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Math 1300: Calculus I

Fall 2020
Lecture: Section 3.8: Rates of Change
w
Lectuwrer: Saral Arpin
| Today’s Goal: Learn about applications of the derivative to other sciences.
Logistics: We start this on Wednesday and [inish il on Friday, There is a check-in on Friday!
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1.1 Physics

1.1.1 Motion
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1.1.2 Linear Density
Linear density is defined as mass per unit length, and is usnally denotes p. Think of a length of wire wheré
the density of the wire changes between end to end.

When the mass i3 constant, this is easy Lo calculale: p = mass/length. However, il mass is changing we must
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Note thal this is the derivative wilth respect Lo length (distance [rom lell end of rod). \’ Q(r&h M
DY

use a formmla:
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Example 1.3 The mass of the part of a metol rod that lies between its left_end and a point @ meters to the

right is Ax® kg. tind the tincar density when 2 = 2 maters. ( 2\ = _,QJ.N'\ ""\fﬂ-\—f‘\(a\ _ )
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1.1.3 Current is the Derivative of Charge

Average current is given by:
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where A s the amonnt of charge that passes throngh a fixed cross section of a rod over a period of time
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1.2 Chemistry

1.2.1 Rate of Reaction

The coneentration of a reactant A is the number of moles per liter and is denoted by [A]. The concentration

varics during a reaction, leading to the definition:
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1.2.2 Compressibility
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where £ is pressure and Vois volume.

1.3 Biology

1.3.1 Population Growth
In the pasi. you have probably encouniered exponential growth. I a population lollows exponential
growlly, then the population al time { can be expressed:
P(t) = Ac™
where A is the population at time + = (), and & is a growth constant depending on the population.
Dilferentiate Lo gel the population growth rale:
Pty

Example 1.4 The nwmnber of yeust cells in o leboralory cullure increases ropidly dniially bul levels off
evendually. The population is modeled by the function
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where L ds menswred dn howrs, AL time § = 0 the populalion is 20 cells and is increasing al o rale of 12
cells/howr. Find the values of o ond b, According to this model, whot happens to the yeast population in the
fong ruwn.
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1.4 Economics

1.4.1 Marginal Cost

The concept of average cost per unit is an important concept in production. If C(x) is the total cost a
company incurs producing x units of their products, then we can find the average rate of change of cost:

C(z+ Az) — C(x)
Ax
Taking the limit as Az — 0, we obtain an instantaneous rate of change of cost, which is referred to as the
marginal cost:

marginal cost = —

dx

Example 1.5 The cost function for production of a commodity is C(z) = 339 + 25z — 0.0922 + 0.0004z3.
Find and interpret C'(100).
Compare C'(100) with the cost of producing the 101st item.



