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Supersingular Elliptic Curves

Definition (Chapter V[Sil09])

Let E be an elliptic curve defined over a field K of characteristic
p ̸= ∞. E is supersingular iff one of the following equivalent
conditions hold:

[p] : E → E is purely inseparable and j(E) ∈ Fp2 ,
End(E) is a maximal order in a quaternion algebra.

For a given p, there are finitely many isomorphism classes of
supersingular elliptic curves over Fp.

Convention
p: a fixed large prime (cryptographic size)
p ≡ 3 (mod 4) (minor adjustments for other p)

Sarah Arpin, University of Colorado Boulder November 22nd, 2021 3 / 33



Background Isogeny Graph With Level Structure Counting Isogenous Conjugates Conclusion References

Frobenius Isogeny

p-power Frobenius map πp : E → E (p)

πp(x , y) = (xp, yp)

Induced by the field automorphism
a ∈ Fp, then ap = a.
If E : y2 = x3 + ax + b, then
E (p) : y2 = x3 + apx + bp

j(E)p = j(E (p))

Figure: https://commons.
wikimedia.org/wiki/
File:GeorgFrobenius_
(cropped).jpg
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Torsion Subgroups
The points of an elliptic curve form a group under addition [Sil09].
Torsion points are points for which some multiple gives OE .
E [N] ∼= (Z/NZ)2

Below, a supersingular elliptic curve over F1123, points colored by
order in the group:

Blue = 1, green = 2, violet = 4, red = 281, orange = 562, black = 1124.
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Isogenies
Definition
An isogeny ϕ : E1 → E2 is a morphism between elliptic curves such
that ϕ(OE1) = OE2 . It has a dual ϕ̂ : E2 → E1.

Theorem (Corollary III.4.9 and Proposition III.4.12 [Sil09])

The kernel of a nonzero isogeny is a finite group. A given finite
subgroup of points uniquely determines a separable isogeny.

Theorem (Theorem III.4.10(c) [Sil09])

The degree of a separable isogeny is equal to the size of the kernel.

Convention
Isogenies will be degree ℓ or ℓr , with ℓ a small prime.

Supersingular elliptic curves over Fp are all ℓ-power isogenous.
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Supersingular ℓ-isogeny graph

p = 53, ℓ = 3

E0

E50

E46

Eα Eα

With the right conditions on p,
can be taken to be undirected
by identifying isogenies with
their duals
Connected
Out-degree ℓ+ 1
∼ ⌊ p

12⌋ nodes
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Quaternion Algebras

Figure: https://en.wikipedia.org/wiki/File:Cayley_Q8_quaternion_
multiplication_graph.svg

Definition (Quaternion algebra ramified at p and ∞)

Bp,∞: Q⟨i , j , ij⟩ such that i2 = −1, j2 = −p, and ij = −ji

If E/Fp is supersingular, then End(E) is isomorphic to a maximal
order in Bp,∞.

Sarah Arpin, University of Colorado Boulder November 22nd, 2021 8 / 33

https://en.wikipedia.org/wiki/File:Cayley_Q8_quaternion_multiplication_graph.svg
https://en.wikipedia.org/wiki/File:Cayley_Q8_quaternion_multiplication_graph.svg


Background Isogeny Graph With Level Structure Counting Isogenous Conjugates Conclusion References

Quaternion Algebras: A Comparison to Number Fields

Quaternion Algebra Number Field
Noncommutative Commutative
Bp,∞/Q K/Q
Maximal orders (finitely many) OK

Eichler orders of level N Orders of conductor N: Z+ NOK

Class set of left or right ideals
Class group of two-sided ideals Class group of ideals
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Deuring Correspondence

A categorical equivalence:

Theorem (Deuring Correspondence, [Deu41])

There is a bijection between isomorphism classes of supersingular
elliptic curves over Fp and left ideal classes of a fixed maximal order
O of Bp,∞.

Theorem (Deuring Correspondence II)

If E/Fp is supersingular, then there is a maximal order O of Bp,∞
such that End(E) ∼= O. This association is either 2-1 or 1-1,
depending on the size of the two-sided ideal class group of O.

The Deuring correspondence is not computationally feasible, in
terms of runtime.
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Quaternion Gp,ℓ, p = 53, ℓ = 3
O0

O1

O2

O3

E0

E50

E46

Eα Eα
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Cryptographic Motivation

Post-Quantum Cryptography
NIST: 2015 call for proposals of post-quantum safe cryptography
protocols. Now in Round 3.
Supersingular Isogeny Graph Cryptography: ∼ 15 years old:
original hash function by Charles-Goren-Lauter [CGL06]; SIKE
key exchange [SIKE]

Hard Problems
Path-finding in supersingular ℓ-isogeny graph
Path-finding with additional torsion point information
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Supersingular Isogeny Diffie-Hellman (SIKE)

PublicAlice Babette

E

EA EB

EA

+

φA(PB), φA(QB)

EB

+

φB(PA), φB(QA)

“φA”(EB) ∼= E2 “φB”(EA) ∼= E2

φA φB

"φB""φA"

φA is degree ℓeA
A and φB is degree ℓeB

B
E [ℓeA

A ] = ⟨PA,QA⟩ and E [ℓeB
B ] = ⟨PB,QB⟩
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Hard Problems
1 Given E1, E2, find an ℓn-isogeny between them.
2 Given E , φA(E), and φB(E), φA(PB), φA(QB), φB(PA), and
φB(QA), find φA(φB(E)) ∼= φB(φA(E)).
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How to study security?

Deuring Correspondence
Relationships between
underlying hard problems
[Eis+18]. The path-finding
problem is equivalent to
computing the Deuring
correspondence.
The path-finding problem for
quaternion algebras has been
solved [Koh+14].

Graph Structure
Path-finding between Fp
points of Gp,ℓ [DG16]
The structure of the subgraph
of Fp-points of Gp,ℓ is known
[Arp+19]
Public torsion point
information could be a
weakness [Pet17] [Que+21].
More investigation is needed.

Finding Cycles in Gp,ℓ

The WIN4 project [Ban+19]
uses cycles in Gp,ℓ to
generate the endomorphism
ring
[Eis+20] provides a new
cycle-finding algorithm
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Isogeny Graph EN
p,ℓ With Level Structure

Idea: Keep track of φA(PB), φA(QB) in the supersingular ℓ-isogeny
graph

Nodes: (E ,G)

E : supersingular elliptic curve
G ⊂ E(Fp) of (small) prime order N

Edges: (E ,G)− (E ′,G′) corresponding to an ℓ-isogeny φ:
φ(E) = E ′

φ(G) = G′

Graph Properties
(N + 1) nodes for every node of Gp,ℓ.
(ℓ+ 1)-regular, just like Gp,ℓ

EN
p,ℓ is connected, just like Gp,ℓ
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p = 37, ℓ = 2, N = 3

Black graph on the left: Gp,ℓ Supersingular 2-isogeny graph for
p = 37
Colorful graph on the right: E3

37,2 Supersingular 2-isogeny graph
for p = 37 with added level structure for N = 3.
We can see how 2-isogenies act (differently) on 3-torsion points
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The Quaternion Picture

What is the endomorphism ring of a node of EN
p,ℓ?

End(E ,G) := {α ∈ End(E) : α(G) ⊆ G}

Theorem (Arpin)

End(E ,G) is isomorphic to an Eichler order of level |G| of Bp,∞.
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Equivalence of Categories

SN

Objects: Pairs (E ,G) with E a supersingular elliptic curve over Fp

and an order N subgroup G ⊂ E [N]
Morphisms: (E ,G) → (E ′,G′) a nonzero isogeny ψ : E → E ′ such
that ψ(G) ⊆ G′.

LM
Objects: invertible left End(E ,G)-modules
Morphisms: nonzero left End(E ,G)-module homomorphisms.

Theorem (Arpin)

Fix (E ,G) ∈ SN . Hom(−, (E ,G)) : Sop
N → LM is a contravariant

equivalence of categories.
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Correspondence to Eichler Orders

Theorem (Arpin)

Given a pair (E ,G) ∈ EN
p,ℓ, there is an Eichler order O of level N in

Bp,∞ such that End(E ,G) ∼= O. This association is either 4-1, 2-1, or
1-1*, depending on the size of the two-sided ideal class group of O.

*Curves with extra automorphisms (j = 0, 1728) may not conform.
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p = 37, N = 3, ℓ = 2
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Coincidence of End(E ,G)

What are the reasons for 4-1, 2-1, or 1-1 maps from endomorphism
rings of pairs (E ,G) to Eichler orders? (Arpin)

Four nodes of EN
p,ℓ with isomorphic endomorphism rings: O:

1 (E ,G), where G is the kernel of an isogeny φG : E → E ′,
2 (E (p),G(p)), where G(p) is the image of G under πp,
3 (E ′,G′), where E ′ is the codomain of φG and G′ = ker(φ̂),
4 ((E ′)(p), (G′)(p)), where (G′)(p) is the image of G′ under πp

The possibilities for coincidence of the above nodes are:
1 All four distinct.
2 (E ,G) = (E (p),G(p)) and (E ′,G′) = ((E ′)(p), (G′)(p)).
3 (E ,G) = (E ′,G′) and (E (p),G(p)) = ((E ′)(p), (G′)(p)).
4 (E ,G) = ((E ′)(p), (G′)(p)) and (E ′,G′) = (E (p),G(p)).
5 (E ,G) = ((E ′)(p), (G′)(p)) = (E ′,G′) = (E (p),G(p)).

One instance of (4): N-isogenous conjugate pairs.
Sarah Arpin, University of Colorado Boulder November 22nd, 2021 22 / 33
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Mirror Paths

Frobenius acts on the Gp,ℓ: if φ : E1 → E2 is an ℓ-isogeny, then there
exists an ℓ-isogeny E (p)

1 → E (p)
2 .

How do can these paths connect?
αi : j-invariants in Fp2 \ Fp

a: j-invariant in Fp

Option 1: Through an Fp vertex

α0 α1 a α1 α0

Option 2: Through an ℓ-isogenous pair of conjugate vertices

α0 α1 α2 α2 α1 α0

How often are paths of the second type?
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How often are conjugate j-invariants 3-isogenous?

Data: [Arp+19].
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How often are conjugate j-invariants 3-isogenous?
Data: [Arp+19]. Lower bound: [Eis+20] Eisentraeger, Hallgren, Leonardi,
Morrison, Park
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A Bound From Quaternion Algebras

N-isogenous pairs give a 2-1 association to Eichler orders, giving an
upper bound:

4T − (N + 1)(#Sp)
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How often are conjugate j-invariants 3-isogenous?
Data: [Arp+19]. Lower bound: [Eis+20] Eisentraeger, Hallgren, Leonardi,
Morrison, Park. Upper bound: Arpin
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An Exact Count

Theorem (Arpin, Chenu-Smith [CS21])

α(1) : number of pairs (E , ψ), where E is a supersingular elliptic
curve and ψ is a degree-N isogeny E to E (p).
2α(1) equals the number of pairs of a supersingular elliptic curve E
and an embedding Z[

√
−pN] into End(E).

2α(1) =

{
| Cl(Z[ 1+

√
−pN

2 ]) | + | Cl(Z[
√
−pN]) | ,−pN ≡ 3 (mod 4)

| Cl(Z[
√
−pN]) | ,−pN ≡ 1 (mod 4)

(The factor of two appears because two embeddings which differ by a factor
of −1 on the generator

√
−pN are counted as distinct, whereas the two

isogenies ψ,−ψ are not considered distinct.)
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Summary

The structure of Gp,ℓ can be analyzed through properties of EN
p,ℓ.

Supersingular isogeny graph cryptographic protocol seems very
safe so far, but more research is always needed.
Counting isogenous conjugate pairs relates to answering
questions about the two-sided ideal class group of an Eichler
order.
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Thank You !
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