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This is joint work with Catalina Camacho-Navarro, Kristin Lauter, Joelle
Lim, Kristina Nelson, Travis Scholl, Jana Sotdkova. [ACLT19]
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Elliptic Curve Highlights
j-Invariants of Supersingular Elliptic Curves
Definition

For any elliptic curve E/K, j-invariant j(E) € K identifies E up to
isomorphism over K.
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Isomorphism classes over FF2: j-invariant uniquely identifies class

Isomorphism classes over IF,: 2 classes of supersingular EC's per j-invariant
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Elliptic Curve Highlights

Isogenies

Definition
An isogeny ¢ : E; — E, is a group homomorphism of elliptic curves,
which can be identified with (and computed from) its finite kernel.

Properties: [Sil09]
@ The kernel of a nonzero isogeny is a finite group.
@ The degree of an isogeny is equal to the size of the kernel.
o Every isogeny ¢ : E; — E; has a dual qg : E; — Ej of the same degree.
@ (: prime # p; there are £ 4+ 1 outgoing f{-isogenies from E
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Elliptic Curve Highlights

[F,-Endomorphism Rings of Supersingular EC's

Theorem ([DG16])

For a supersingular elliptic curve E defined over IF,, Endp,(E) is an order

in Q(\/—p) which contains Z[\/—p].

Oa(v=p)

|
Z[\/=7]

d O N Z[\/-p] if p=1 (mod 4)
AV=P) T\ 7 [Hfﬁ} if p=3 (mod 4)
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Cryptographic Motivation
Cryptographic Motivation

WANT:
@ Public Key: graph vertex; Private Key: a connected vertex
@ A graph that's easy to navigate,
@ But too tangled to re-trace steps.

Supersingular Isogeny Graphs:

@ Vertices: F,-isomorphism classes of supersingular elliptic curves
o Edges: degree-¢ isogenies (< subgroups of E(F,) of size /)

p = 1409
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Meet the Graphs

Three Graphs

e Full graph G,(Fp)
@ Spine S: subgraph taking only F,, vertices of Gy(F,)
e Graph generated over Fp: G/(F,)
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l: Go(F,): The full supersingular ¢-isogeny graph

p: a fixed prime (BIG); ¢: a fixed prime (small)

p=283,0=2;z =17i+38,Zz; = 66/ + 38
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Meet the Graphs

ll: The Spine S: Subgraph of F,-vertices in Gy(F,)
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p=283,(=2
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Meet the Graphs

I1l: Go(Fp): The supersingular ¢-isogeny graph, over F,
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p=83,(=2
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Meet the Graphs

Go(F,): Volcanoes

[Sutl3]. p: a prime; E: supersingular elliptic curve over IFT,

Zly/=p]
Endr,(E) = {Z |:1+ij]
2
Definition
If Endr, (E) Z [HF} then E lies on the surface of the volcano..
If Endp,( Z[\/—p], then E lies on the of the volcano.
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From F,, to the Spine

Structure of Go(IFp)

[DG16]. For £ =2:

Theorem (Theorem 2.7 [DG16])
e p=1 (mod 4): Vertices paired together in isolated edges,

e p =3 (mod 8): Vertices form a volcano; surface is one vertex,
connected to three vertices on the floor,

@ p=7 (mod 8): Vertices form a volcano; each surface vertex is
connected 1:1 with the floor.
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From F, to the Spine

Structure of G,(F,)

For ¢ > 2:
Theorem (Theorem 2.7 [DG16])

o (72) = 1: two l-isogenies
o (=2) = —1: no (-isogenies
p=103,/=3:
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From F,, to the Spine

Possible changes, passing from Gy(F,) to E

Definition (3.13 [ACL*19])
o If two distinct components of Gy(F,) have exactly the same set of
vertices up to j-invariant, then they will stack over IFp,.
o A component of Gy(F,) will fold if it contains both vertices
corresponding to each j-invariant in its vertex set.
@ Two distinct components of G;(IF,) will attach with a new edge.

@ Two distinct components of Gy(IF,) will attach along a j-invariant if
one vertex of each share a j-invariant (only possible for ¢ > 2).

(b) The spine S C G2(F,) for p = 431. 15/26



From F,, to the Spine

Rules to pass from G(F,) to F,

Observations:
o (Corollary 3.9 [ACLT19]) Twists are either both on the surface or
both on the floor, except for j = 1728.
o For j # 1728, Endg,(E) = Endg, (E?)
@ When j = 1728 is supersingular, one twist is on the surface, the other
on the floor. They are 2-isogenous.

o (Lemma 3.11 [ACL"19]) Edges from the same vertex don't collapse.
@ (Corollary 3.12 [ACL*19]) Twists have the same neighbor sets.
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From F,, to the Spine

What actually happens for ¢ > 27

Theorem (Proposition 3.9 [ACLT19])

While passing from G¢(IFp) to S, the only possible events are stacking,
folding and n attachments by a new edge and m attachments along a
J-invariant with m +2n < 2¢((2¢ — 1).

. ,
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From F,, to the Spine

What actually happens for ¢ = 27

Theorem (Theorem 3.26 of [ACLT19])

Only stacking, folding or at most one attachment by a new edge are
possible. In particular, no attachments by a j-invariant are possible.

godee
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Through the Looking Glass: Mirror Involution

Through the Looking Glass: Mirror Involution
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Through the Looking Glass: Mirror Involution

Frobenius

T E:y?=x34ax+b— EP . y2 =34 Px+ bP

(xy) = (7, yP)
J(E) '—U(E)

Definition (Mirror Involution)

If j is a supersingular j-invariant, so is its [ ,>-conjugate jP.

If 3 ¢-isogeny ¢ : E(j1) — E(j2) then 3 l-isogeny ¢’ : E(j1)P — E(j2)P.
The p-power Frobenius map on F . gives the mirror involution on Go(Fp).

e g R g T SR

Mirror Involution gives:
.p .p .p
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Through the Looking Glass: Mirror Involution

Mirror Paths

Jo—rji == jn =ik = = T =
o= ===l ===y

How often are paths of the first type? Second type?
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Through the Looking Glass: Mirror Involution

How far are conjugate j-invariants in Go(FF,)?

70000
50000
20000
10000

(a) Distances between conjugate pairs. (b) Distances between arbitrary pairs.
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Figure 4.1: Distances measured between conjugate pairs and arbitrary pairs of vertices not in F,

for the prime p = 19489.
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(a) Distances between conjugate pairs. (b) Distances between arbitrary pairs.
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Figure 4.2: Distances between 1000 randomly sampled pairs of arbitrary and conjugate vertices
for the prime p = 1000003.
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Through the Looking Glass: Mirror Involution

How often are conjugate j-invariants 2-isogenous?

Proportion of Conj Pairs that are 2-Isog
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Figure 5.3: Proportion of 2-isogenous conjugate pairs in jg(ETp] for p > 10000

23/26



Conclusion

Summary

e We understand completely how to pass from G¢(F) into Gy(F)).

@ Mirror involution gives a new perspective on supersingular isogeny
graph structure.

@ Vertices which are conjugate appear to be closer than random
vertices, at least for £ = 2.

24/26



Thank you.
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