Math 1300: Calculus I

Fall 2020

Lecture: Section 3.3: Derivatives of Trig Functions

Lecturer: Sarah Arpin

Today's Goal: Learn derivatives of trig functions.

Logistics: We should be starting and finishing this section on a Monday. There is an evening quiz tomorrow! It covers section 2.8 and 3.1 - 3.3.

Warm-Up 1.1 Find f'(1) for $f(x) = (2x-1)(e^x + x)$.

1.1 Graphically

Let's look at the $f(x) = \sin(x)$ function and see if we can make some remarks about what we expect the graph of the derivative to look like:

Lecture: Section 3.3: Derivatives of Trig Functions

1.2 Some Necessary Trig

Recall the values of the trig function:

1-2

In conclusion:

$$(51nx)' = \cos x \qquad (\cos x)' = -\sin x$$
Lecture: Section 3.3: Derivatives of Trig Functions, $\sin x = -\sin x$

-sinx

Similarly, we can prove the derivatives of the rest of the trig functions:

$\frac{d}{dx}\sin(x) =$	$\cos(x)$	wsx(cosx) + sinx (+sinx)	
$\frac{d}{dx}\cos(x) =$	$\operatorname{Sin}(x)$ $\operatorname{sec}^2(x)$	$(sin x) = cos^2 x$	
$\frac{d}{dx}\tan(x) =$ $\frac{d}{dx}\csc(x) =$	$-\csc(x)\cot(x)$	(+anx)= (cosx) 1.	
$\frac{d}{dx}\sec(x) =$	$\sec(x)\tan(x)$	$csc x = \frac{1}{sox} = \frac{cos^2 x + sm A}{cos^2 x} = \frac{1}{cos^2 x} = \frac{1}{cos^2 x}$	
$\frac{d}{dx}\cot(x) =$	$-\csc^2(x)$	SCA SINX = COSTX	
		Secx = cox	l

Example 1.2 (1) If $f(x) = \sec(x)$, find f'(x) and f''(x).

(2) At what value(s) of x does $f(x) = e^x \cos(x)$ have a horizontal tangent line?

(3) Find the equation of the tangent line to the curve $y = \tan(x)$ at $x = \pi/4$.

(4) Consider $f(x) = 2\cos(x) + x$ on the interval $0 \le x \le 2\pi$. On what interval(s) is f(x) increasing?