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Supersingular Elliptic Curves

Definition (Chapter V[Sil09])

Let E be an elliptic curve defined over a field K of characteristic
p # oo. E is supersingular iff one of the following equivalent
conditions hold:

m [p] : E — E is purely inseparable and j(E) € F,

m End(E) is a maximal order in a quaternion algebra.

For a given p, there are finitely many isomorphism classes of

supersingular elliptic curves over [Fp,.
. e - - — - - - —

Convention

p: a fixed large prime (cryptographic size)
p = 3 (mod 4) (minor adjustments for other p)
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Frobenius Isogeny

p-power Frobenius map mp : E — EW®)
7Tl?(xvy) = (Xp’ yp)
m Induced by the field automorphism
m aclF, thena® =a
mIf E:y2=x3+ax+ b, then
EW) :y2 = x3 4 aPx + bP
m j(E)P = j(EP)

Figure: https://commons.
wikimedia.org/wiki/
File:GeorgFrobenius_
(cropped) . jpg

Sarah Arpin, University of Colorado Boulder November 22nd, 2021 4/33


https://commons.wikimedia.org/wiki/File:GeorgFrobenius_(cropped).jpg
https://commons.wikimedia.org/wiki/File:GeorgFrobenius_(cropped).jpg
https://commons.wikimedia.org/wiki/File:GeorgFrobenius_(cropped).jpg
https://commons.wikimedia.org/wiki/File:GeorgFrobenius_(cropped).jpg

Background
00@00

Torsion Subgroups
The points of an elliptic curve form a group under addition [Sil09].
Torsion points are points for which some multiple gives Og.
E[N] = (7Z/NZ)?
Below, a supersingular elliptic curve over 1123, points colored by
order in the group:

200 400 600 800 1000

Blue = 1, green = 2, violet = 4, red = 281, orange = 562, black = 1124.
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Isogenies
Definition
Anisogeny ¢ : £ — E; is a morphism between elliptic curves such
that ¢(Of,) = Og,. lthasadual ¢ : E; — Ej.

Theorem (Corollary 111.4.9 and Proposition 111.4.12 [Sil09])

The kernel of a nonzero isogeny is a finite group. A given finite
subgroup of points uniquely determines a separable isogeny.

Theorem (Theorem II1.4.10(c) [Sil09])
The degree of a separable isogeny is equal to the size of the kernel.

Isogenies will be degree ¢ or ¢, with £ a small prime.

Supersingular elliptic curves over F,, are all ¢-power isogenous.
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Supersingular ¢-isogeny graph

p=>53,¢=3
-
‘.‘ m With the right conditions on p,
can be taken to be undirected
- D by identifying isogenies with

. their duals

m Connected
@ m Qut-degree / + 1

® ~ [£] nodes
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Quaternion Algebras

Figure: https://en.wikipedia.org/wiki/File:Cayley_Q8_quaternion_
multiplication_graph.svg

Definition (Quaternion algebra ramified at p and oo)

Bp.oo: Q(i,j, ij) such that 2 = —1, j2 = —p, and ij = —ji

If E/F, is supersingular, then End(E) is isomorphic to a maximal
order in Bp . J
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Quaternion Algebras: A Comparison to Number Fields

Quaternion Algebra Number Field

Noncommutative Commutative

Byo/Q K/Q

Maximal orders (finitely many) Ok

Eichler orders of level N Orders of conductor N: Z + NOg
Class set of left or right ideals Class group of ideals

Class group of two-sided ideals
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Deuring Correspondence

A categorical equivalence:

Theorem (Deuring Correspondence, [Deu41])

There is a bijection between isomorphism classes of supersingular
elliptic curves over IF,, and left ideal classes of a fixed maximal order
O of By .

Theorem (Deuring Correspondence 1)

If E/Fp is supersingular, then there is a maximal order O of B,
such that End(E) = O. This association is either 2-1 or 1-1,
depending on the size of the two-sided ideal class group of O.

The Deuring correspondence is not computationally feasible, in
terms of runtime.
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Quaternion G, s, p =53, { =

4

Sarah Arpin, University of Colorado Boulder November 22nd, 2021 11/33




Background
€000

Cryptographic Motivation

Post-Quantum Cryptography

m NIST: 2015 call for proposals of post-quantum safe cryptography
protocols. Now in Round 3.

m Supersingular Isogeny Graph Cryptography: ~ 15 years old:
original hash function by Charles-Goren-Lauter [CGLO06]; SIKE
key exchange [SIKE]

Hard Problems
m Path-finding in supersingular ¢-isogeny graph
m Path-finding with additional torsion point information
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Supersingular Isogeny Diffie-Hellman (SIKE)

Alice Public Babette

/\,

vs( PA ) 8(Qa) PB ); A(QB)
"(PA"J J"@B"
“pa" (Eg) = E2 “vg" (Ea) = E2

v is degree (%" and pp is degree (¢
E[¢3'] = (Pa, Qa) and E[¢(Z’] = (Pg, Qp)
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Hard Problems
Given Eq, E,, find an ¢"-isogeny between them.
Given E, @A(E), and @B(E), (pA(PB), QOA(QB), SOB(PA)7 and
©8(Qa), find pa(vs(E)) = ¢a(pa(E)).
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How to study security?
Graph Structure
m Path-finding between I,
points of Gy ¢, [DG16]
. m The structure of the subgraph
Delur:(jafiz:se;g;ns;:vc:en pr‘ IFp-ﬁJg]ints of Gp ¢ is known
rp+
underlying hard problems . . .
[Eis+18]. The path-finding = Publio torsion pot
roblem is equivalent to
cF:)omputing ”?e Deuring weakness [Pet17] [Que+21].
More investigation is needed.

correspondence. o .
Finding Cycles in Gp ¢

m The path-finding problem for .
quaternion algebras has been m The WIN4 project [Ban+19]

solved [Koh+14]. uses cyclesinGp,to
generate the endomorphism

ring
m [Eis+20] provides a new
cycle-finding algorithm
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Isogeny Graph With Level Structure
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Isogeny Graph £V, With Level Structure
p,l

Idea: Keep track of pa(Ps), va(Qg) in the supersingular ¢-isogeny
graph
m Nodes: (E, G)
m E: supersingular elliptic curve
m G C E(Fy) of (small) prime order N

m Edges: (E, G) — (E’, G') corresponding to an ¢-isogeny ¢:
my(E)=F
mp(G) =G

Graph Properties
m (N + 1) nodes for every node of G, ,.
m (¢ + 1)-regular, just like Gp ¢
m 5",‘{€ is connected, just like Gp ¢
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Isogeny Graph With Level Structure
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p=37,0=2,N=3

m Black graph on the left: G, , Supersingular 2-isogeny graph for
p=237

m Colorful graph on the right: 53?7 » Supersingular 2-isogeny graph
for p = 37 with added level structure for N = 3.

m We can see how 2-isogenies act (differently) on 3-torsion points
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The Quaternion Picture

What is the endomorphism ring of a node of 8,’;’4’?
End(E, G) := {a € End(E) : o(G) C G}

Theorem (Arpin)

End(E, G) is isomorphic to an Eichler order of level |G| of By .
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Isogeny Graph With Level Structure
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Equivalence of Categories

| SN
m Objects: Pairs (E, G) with E a supersingular elliptic curve over T,
and an order N subgroup G C E[N]
m Morphisms: (E, G) — (E’, G') a nonzero isogeny + : E — E’ such
that (G) C G'.
m LM
m Objects: invertible left End(E, G)-modules
m Morphisms: nonzero left End(E, G)-module homomorphisms.

Theorem (Arpin)

Fix (E, G) € Sn. Hom(—, (E, G)) : S’ — LM is a contravariant
equivalence of categories.
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Isogeny Graph With Level Structure
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Correspondence to Eichler Orders

Theorem (Arpin)

Given a pair (E,G) € £ ’V ¢, there is an Eichler order O of level N in
B, ~ such that End(E, G) = O. This association is either 4-1, 2-1, or
1-1%, depending on the size of the two-sided ideal class group of O.

*Curves with extra automorphisms (j = 0, 1728) may not conform.
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Isogeny Graph With Level Structure
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Coincidence of End(E, G)

What are the reasons for 4-1, 2-1, or 1-1 maps from endomorphism
rings of pairs (E, G) to Eichler orders? (Arpin) J

Four nodes of 5[,‘7’@ with isomorphic endomorphism rings: O:
(E, G), where G is the kernel of an isogeny pg: E — E/,
(EW, GW)), where G is the image of G under 7,

(E’, G"), where E'’ is the codomain of pg and G’ = ker(p),

(E"® (G)P)), where (G')P) is the image of G’ under
The possibilities for coincidence of the above nodes are:

All four distinct.

(E.G) = (E®),G) and (E', G’) = ((E")!P,(G&")).

(E,G) = (E',G) and (EP,GP)) = ((E"),(G)P).

(E.G) = ((E")®,(G)®) and (E',G) = (E®), GP)).

(E.G) = ((E)®,(G)P) = (E',G) = (EP), GP)).
One instance of (4): N-isogenous conjugate pairs.
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Counting Isogenous Conjugates
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Mirror Paths

Frobenius acts on the Gy ;: if ¢ : Ey — Ez is an £-isogeny, then there
exists an (-isogeny E) — EP).
How do can these paths connect?
B o j-invariants in Fe \ Fp
m a: j-invariant in F,,
Option 1: Through an Fp, vertex

CO—C—(—E@—

Option 2: Through an ¢-isogenous pair of conjugate vertices

CO)—()—()—E@—E—)

How often are paths of the second type?
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How often are conjugate j-invariants 3-isogenous?
Data: [Arp+19].

Number of 3-isogenous conjugates

600 1
.
500 7 .t
count of j(E)
such thalt 400 1 .
there exists
a 3-isogeny

B>ENED 590 ]

200 1

100 g
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Counting Isogenous Conjugates
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How often are conjugate j-invariants 3-isogenous?

Data: [Arp+19]. Lower bound: [Eis+20] Eisentraeger, Hallgren, Leonardi,
Morrison, Park

] Number of 3-isogenous conjugates e, ot
600 .
P
. 4.
Blue: Actual Data . . u" L

500 - Red: EHLMP lower bound L AP -a‘.
count of j(E) [ . -
such that . - ¥
there exists 400 *
a 3-isogeny
B> M)} -

300 1 v,

.
200 7
100 | s

2e4 4e4 6e4 8e4 led
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Counting Isogenous Conjugates
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A Bound From Quaternion Algebras

N-isogenous pairs give a 2-1 association to Eichler orders, giving an
upper bound:
AT — (N +1)(#Sp)
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Counting Isogenous Conjugates
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How often are conjugate j-invariants 3-isogenous?

Data: [Arp+19]. Lower bound: [Eis+20] Eisentraeger, Hallgren, Leonardi,
Morrison, Park. Upper bound: Arpin

1200 4
Number of 3-isogenous conjugates

1000 4 |Bhe: Reality
count of {B) Rleri' E}EF}{P lower bound
cuch that Pink: Arpin upper bound
there exists 800
a 3-isogeny
E ->EN®)}
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Counting Isogenous Conjugates
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An Exact Count

Theorem (Arpin, Chenu-Smith [CS21])

a(1) : number of pairs (E, ), where E is a supersingular elliptic
curve and v is a degree-N isogeny E to E(P).

2a(1) equals the number of pairs of a supersingular elliptic curve E
and an embedding Z[/—pN] into End(E).

14++y/—pN
20(1) = {| CHZ[™ ™) | + | CHZlY/=PN]) | . ~pN =3 (mod 4)
| Cl(z[/=pN]) | ,~pN'=1(mod 4)
(The factor of two appears because two embeddings which differ by a factor

of —1 on the generator \/—pN are counted as distinct, whereas the two
isogenies v, —1 are not considered distinct.)

v
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Summary

m The structure of G, , can be analyzed through properties of E[’}fe.

m Supersingular isogeny graph cryptographic protocol seems very
safe so far, but more research is always needed.

m Counting isogenous conjugate pairs relates to answering
questions about the two-sided ideal class group of an Eichler
order.
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Thank You !
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