6.1, 6.2

Thursday, February 3, 2022 2:49 PM

2300_Spri...
(4)

Math 2300: Calculus
Lecture 15: Friday February 4
Lecturer: Sarah Arpin
$\S 6.1$ and 6.2: The last two sections on the exam on Monday! WebAssign due dates have been moved - check WebAssign.
15.1 Areas of Regions and Volumes of Solids of Revolution

The goal of today is to review ways of finding geometric areas, and to extend that motion to volumes. Always draw a picture first.
15.1.1 Example 1:

Find the area bounded between $x=2 y^{2}$ and $x=27-y^{2}$.
Find intosection:

$$
\begin{aligned}
& 2 y^{2}=27-y^{2} \\
& 3 y^{2}=27 \\
& y^{2}=9 \\
& y= \pm 3 \\
& x=2(3)^{2}=18 \\
& y=\int_{-3}^{3}\left(27-y^{2}-2 y^{2}\right) d y \\
& =\int_{-3}^{3}\left(27-3 y^{2}\right)^{3} d y \\
& =27 y-\left.y^{3}\right|_{-3} ^{3} \\
& =27(3)-27-(27(-3)+27) \\
& =27(2)+27(2)=108
\end{aligned}
$$

$$
\int_{y-1 \infty}^{y+2}(\text { purple - orange }) d y=\int_{-3}^{3}\left(27-y^{2}-2 y^{2}\right) d y
$$

15.1.2 Example 2:

Find the area bound ed between $y=\sin (x)$ and $y=2 x / \pi$ for $x>0$.

When is $y=\alpha x / \pi$ at

$$
\begin{aligned}
& \frac{1}{\pi}=2 x / \pi \\
& \frac{\pi}{2}=x
\end{aligned}
$$

15.1.3 Summary

15.2 Volumes

15.2.1 Example:

Find the volume of the solid V obtained by rotating the region bounded by the following curves around the x-axis:

Vertical cross sections are circles! $A=\pi r^{2}$ Thicken in x-direction $\rightarrow d x \int_{1}^{\text {inters }} \pi\left(4-\frac{1}{2} x\right)^{2} d x=\pi \int_{1}^{4}\left(16-4 x+\frac{1}{4} x^{2}\right) d x$ $=\left.\pi\left(16 x-2 x^{2}+\frac{1}{12} x^{3}\right)\right|_{1} ^{4}$
$\left.=\pi\left[\left[\frac{(64-32}{32}+\frac{64}{12}\right)-\frac{(16-2}{44}+\frac{1}{4}\right)\right]$
$=\pi\left[\frac{\left.18+\frac{63}{12}\right]=\left(\frac{21}{4}+\frac{72}{4}\right) \pi}{}=\frac{93 \pi}{4}\right.$

This is what we will call washer method.

vo r. cross sections look like:
eon these cons

Thinner in x-direction $w / d x$

$$
\pi r_{1}^{2}-\pi r_{2}^{2}=\pi\left(r_{1}^{2}-r_{2}^{2}\right) d x
$$

outer radius = distance from purple curve to line $y=1$
inner radius $=$ dist. from orange curve to line $y=1$

$$
\begin{aligned}
& \text { inner radius }=\text { dist. from orpine curve to line } y=1 \\
& \begin{aligned}
\pi \int_{0}^{1}\left(\left(1-x^{3}\right)^{2}-(1-\sqrt{x})^{2}\right) & d x=\pi \int_{0}^{1}\left(\left(x-2 x^{3}+x^{6}\right)-(1-2 \sqrt{x}+x)\right) d x \\
& =\pi \int_{0}^{1}\left(x^{6}-2 x^{3}-x+2 x^{1 / 2}\right) d x \\
& =\left.\pi\left(\frac{x^{7}}{7}-\frac{x^{4}}{2}-\frac{x^{2}}{2}+\frac{2 x^{3 / 2}}{3 / 2}\right)\right|_{0} ^{1} \\
& =\pi\left(\frac{1}{7}-\frac{1}{2}-\frac{1}{2}+\frac{4}{3}\right. \\
& =\pi\left(\frac{1}{7}+\frac{1}{3}\right)=\frac{10 \pi}{21}
\end{aligned}
\end{aligned}
$$

