reference II

- [DG16] Christina Delfs and Steven D. Galbraith. "Computing isogenies between supersingular elliptic curves over \mathbb{F}_p ". In: **Des. Codes Cryptogr.** 78.2 (2016), pp. 425–440. ISSN: 0925-1022. DOI: 10.1007/s10623-014-0010-1.
- [Eis+18] Kirsten Eisenträger et al. "Supersingular isogeny graphs and endomorphism rings: reductions and solutions". In: Advances in cryptology—EUROCRYPT 2018. Part III. Vol. 10822. Lecture Notes in Comput. Sci. Springer, Cham, 2018, pp. 329–368.
- [Eis+20] Kirsten Eisenträger et al. "Computing endomorphism rings of supersingular elliptic curves and connections to path-finding in isogeny graphs". In: ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium. Vol. 4. Open Book Ser. Math. Sci. Publ., Berkeley, CA, 2020, pp. 215–235. DOI: 10.2140/obs.2020.4.215. URL: https://doi-org.colorado.idm.oclc.org/10. 2140/obs.2020.4.215.

Background	Isogeny Graph With Level Structure	Counting Isogenous Conjugates	Conclusion OO	References
Reference				

- [Koh+14] David Kohel et al. "On the quaternion ℓ-isogeny path problem". In: LMS J. Comput. Math. 17.suppl. A (2014), pp. 418–432. DOI: 10.1112/S1461157014000151.
- [Pet17] Christophe Petit. "Faster algorithms for isogeny problems using torsion point images". In: Advances in cryptology— ASIACRYPT 2017. Part II. Vol. 10625. Lecture Notes in Comput. Sci. Springer, Cham, 2017, pp. 330–353. DOI: 10.1007/978-3-319-70697-9_12.
- [Que+21] Victoria de Quehen et al. Improved torsion point attacks on SIDH variants. 2021. arXiv: 2005.14681 [math.NT].
- [Sil09] Joseph H. Silverman. The arithmetic of elliptic curves. Second. Vol. 106. Graduate Texts in Mathematics. Springer, Dordrecht, 2009, pp. xx+513. ISBN: 978-0-387-09493-9. DOI: 10.1007/978-0-387-09494-6.