05.05

Tuesday, December 1, 2020 12:35 PM

PDF

Lecture: Section 5.5: The Substitution Rule

Lecturer: Sarah Arpin

Today's Goal: Learn an integration technique called " ${ }_{u}$-substitution"

Logistics: We start this on a Tuesday (12/1), after an activity, and finish on Wednesday.

With all of our antiderivative practice, we still have difficulty un-doing chain rule, especially more complicated versions. For Example:

Which means we can actually integrate:

$$
\int(2 x-2) \cos \left(x^{2}-2 x\right) d x=\sin \left(x^{2}-2 x\right)+C
$$

But if we had been given $\int(2 x-2) \cos \left(x^{2}-2 x\right) d x$ without the previous exercise, it certainly would have been lard to recognize. We develop a technique that will make this easier, called u-substitution.

Techniques to antidiff. chain rule
1.2 Indefinite Integrals With Substitution

Theorem 1.2 (The Substitution Rule) If $u-g(x)$ is differentiable, then:

The procedure is best summed up in a few steps, alongside an example:
Example 1.3

$$
\int e^{e^{\tan (x)}\left(\sec ^{2}(x) d x\right.}
$$

1. In your integral, identify a factor that looks like a composition of two functions. Which is the inner function? Which is the outer function?
inner: $\tan (x)=g(x)$
outer: $e^{x}=f(x)$
2. Do you see the derivative of the inner function elsewhere in the function? We are looking for an expression of the form $f\left(g(x)\right.$) $g^{\prime}(x)$. $g^{\prime}(x)=$ deriv. of inner function $=\sec ^{2}(x)$
3. Let $u=g(x)$.
4. Find $\frac{d u}{d x}$:
 $\frac{d x}{d x}=\sec ^{2}(x)$ Take dor for du
5. Find an expression for $d x$ in terms of $d u$:

$$
\left.d^{d u}=\sec ^{2}(x) d x\right\}\left\{d x=\frac{d x}{\sec ^{2}(x)}\right.
$$

6. Replace everything in the integral that has to do with x with expressions involving u. In particular,

$$
\begin{aligned}
& =\int e^{a} d u
\end{aligned}
$$

$$
\int_{c^{u}} d u=e^{u}+C
$$

$$
\begin{aligned}
& \text { 8. Undo the replacement, and replace } u \text { with } g(x) \text {. } \\
& \int \underbrace{\frac{\text { tan }}{}(x) \sec ^{\text {Undo the }}(x)} d x=e^{\tan (x)}+C \quad \frac{\text { Check } k}{d x}\left(e^{\tan x}+C\right)= \\
& \begin{array}{l}
e^{\tan (x)} \cdot \sec ^{2}(x)+0 \\
e^{\tan (x)} \sec ^{2}(x)
\end{array}
\end{aligned}
$$

Example 1.4

$$
\int\left(x^{4}-1\right)^{10} x^{3} d x
$$

1. In your integral, identify a factor that looks like a composition of two functions. Which is the inner function? Which is the outer function? inner: $x^{4}-1=g(x)$
outer: $x^{10}=f(x) \quad f(g(x))=\left(x^{4}-1\right)^{10}$
2. Do you see the derivative of the inner function elsewhere in the function? We are looking for an expression of the form $f(g(x)) \cdot g^{\prime}(x) . \quad \boldsymbol{T}_{x^{4}-1}$
deriv. of inner function: $\frac{d}{d x}\left(x^{4}-1\right)=4 x^{3}$
3. Let $u=g(x)$.

$$
\begin{aligned}
& u=x^{4}-1 \\
& \frac{d u}{d x}=4 x^{3}
\end{aligned}
$$

4. Find $\frac{d x}{d x}: \quad \frac{d u}{d x}=4 x^{3}$
5. Find an expression for $d x$ in terms of $d u$: Cor du in terms of x)

$$
\left.\begin{array}{l}
d u=4 x^{3} d x \\
\frac{1}{4} d u=1 x^{3} d x
\end{array}\right\} d x=\frac{d u}{4 x^{3}}
$$

6. Replace everything in the integral that has to do with x with expressions involving u. In particular, $u=g(x)$ nad $d u=g^{\prime}(x) d x$.

$$
\int\left(x^{4}-1\right)^{10} \underbrace{x^{3} d x}=\int(u)^{10} \cdot \frac{1}{4} d u=\frac{1}{4} \int u^{10} d u
$$

7. Evaluate the integral with respect to u.

$$
\frac{1}{4} \int u^{\text {ate the integral with resperet to } u .}\left(\frac{1}{4}\left(\frac{u^{\prime \prime}}{11}+C\right)=\frac{1}{44} u^{\prime \prime}+\right.
$$

8. Undo the replacement, and replace u with afr) constant

$$
\left.\frac{1}{44} \cdot u^{\prime \prime}+k \rightarrow \frac{1}{44}\left(x^{4}-1\right)^{\prime \prime}+k \quad+\frac{(x+2)^{\prime \prime}}{c}+c\right)
$$

Example 1.5

$$
\int x \cos \left(x^{2}\right) d x
$$

$$
\begin{aligned}
& u=x \\
& d u=2 x d x \\
& d x \cos \left(x^{2}\right) d x=\int \cos (u) \cdot \frac{1}{2} d u \\
&- \int \cos (u) d u
\end{aligned}
$$

$$
\left.\frac{1}{2} d u=x d x\right]^{0}
$$

$$
\begin{aligned}
& =\frac{1}{d} \int \cos (\omega) d \\
& =\frac{1}{2}(\sin (u)+c) \\
& =\frac{1}{2}\left(\sin \left(x^{2}\right)+c\right)
\end{aligned}
$$

1.3 Definite Integrals With Substitution

With definite integrals, we can use the same process but we need to be careful about the bounds: remember that they define x-values, not u-values, so you want to return to x before using the evaluation theorem:

$$
\int_{1}^{2} \frac{\ln (x)}{x} d x=\int_{x=1}^{x=2} \frac{\ln (x)}{x} d x
$$

Example 1.7

$$
\int_{-1}^{1} \frac{e^{x}}{e^{x}-5} d x
$$

1.4 Symmetry

Suppose f is continuous on $[-a, a]$.
(a) If f is even (so $f(-x)=f(x)$), then

$$
\int_{-a}^{a} f(x) d x=
$$

(b) If f is odd (so $f(-x)=-f(x)$), then

$$
\int_{-a}^{a} f(x) d x=
$$

1.4.1 Common Even Functions

(Don't forget trig functions!)

1.4.2 Common Odd Functions

1.4.3 Examples

Example 1.8

$$
\int_{-3}^{3} \frac{\sin (x)}{x^{4}+2 x^{2}+3} d x
$$

