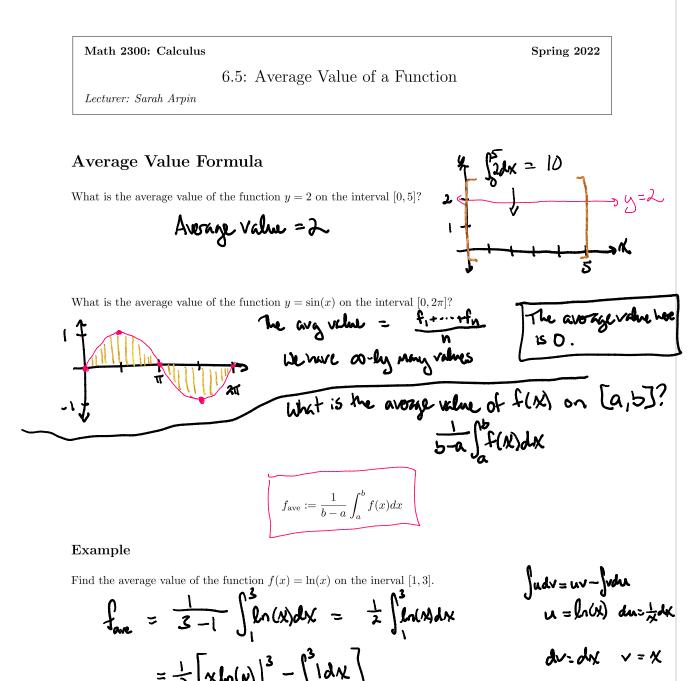
Wednesday Feb 9th

Monday, February 7, 2022 6:39 PM

2300_Spri... (5)



$$= \frac{1}{2} \left[2h(3) - h(1) - \left[x \right]_{1}^{3} \right] = \frac{1}{2} \left[3h(3) - h(1) - \left[x \right]_{1}^{3} \right]$$

0 - 1

0-2
Mean Value Theorem (Calc I): If f cont. on
$$[a, 5]$$
, then $\exists c \in [a, 5]$ where
 $f'(c) = \frac{f(b) - f(a)}{b - a}$
Mean Value Theorem for Integrals
If f is continuous on $[a, b]$, then there exists a number c in $[a, b]$ such that $f(c) = f_{ave}$. That is:
 $\int_{a}^{b} f(x) dx = f(c)(b - a)$.
 $f(c) = \frac{1}{b} \int_{a}^{b} f(x) dx$

Proof

Prove the Mean Value Theorem for Integrals by applying the Mean Value Theorem for derivatives to the function $F(x) = \int_0^x f(t) dt$. Want to show that on [a, 5], three exists a C $W/f(c) = \frac{1}{b-a} \int_a^b f(x) dx$

$$4 |f F(x) \text{ is cont. on } [a,b], \text{ then by Calc I MVT, there}
Causts C in [a,b] u/ F1(c) = \frac{F(b) - F(b)}{b-a}.$$

$$\frac{d}{dN} \left(\int_{0}^{x} f(t) dt\right) \Big|_{X=c} = \frac{\int_{0}^{b} f(t) dt - \int_{0}^{a} f(t) dt}{b-a}$$

$$f(x) \Big|_{X=c} = \frac{1}{b-a} \left(\int_{0}^{b} f(t) dt - \int_{a}^{b} f(t) dt\right)$$