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Math 1300: Calculus I Fall 2020

Lecture: Section 5.3: Evaluating Definite Integrals

Lectuwrer: Saral Arpin

Today’s Goal: A new technique to evaluate definite integrals. |

Logistics: We will start this on %
and we will start section 5.4 on Friday as well. —_

There is a check-in on Friday (alway s’}
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So far, we have two methods for evaluating deifinite integrala:

/
1. Geometry QNL""‘")“"“' wados”
o Grve - o “{'
2. Taking a limit of a Riemann sum Lt

Today, we_will learn another teclic
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This method is part of the . which we will talk aboul more in 5.4, Il is
somelimes known as Lhe

Theorem 1.2 {Fundamental Theorem of Calculus Part II) Suppose f is confinuous on [a,b] and £
is any entiderivative of f Then, b
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1-2 Lecture: Section 5.3: Evaluating Delinite Integrals

1.0.1  Jusitfying the Evaluation Theorem

Theorem 1.4 (Fundamental Theorem of Calculus Part II) Suppose f is continuwons on [w,b und F
is any antiderivative of f (e, I'' = f). Then
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Recall that the delinite integral is delined as a limil ol a Riemann S\Li;u: : lk“ﬂf( e
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Lets consider one of these infinitely small intervals in particular. “ e will have to 1se a stretch of lnagination,
as infinitely small width is not easy to imagine.

Bul leUs suppose [w;, #,41] i¢ an infinitely small interval, and that f(x}) Is the height ol owr infinitely siall
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Recall that f — /') and consider the Intermediate Value Theorem in this context: l Q, OS}

{ri_lJ_F(rj=F’c=- W"y
for some ¢ in g ). - . S\O L GE O Mbg L. in
_ Then the IVT tells us: J"“"‘iw =
= = mv b1 "‘1
Flain) — Fled) .o,
E Tx':-—1 £ . Fd }]

The width of our interval is Awr:
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And i we move the Ax Lo the other side we
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Pntting these all back in our Riemann sum gives:
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Lecture: Section 5.3: Evaluating Definite Integrals

Example 1.5 Use the Evaluation Theorem to evaluate the following integrals:

(a) Jg"* sin(w)do

(b) ' erda
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1-4 Lecture: Section 5.3: Evaluating Delinite Integrals

1.1 Indefinite Integrals

In the past, we have simply asked for the family of antiderivatives of a particular funetion: No notation.

Example 1.6 F-.ind*_of the function Q(x) = 2® .
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Now that we have the evaluation theorem and the notation of integrals, we can replirase this question nsing

a new notation for antiderivatives: the indefinite integral: p
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Example 1.8 This is an important example. and has o bit of o twist! Try to remember a discussion we had

about this maony weeks ago... ___L
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Lecture: Section 5.3: Evalnating Definite Integrals 1-5

behueen X =& ad Nzl
For example, we know rhat_is the rate of change of position. This tells us:
4 - net dna.y. i~ Pobv

/ v(E)dt = s(h) — s(a),

where s is position and © is veloeity, so & — . t m{-— w A Pw:—i-fm n

Example 1.11_A_honeybee population starts with 100 becs and increases at a rate of n'(t) bees per week.
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1.2.1 Displacement vs. Distance

Awe integrate veloeity:

s0 s(b) — s(a) gives the —iu position.

If we want to caleulate the displacement of & moving object over tim

v e 250 = ©

But what if we want to know the traveled by the objeet? In other words, what if we want
Lo count all motion as positive distance? l |
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1-6 Lecture: Scction 5.3 Fvaluating Definite Intcgrals

Example 1.12 The velocity function is given by v(t) = 2 — 2t 40 for a particle moving along o line. Find
hoth the displocement and the distance traveled by the particle during the Hme inferval 1 <t =<6
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Example 1.13 Water flows from the bottom of a storage tank of a vote of v{#) = 200 — 4t liters per minute
where 0 =0 ¢ < 50, Find the amount of water that flows from the tank during the first 10 minutes
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