Math 1300: Calculus I

Fall 2020

Lecture: Section 3.1: Derivatives of polynomials and exponential functions Lecturer: Sarah Arpin

Today's Goal: Avoid using the limit definition of derivative in some cases Logistics: We should be starting this on a Monday and finishing on a Tuesday.

On the Monday we have a **check-in**!

Warm-Up 1.1 If f'(x) > 0 and f''(x) < 0, then f is:

- (A) increasing and concave up.
- (B) increasing and concave down.
- (C) decreasing and concave up.
- (D) decreasing and concave down.
- (E) None of the above.

1.1 Derivative Rules

Rule	Formula	Example
Constant Rule		
x		
Power Rule		
Constant Multiple Rule		
Sum Bule		
Difference Bule		
NO PRODUCT OR QUOTIENT RULES		

1.1.1 Proof of Power Rule

1.1.2 Proof of Sum Rule

1.2 Examples

Find the derivatives of the following functions using the rules:

(1)
$$f(x) = 3x^4 - 6x^{1/3} + 2x - 1$$

(2)
$$f(x) = \sqrt{x} + 34x - \frac{1}{x}$$

(3)
$$f(x) = \frac{x^3 - 4x^2 + \sqrt{x}}{x}$$

(4)
$$f(x) = \frac{2x^3 - \sqrt[3]{x^2}}{2}$$

(5)
$$f(x) = \sqrt{2x} + \sqrt{5x}$$

(6)
$$f(x) = 3x^2 - \pi^2$$

1.3 Exponential Functions

You may recall e being vaguely defined in Precalculus: $e \approx 2.718...$ The definition of e involves **limits**, so we are ready for it now!

Definition 1.2

e is the number such that
$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

Definition 1.3 (Definition of Derivative of $y = e^x$)

$$\frac{d}{dx}e^x = e^x$$

Definition 1.4 (Definition of Derivative of $y = a^x$ for any a > 0)

$$\frac{d}{dx}a^x = \ln(a)a^x$$

Example 1.5 Compute the derivative of the function $f(x) = 2e^x - 3x^2 + 54e^{-3x^2} + 54e^{-3x^2$

Example 1.6 At what point on the curve $y = 1 + 2(5^x) - 3x$ is the tangent line parallel to the line 3x - y = 5?