Math 1300: Calculus I

Lecture: Section 3.9: Linear Approximation

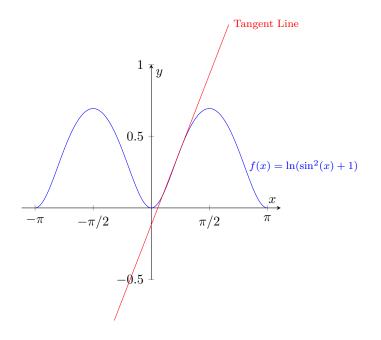
Lecturer: Sarah Arpin

Today's Goal: Learn how to approximate functions using calculus.

Logistics: We will start and finish this section on Monday. There is a check-in Friday, it's set to cover the topics we are covering this week: linear approximation, min/max problems, and extreme value theorem (Sections 3.9 & 4.2).

Warm-Up 1.1 Find the equation of the tangent line to the curve $y = \ln(\sin^2(x) + 1)$ at $x = \pi/4$.

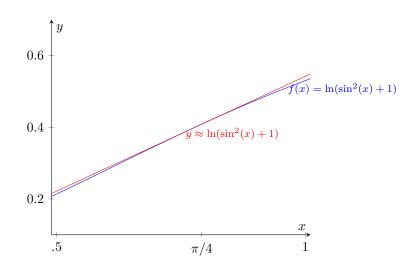
- (A) $y = \frac{3}{2}(x \pi/4) + \ln(3/2)$
- (B) $y = \frac{2}{3}(x \pi/4) + \ln(3/2)$
- (C) $y = \frac{3}{2}(x \pi/4) \ln(2/3)$
- (D) $y = \frac{2}{3}(x + \pi/4) + \ln(2/3)$
- (E) None of the above.



1.1 Why Tangent Lines?

What can we use the tangent line to a curve for?'

Fall 2020



Definition 1.2 To capture this idea of approximation, we call the tangent line to the curve y = f(x) at x = a the **linearlization** of f(x) at a.

Example 1.3 Use the linearlization of $y = \ln(\sin^2(x)+1)$ at $x = \pi/4$ to estimate the value $\ln(\sin^2(\pi/5)+1)$.

Example 1.4 Find the linearization of $y = \sqrt[5]{x+1}$ at a = 1 and use it to approximate the value $\sqrt[5]{2.1}$

Example 1.5 Use the linearization of some function to estimate the value of $\ln(1.1)$ without using a calculator. Justify your choice of function and the location of the linearization.