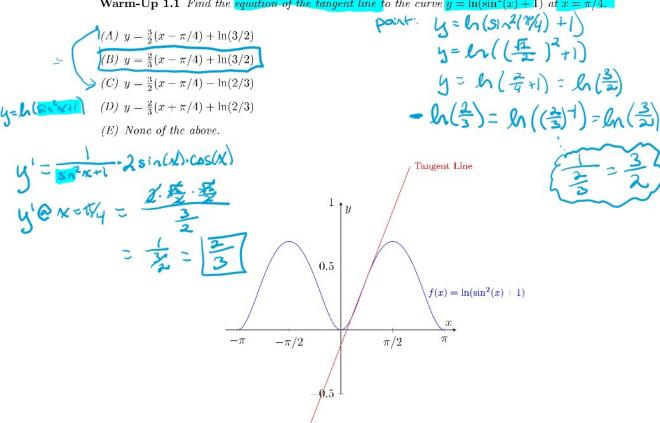
03.09 Linearization

Monday, October 19, 2020 12:25 PM

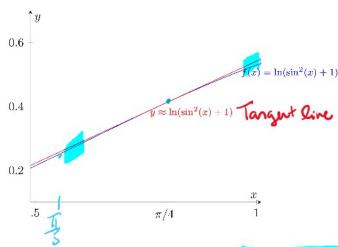
*DO HW4.3 Webassian!

Math 1300: Calculus I Fall 2020


Lecture: Section 3.9: Linear Approximation

Lecturer: Sarah Arpin

Today's Goal: Learn how to approximate functions using calculus.


Logistics: We will start and finish this section on Monday. There is a check-in Friday, it's set to cover the topics we are covering this week: linear approximation, min/max problems, and extreme value theorem (Sections 3.9 & 4.2).

Warm-Up 1.1 Find the equation of the tangent line to the curve $y = \ln(\sin^2(x) + 1)$ at $x = \pi/4$.

Why Tangent Lines? 1.1

What can we use the tangent line to a curve for?'

Close to the point of tengency, the values of the function can be approximated by the values of the tangent line

Definition 1.2 To capture this idea of approximation, we call the tangent line to the curve y = f(x) at x = a the linearlization of f(x) at a.

Example 1.3 Use the linearlization of $y = \ln(\sin^2(x) - 1)$ at $x = \pi/4$ to estimate the value $\ln(\sin^2(\pi/5) + 1)$. $y = \frac{2}{3}(x - \frac{\pi}{4}) + \ln(\frac{3}{2})$ $f(x) = \ln(\sin^2(\pi/5) + 1)$ $f(x) = \ln(\cos^2(\pi/5) + 1)$ $f(x) = \ln(\cos^2(\pi/5) + 1)$

Example 1.5 Use the linearization of some function to estimate the value of In(1.1) without using a calcu lator. Justify your choice of function and the location of the linearization.

Function to linearize": f(x) = ln(x)

Where to linearize: X = 1

Linearization: Point: (1, ln(1)=exp. you raise e to, to get)

Slope: f'(X)= x (1) = 1

L(N)=1(N-1)+0 L(x)= x-1

To estimate ln(1.1) = f(1.1) & L(1.1)

1 (1.1) = 1.1-1 =10.1 2 ls(1.1)

h(e)=| == e "h(x)" -> e'= X