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Math 1300: Calculus I Fall 2020

Lecture 8: Section 2.7: The Derivative as a Function

Lectuwrer: Saral Arpin

A ] 0 1 -~
Today’s Goal: | AP
Logistics: Evening quiz this Tueﬁd'a\ Sel an alarm on your phoue.
Speaking of phones.. let’s try to focus as much as possible during lecture. Take a minute - physically take

your phone to the opposite corner of the room (if yon are able), and turm on yonr camera (if you are able)!
It will help vou say present.
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Warm-Up 8.1 What is the slope of the tangent line to flx) = 22 — 1 at Hu pozm‘ tuhcn T =17 HINT:

~— s the definition of the slope of the tangent line/instamn f
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8.1 Definition and Alternate Definition of Derivative ~>°
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What about f'{x)?
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8.2 Position and Velomty _&:g (Q/K“']’\\ a’l/X ;

Suppose- gives the pogition of a particle at timc’
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. ‘ = — connecting the polnl {«, s(a)) and (b, 5(B)) — average velocily of parlicle
between times # = g and £ = b,

= Instantareons rate of change of particle at
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Semetimes we can read this information off of a graph. The following graph depicts the position y = f(z)
ol a particle al Lime x:
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Now, let’s graph the velocity:
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The graph we have drawn depicls the derivative of y = f{x) as a [unciton. We denote this lunction:
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Example 8.2 Suppose this graph depicts the position y = f(x) of some particle of time x:
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Now, lel's graph the velocily: z?' (M
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Example 8.3 Does the expression _Q (/x‘: GN"\ e
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represent the derivative of some function? If so. what function?
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Example 8.4 Does the capression

sin{h) — sin
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If the derivative of f{z) is itself a function, f'(x), then we can continue taking derivative of f'(z)!
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8.3 Higher Derivatives ?

If s(t) 1s position and &'(t) = ©(#) Is velocity, what might «"(#) = »'(t) represent?
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And Higher derivativess y
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8.4 Can we always take a derivative?

- not tions have tangent lines at every point! Can you think of a funetion with a point where a
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