Sequences

Tuesday, March 1, 2022 11:14 AM

PDF
8.1Sequen.

8.1 Sequences

Lecturer: Sambo Arming

WebAssign due tonight

Sequences

$$
\begin{aligned}
& 1,2,3, \ldots \\
& 2,4,6,8, \ldots
\end{aligned}
$$

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{k}, \ldots
$$

It is a function whose domain is positive integers: $\quad E x$, in the sequence of even \#'s

$$
f(1)=a_{1}, f(2)=a_{2}, \ldots, f(k)=a_{k}, \ldots
$$ $f(2)=4, \ldots$

Example:

Consider the sequence:

$$
\begin{array}{c:cc}
a_{1} & a_{3} & a_{k} \\
\downarrow & \downarrow & \downarrow \\
1, & \frac{1}{4} & \frac{1}{9}, \ldots
\end{array} \frac{1}{k^{2}}, \ldots .
$$

So $f(x)=\frac{1}{x^{2}}$ is the function that gives us this sequence, when we take the domain to be positive integers. What is the end behavior of this sequence?

* We acre about limits of segreectes
 8.0.1 Tools To Remember

then... $\lim _{x \rightarrow \infty} h(x)=C$. Also for sequences: $a_{n} \leqslant b_{n} \leq c_{n}$ for all n
2. Squeeze Law (Sandwich Theorem): If $\underbrace{f(x)}_{\lim _{x \rightarrow x} f(x) \leq h(x) \leq g(x)=\lim _{x \rightarrow \infty} g}$ then... $\lim _{x \rightarrow \infty} h(x)=C$. Also for sequences:
neg. J positive: 3. Showing and alternating sequence converges:

$-1,1,1,-1,1,1, \ldots$ Se rp of pos, vanes
If $f(x)$ and $g(x)$ are polynomials with the same degree, then $\lim _{x \rightarrow-\infty} \frac{f(x)}{g(x)}=$ the ratio of their leading coefficients. To prove this:

$$
\begin{aligned}
& \begin{array}{l}
\text { Example } \\
\text { segrence }
\end{array} a_{n}=\frac{n^{3}+2 n+1}{2 n^{3}-1} \text { relotec function: } f(x)=\frac{1 x^{3}+2 x+1}{2 x^{3}-1} \\
& \lim _{n \rightarrow \infty} \frac{n^{3} 2 n}{2 n^{3}-1} \text { multiply numb and denar by } \frac{1}{n^{3}} \text { merest pow } \lim _{x \rightarrow \infty} f(x)=\frac{1}{2} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{3}}\left(n^{3}+2 n+1\right)}{\frac{1}{n^{3}}\left(2 n^{3}-1\right)} \\
& =\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n^{2}}+\frac{1}{n^{3}}}{2-\frac{1}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Three ways to show a sequence is decreasing:
consecutivetorns

1. If $a_{n}>a^{2}$
2. If $a_{n}>a_{n+1}$ for all n, then the sequence is decreasing.
3. If $a_{n}-a_{n+1}>0$ for all n, then the sequence is decreasing.
*3. If $\frac{a_{n} \mid 1}{a_{i s}}<1$ for all n, then the sequence is decreasing.

Some Vocab

A sequence is bounded if there exists some number L such that $\left|a_{n}\right| \leq L$ for all L.

A sequence is monotonic if it is either strictly increasing for all x or strictly decreasing for all x. Bounded monotonic sequences must converge. (Think about why?)
A recursively defined sequence is one where the definition of one term depends on the previous ones. Yon may be familiar with" the Fibonacci sequence: $1,1,2,3,5,8,13, \ldots$ where $f_{n}=f_{n-1}+f_{n-2}$.

$$
3,4,7,11, \ldots
$$

Examples

Example 1:

Write an expression for a_{n} for the sequence that begins

$$
\begin{aligned}
& a_{1}=\frac{2}{3}=3^{1} \\
& a_{2}=\frac{4}{9=3^{2}} \\
& a_{3}=\frac{6}{27}=3^{3} \\
& a_{4}=\frac{8}{81}=3^{4}
\end{aligned}
$$

Strategy: Find a way of expressing the numerator in terms of what term it is (n), and do the same for the denominator.

Example 2:

Suppose $a_{n}=\frac{(-1)^{n} \ln (n)}{n}$. Find $\lim _{n \rightarrow \infty} a_{n}$.

$$
\text { \& } \begin{aligned}
& \text { alternating! } \\
& \lim _{n \rightarrow \infty}\left|\frac{(-1))^{n} \ln (n)}{n}\right|=\lim _{n \rightarrow \infty} \frac{\ln (n)}{n} \text { related function: } f(x)=\frac{\ln (x)}{x} \\
&=\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}={ }^{\infty}
\end{aligned}
$$

Since a_{n} is alternation g and $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, we conclude
$\lim a_{n}=0$

Example 3:

$$
\begin{aligned}
\text { Suppose } a_{n}=\frac{\sqrt{3 n^{2}+1}}{n-1} . \text { Find } \lim _{n \rightarrow \infty} a_{n} . & \lim _{n \rightarrow \infty} \frac{\sqrt{3 n^{2}+4}}{n-1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
= & \lim _{n \rightarrow \infty} \frac{\sqrt{\frac{1}{n^{2}}} \cdot \sqrt{3 n^{2}+4}}{1-\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{3+\frac{4}{n^{2}}}}{1-\frac{1}{n}} 0 \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt{3}}{l}=
\end{aligned}
$$

Example 4:

Suppose $a_{n}=\left(1+\frac{1}{n}\right)^{n}$. Find $\lim _{n \rightarrow \infty} a_{n}$.
This one has a trick to it, but it should be familiar...Let's use $f(x)=\left(1+\frac{1}{w}\right)^{x}$, so that we can use L'H if necessary.

Show $a_{n}=3_{5^{n}}^{3^{n+2}}$ is decreasing.

$$
\begin{aligned}
& a_{n}=\frac{3^{n+2}}{5^{n}} \frac{a_{n+1}}{}=\frac{3^{(n+1)+2}}{5^{n+1}}=\frac{3^{n+3}}{5^{n+1}} \\
& \text { 1) } \frac{a_{n+1}}{a_{n}} \div 1: \quad \frac{a_{n+1}}{a_{n}}=\left(\frac{3^{n+5}}{5^{n+1}}\right)\left(\frac{5^{5}}{3^{n+2}}\right)
\end{aligned}
$$

$$
\frac{a_{n+1}}{a_{n}}=\frac{3}{5}<1 \text {, so the seq is dec. }
$$

2) $a_{n}-a_{n+1} ? 0$

$$
\text { 2) } a_{n}-a_{n+1} ? 0
$$

Example 6:

$$
\begin{aligned}
& \text { Stowe } a_{n}=n \text { n is in iereraning. Plan: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let's call this limit. Le and then we can make ne of log's: } \\
& \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=L \\
& \ln (L)=\lim _{x \rightarrow \infty} \ln \left(\left(1+\frac{1}{x}\right)^{x}\right) \\
& \begin{array}{l}
\ln (L)=\lim _{x \rightarrow 0} x \ln \left(1+x^{2}\right)+\infty \\
\ln (L)=\lim _{x \rightarrow 0} \frac{\ln (4)+1) \rightarrow 0}{(x) \rightarrow 0}
\end{array} \\
& \frac{\%}{0} \text { wet. Inn. } \\
& \text { Example 5: } \\
& \ln (C)=\lim _{x \rightarrow \infty} \frac{\frac{1}{\left(1+\frac{1}{x}\right)}}{\left(-\frac{1}{x^{2}}\right)} \cdot\left(-\frac{1}{x^{2}}\right) \\
& \ln (L)=\lim _{x \rightarrow \infty} \frac{1}{1+\frac{1}{x}}, 0 \\
& \ln (L)=1 \text { raise ooh sites } \\
& \text { as pairs of e } \\
& \text { to solve for } L \\
& e^{\ln (L)}=e^{1} \\
& L=e
\end{aligned}
$$

