Wednesday: Parametric Equations

Saturday, February 12, 2022 8:40 PM

Section1.7

Math 2300: Calculus

Spring 2022

Section 1.7

Lecturer: Sarah Arpin

Parametric Equations

A parametric equation is one in which the coordinates are given by independent equations.

We have seen one example of this already in the unit circle.

Cartesian Equation: $\chi^2 + \zeta^2 = 1$

Parametric Equation: $\chi(\theta) = \cos(\theta) + \cos(\theta) + \cos(\theta)$

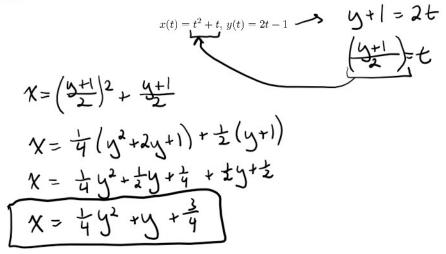
 $(\cos(\Theta), \sin(\Theta))$

We call θ the parameter. Often, we use t to denote the parameter. $\chi(t) = t+1t$, y(t)=3t, $0 \le t \le 1$. In order to do Calculus, there are three things we want to be able to do with parametric equations:

- Convert from parametric equations to a cartesian equation (regular "y =" style)
- Sketch the curves given by parametric equations.
- Write a parametric equation that describes a certain path.

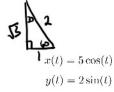
Converting to Cartestian

The process for this is solving each of the parametric equations for t and then setting them equal to each other.

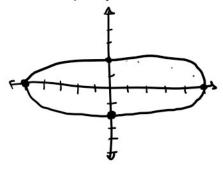

Example 1

Convert the following to a Cartesian equation.

$$y(t) = t - 1$$


62-2 Section 1.7

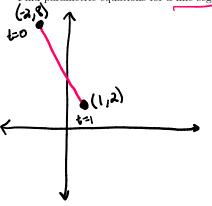
Example 2

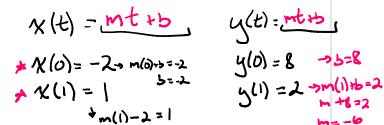


Sketching

Consider the parametric equation

What do you expect it to look like?




t l	x(t)=5cx(t)	$y(t) = 2 \sin(t)$	
	5	O	
0/4/9	512		7
平	5512	12	
11/2	5	43	
T/2	0	2	
T	-5	0	
35/2	0	-2	_
21	5	0	

Writing a parametric equation

Example

Find parametric equations for a line segment from (-2,8) to (1,2). Let $t \in [0,1]$

Example

Find parametric equations for the path of a particle that moves along the circle $x^2 + (y-1)^2 = 4$, once around clockwise, starting at (2,1).