03.06 Inverse Trig Derivatives

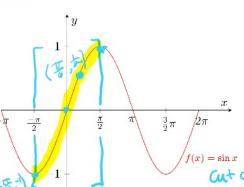
Monday, October 5, 2020 12:31 AM

Math 1300: Calculus I

Fall 2020

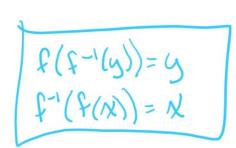
Lecture: Section 3.6: Inverse Trig Functions

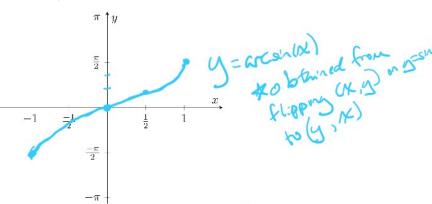
Lecturer: Sarah Arpin


Today's Goal: We start this on Wednesday, finish on Friday.

Logistics: Friday there is a check-in!

Warm-Up 1.1 True or False: $\frac{d}{dx} \ln(10) = \frac{1}{10}$


1.1 $Arcsin(x) = Sin^{-1}(x) \neq Sin(x)$


invote fuction.

Domain Ro Angles Co

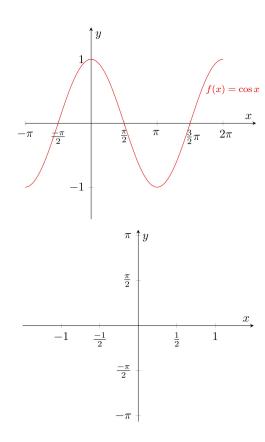
cut of donain of since)

Recall how to do computations with inverse trig functions:

trig functions: $\cos(\arcsin(\frac{-1}{2})) = \frac{\sqrt{3}}{2}$

1-2

To find the derivative of $\arcsin(x)$, we will use a property of inverse function along with implicit differentiation, and some properties of trig functions. The necessary property:


$$\sin(\arcsin(x)) = x$$

Note that this only holds for x in the interval:

In summary:

$$\frac{d}{dx}\arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$

1.2 Arccos(x)

Again with the domain restriction in mind, we can use a similar process to find the derivative of $\arccos(x)$:

$$\cos(\arccos(x)) = x$$

1.3 Arctan(x)

$$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2},$$
 on the domain of $\arctan(x)$ which is $-\pi/2 < x < \pi/2$

1.4 Examples

Evaluate:

Example 1.2
$$\csc(\arccos(3/5)) =$$

Example 1.3
$$\cos(\arcsin(1/2)) =$$

Find the derivatives of the following functions:

Example 1.4
$$y = \arctan\left(\frac{x^2-1}{x^2+2}\right)$$

Example 1.5
$$f(x) = e^{\arcsin(x^2) + 3x + 1}$$