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Math 1300: Calculus I Fall 2020
b .
W Lecture: Section 5.5: The Substitution Rule

Lectuwrer: Saral Arpin

o)
/x' (b‘a' | Today’s Goal: Lear
Logistics: We start this on a Tuesday (12/1), alter an activily, and finish on Wednesday.
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With all of our antiderivative practice, we still have dilliculty un-doing chain rule, especially more complicated

versions. For Example:
cos (x> (R )
L ——

n an integration technique called “u-substitution™ |

Warm-Up 1.1 (True or False:) If f{x) is continuous on |a, b]. then;
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1.1 Chain Rule

Which means we can actually integrate:

/(2::? —2) cos(x? — 22)dr = S\.V\. CM& "‘2\”() + C/
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But il we had been given [(2z — 2] cos(w” — 2w)dz withoul the previous exercise, it CelLdlLL].\ would have
leen liard to recoguize. We develop a technigue that will make this easier, callec
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1-2 Leciure: Section 5.5: The Substitution Rule

1.2 Indefinite Integrals With Substitution

Theorem 1.2 (The Substitution Rule) r‘f_ is differentiable. then: ( /)L

The procedure is best summed up in a few steps, alongside an example: { \ ( =£

Example 1.3
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1. In gour inlegral, idendify o foclor thal looks like a composilion of fwo [funclions. Which is lhe inner

Sunction? Which is the outer function? ‘\V\V‘IU" ‘b‘l\c/ib M
oec: % = .Q(/g()

2. Do you see the derivative of the inner funclion elsewhere in the funclion? We are looking for an

expression of the form flg(x)) - ¢'(x). 7 I(/)L\ &o- V. O-g- ;V\W.Q,sd\m l(/g

3. Let uw = g(x).
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1 ilas
. Find 53

\ 7 g™ du
. Find an expression fm‘-:i:c in terms of du: [O'{AA :]E'S-Q,Qa' (/Y-VI& d/x &c (00

0. fleplaoce everything in the integrol thal has fo do with » with expressions involving w.  In parficulor,
u=glx) end du = g'(x)dx.

u NED A ,-\e]r“-,__ !; A . d"
Se 1(000\/‘( =3 du\ : ,qg,f o 1) g@ S&C%) )

S

. ¥

- .,_.-'—""_F
7. Fuvaluate the mthm! with respect to u =<5

Yodu= e+ C /

8. Un-do the replacement, and veplace u awith g(x). oY \}p{:] M
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Lecture: Scction 5.4: The Substitution Rule 1-3

Example 1.4
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1 In your inlegral, idendify o faclor thal looks like a com;oo‘iiwn of twe funclions. Which is the inner

Junction? Which is the outer funcltion? \\Ane’—‘ ﬂ l -
oo P = By Flad)= (- 0

. Do you sce the derivalive of the inner_fupclion clscwhere in the funclion? We are looking for an
expression of the form f{g(a)) - ¢'(x). X «4 __(

desiv, of inne— hnchon: %(/}C‘I_l) i c{,/)C&
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3. Let u=glx). U=

4. Find 2. ‘%‘ = L‘/)(.:5

5. Find an expression for r)'r in ferms of du: AM = L.

6. Replace everything m the integral thoat hes to do with x with expressions involving w.  In porticulor,
w=glx) and du =g (r)dx.

Joa s, = S(u\ J'dw #rfuden
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8 Un-do the rveplucement, wnd rfpfaff w_with_glu Cd\gm
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1-4 Leciure: Section 5.5: The Substitution Rule

1.3 Definite Integrals With Substitution

With definite integrals, we can use the same process but we need to be careful about the bounds: remember
that they define z-values, not u-values. so you want to retwrn to x before using the evaluation theorem:

Example 1.6
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Example 1.7
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Lecture: Section 5.5: The Substitution Rule

1.4 Symmetry

Suppose f is continuous on [—a,a).

(a) If f is even (so f(—x) = f(x)), then

(b) If fis odd (so f(—z) = —f(z)), then

1.4.1 Common Even Functions

(Don’t forget trig functions!)

1.4.2 Common Odd Functions

1.4.3 Examples

Example 1.8
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