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Math 1300: Calculus I

Fall 2020
Lecture: Section 3.8: Rates of Change
w
Lectuwrer: Saral Arpin
| Today’s Goal: Learn about applications of the derivative to other sciences.
Logistics: We start this on Wednesday and [inish il on Friday, There is a check-in on Friday!
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1.1 Physics

1.1.1 Motion
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1.1.2 Linear Density
Linear density is defined as mass per unit length, and is usnally denotes p. Think of a length of wire wheré
the density of the wire changes between end to end.

When the mass i3 constant, this is easy Lo calculale: p = mass/length. However, il mass is changing we must
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Note thal this is the derivative wilth respect Lo length (distance [rom lell end of rod). \’ Q(r&h M
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use a formmla:
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Example 1.3 The mass of the part of a metol rod that lies between its left_end and a point @ meters to the

right is Ax® kg. tind the tincar density when 2 = 2 maters. ( 2\ = _,QJ.N'\ ""\fﬂ-\—f‘\(a\ _ )
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1.1.3 Current is the Derivative of Charge

Average current is given by:
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where A s the amonnt of charge that passes throngh a fixed cross section of a rod over a period of time
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1.2 Chemistry

1.2.1 Rate of Reaction

The concentration of a reactant A is the number of moles per liter and is denoted by [A]. The concentration
varics during a reaction, leading to the definition:
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1.2.2 Compressibility
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where £ is pressure and Vois volume,

1.3 Biology

1.3.1 Population Growth

In the pasi. you have probably encouniered exponential growth. I a population lollows exponential
growll, then the population al time { can be emnesﬁetl M
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where A is the population at time £ = (), and % is a growth constant dependmg on the ]_’)(}[)ll]d.tl()l’l,
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1.4 FEconomics

1.4.1 Marginal Cost

The concepl of average cost per unit is an important concept in production. II C'lz) is the lotal cost a
company incurs producing @ unils of their products, then we cau [ind Lhe average rate ol chauge ol cost:
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Taking the limit as Ax — 0, we obtain an iustantaneons rate of change of cost, which is referred to as the
marginal cost:
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Example 1.5 The cost function for production of a commodity is C(z) — 339 + 25z — 0.0927 + 0.00042°.
Find and interpret C'(100). = s .
Compare C'{100) with the cost of producing the 101st ilem.
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