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Math 1300: Calculus I Fall 2020

Lecture 8: Section 2.7: The Derivative as a Function

Lectuwrer: Saral Arpin

Today’s Goal:
Logistics: Eveuing quiz this Tuesday! Sel an alarm on your phoue.
Speaking of phones.. let’s try to focus as much as possible during lecture. Take a minute - physically take
your phone to the opposite corner of the room (if yon are able), and turm on yonr camera (if you are able)!
It will help vou say present.
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Warm-Up 8.1 What is the slope of the tangent line to flx) = 22 — 1 at Hu pozm‘ tuhcn T =17 HINT:

~— s the definition of the slope of the tangent line/instamn eloe fa
I__EL_‘__ /X’ (M“ % m\ £6)

8.1 Definition and Alternate Definition of Derivative ~>°
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8.2 Position and Velomty _&:g (Q/K“']’\\ . az/x ?

Suppose- gives the pogition of a particle at timc’
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= Instantareons rate of change of particle at
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Semetimes we can read this information off of a graph. The following graph depicts the position y = f(z)
ol a particle al Lime x:
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Now, let’s graph the velocity:
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The graph we have drawn depicls the derivative of y = f{x) as a [unciton. We denote this lunction:
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Example 8.2 Suppose thiz groph depicts the position y = f(x) of some particle of time x
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Example 8.3 Does the expression
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represent the derivative of some function? If so. what function?
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8.3 Higher Derivatives \p-)“"e

If the derivative of f(z] is itself a function. f'(z), then we can contimie taking derivative of f/(2)!

If s(t) 1s position and &'(t) = ©(#) Is velocity, what might «"(#) = »'(t) represent?
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8.4 Can we always take a derivative?

No, not_all functions have tangent lines at every point! Can you think of a fanetion with a point where a
tangent line might not be a Wﬁ] defined notion?

e Continuily:
* Asvinptotes:

e Corner and Cusp shapes:



