6.1, 6.2

Thursday, February 3, 2022 2:49 PM

2300_Spri... (4) Math 2300: Calculus

Spring 2022

Lecture 15: Friday February 4

Lecturer: Sarah Arpin

 $\S6.1$ and 6.2: The last two sections on the exam on Monday! WebAssign due dates have been moved - check WebAssign.

15.1 Areas of Regions and Volumes of Solids of Revolution

The goal of today is to review ways of finding geometric areas, and to extend that notion to volumes. Always draw a picture first.

15.1.1 Example 1:

Find the area bounded between $x = 2y^2$ and $x = 27 - y^2$.

Thin the area bounded between $x = 2y^2$ and $y = 2y^2$

Find into section: $2y^2 = 27 - y^2$ $3y^2 = 27$ $y^2 = 9$ $y = \pm 3$ $x = 2(3)^2 = 18$

ple - orange) dy = $\int (2/-y^2 - 2y^2) dy$ = $\int_{-3}^{3} (27 - 3y^2) dy$ = $27y - y^2 \Big|_{-3}^{3}$ = 27(3) - 27 - (27(3) + 27)= $27(2) + 27(2) = \boxed{108}$

15.1.2 Example 2:

Find the area bounded between $y = \sin(x)$ and $y = 2x/\pi$ for $x \ge 0$.

When is y=2x/T at height 1? 1=2x/T

$$dx = -\cos(x) - \frac{x^{2}}{4} \Big|_{0}^{\pi h}$$

$$= \left(0 - \frac{(\pi/x)^{2}}{4}\right) - \left(-1 - 0\right)$$

$$= \left(-\frac{\pi}{4} + 1\right)$$

15.1.3 Summary

$$\int_{x=a}^{x=b} (\text{top} - \text{bottom}) dx \text{ or } \int_{y=a}^{y=b} (\text{right} - \text{left}) dy.$$
Shake Westerland

$$\int_{y=a}^{y=b} (\text{right} - \text{left}) dy.$$

15.2 Volumes

15.2.1Example:

Find the volume of the solid V obtained by rotating the region bounded by the following curves around the x-axis:

Vertical cross sections are circles!
$$A = \pi r^{2}$$

Thicken in x-direction $\Rightarrow dx$ integer.

 $=\pi \left(16x - 2x^{2} + \frac{1}{12}x^{3}\right) \begin{vmatrix} 1 \\ 4 - 2x^{2} \end{vmatrix} = \pi \left(18 + \frac{62}{2}\right) = \frac{21}{4} + \frac{72}{4}\pi$
 $=\pi \left(18 + \frac{62}{2}\right) = \frac{21}{4} + \frac{72}{4}\pi$

This is what we will call washer method.

e region bounded by $y = \sqrt{x}$ and $y = x^3$ around the line y = 1.

vir. cross sections look like:

outer radius = distance from purple curve to line y=1inner radius = dist. from orange curve to line y=1 $\pi \left[\left(\left(-x^{2} \right)^{2} - \left(1-\pi \right)^{2} \right) dx = \pi \left[\left(\left(x^{2} - 2x^{2} + x^{4} \right) - \left(x^{2} - 2\pi x + x \right) \right) dx \right]$

 $=\pi\int (\chi^{0}-2\chi^{3}-\chi+2\chi^{\prime})d\chi$ $= \pi \left(\frac{\chi'}{7} - \frac{\chi'^4}{2} - \frac{\chi^2}{2} + \frac{2\chi^{3/2}}{3/2} \right)$