05.02 Definite Integral
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Math 1300: Calculus I Fall 2020
Lecture: Section 5.2: Definite Integrals

Lecturer: Sarah Arpin

Today’s Goal: Define the definite integral; relate to the area problems we’ve been working on.

Logistics: We will start this on Wednesday and need to finish it on the following Monday. There is an activity
on Friday. And a check-in on ME@NBAY this time around! As well as the following Friday (so Monday and
Friday of the same week).

Warm-Up 1.1 What is the area under the curve y = x+ 1 between x = 0 and x = 2? Hint: Draw a picture
to help - you can use geometric area formulas!

(A) 1

(B) 2

(©) 3

(D) 4

(E) None of the above.

Last section, we used rectangles to approximate areas, and limits to find them precisely. We will do a little

review of this by discussing Midpoint Rule. Then, we will introduce a new notation for these precise areas,
discuss when this object exists, and develop a new way to find these values.
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1-2 Lecture: Section 5.2: Definite Integrals

1.1 Midpoint Rule

When we are computing sums of rectangle arcas to estimate an arca under the curve (computing a Riemann
Sum, we have many options for chooging the height of the curve. Midpoint rule deseribes one such choice:
using the midpoints of the intervals defining Lhe reclangle widlhs,
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Lecture: Section 5.2: Definite Integrals 1-3

1.2 New Notation for Area

The area under the curve f(z) on the interval [a,b] is computed by a limit of a sum of rectangle areas (a
Riemann sum):

A= LAy

We introduce a new notation, usmg a symbol called an integral:
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1-4 Lecture: Section 5.2: Definite Integrals

1.3 Evaluating Integrals as Limits of Riemann Sums

Example 1.3 Fuealuate JU a7 — 2y using o Fnit of Riemann sumns.

Example 1.4 Set up an cxpression for (2
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Lecture: Section 5.2: Definite Integrals 1-5

We can also use the geometric interpretation of an integral in order to evaluate that integral. A few common

examples of this: W W SCW 'd-f\'\-JW\ Nz —2//)(:2\
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Example 1.6 FEzpress the area under the curve y = 2x — 4 between x =2 and x = 4 as an integral. Draw
this region, and evaluate the integral geometrically.
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Leclure: Seclion 5.2: Definite Integrals 1-7
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