Math 1300: Calculus I

Lecture: Section 3.8: Rates of Change

Lecturer: Sarah Arpin

Today's Goal: More practice!

Logistics: This is a supplement to our 3.8 lecture notes.

Warm-Up 1.1 $\frac{d}{dx}(f(\log_2(x)) = \cdots$

- $(A) f'\left(\frac{1}{\ln(2)x}\right)$
- $(B) \quad \frac{f'(\log_2(x))}{x\ln(2)}$
- $(C) \quad \frac{f(\log_2(x))}{x \log_2(x)}$
- $(D) \frac{1}{\ln(2)f(x)}$
- (E) None of the above.

Example 1.2 A particle moves along a horizontal line so that its coordinate at time t is $x = \sqrt{b^2 + c^2 t^2}$, for $t \ge 0$ where b and c are positive constants.

- (a) Find the velocity and acceleration functions.
- (b) Show that the particle always moves in the positive direction.

Example 1.3 The volume of a right circular cone is $V = \frac{1}{3}\pi r^2 h$, where r is the radius of the base and h is the height.

- (a) Find the rate of change of the volume with respect to the height if the radius is constant.
- (b) Find the rate of change of the volume with respect to the radius if the height is constant.

Fall 2020

Example 1.4 Find f' in terms of g':

1.
$$f(x) = x^2 g(\sin(x))$$

2. $f(x) = \log_3(g(x))$

3. $f(x) = g(\log_5(x))$

4. $f(x) = g(\ln(g(x)))$

Example 1.5 Find y':

 $x^2\cos(y) + \sin(2y) = xy$