4.8

Wednesday, November 4, 2020

12:36 PM

Math 1300: Calculus I

Fall 2020

Lecture: Section 4.8: Antiderivatives

Lecturer: Sarah Arpin

Today's Goal: Learn about antiderivatives!

Logistics: We will start and finish this section on Wednesday. Don't forget Check-In 14 on Friday! Review sections 4.6 and 4.8 (this section!).

Warm-Up 1.1 Find two positive numbers whose sum is 300 and whose product is a maximum.

- (A) 150, 150
- (B) 100, 200
- (C) 50, 250
- (D) 300, 300
- (E) None of the above

p'(x) = 300 - 2x = 0 2x = 300 x = 150 $p''(x) = -2 \rightarrow p is co$

Antiderivatives 1.1

1.1.1 Terminology

Find the derivative of $f(x) = x^3 - 2x + 1$:

$$f'(x) = 3x^2 - 2$$

Let's just name this new function g(x):

$$g(x) = 3x^2 - 2$$

Since the derivative of f(x) is equal to g(x), we say that f(x) is an **antiderivative** of g(x).

Question: Are there other anti-derivatives of g(x)?

Here other anti-derivatives of g(x)?

Yes, $\chi^3 - 2\chi + C$, for any real # C

A few examples: $f(\chi) = \chi^3 - 2\chi + 4$

Theorem 1.2 If F(x) is an antiderivative of f(x), then so is F(x) + C, for any real number C.

 $\ell(x) = 3x^2 - \lambda$ $x^3 - 2x + C$

Recall now and always that the acceleration due to gravity is $-9.8m/s^2$, or equivalently $-32ft/s^2$.

Example 1.6 A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later. When does it reach its maximum height? When does it hit the ground?

the ground?
$$a(t) = -32$$
, c^{relf} $v(t)$ is an antiderivative of alt) $v(t) = -32t + C$ Find c in singly $v(0) = 48$ $v(0) = 48 = C$ $v(t) = -32t + 48$ $v(t)$ is an antideriv of $v(t)$ $v(t) = -32t + 48$ $v(t)$ is an antideriv of $v(t)$ $v(t) = -16t^2 + 48t + C$ (rew result c) $v(t) = -16t^2 + 48t + C$ (rew result c) $v(t) = -16t^2 + 48t + C$ $v(t) = -16t^2 + 48t + 432$ $v(t) = -16t^2 + 48t + 432$

Example 1.7 A stone was dropped off a cliff and hit the ground with a speed of 120 ft/s. What is the height of the cliff?