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Math 1300: Calculus I Fall 2020

Lecture 6: Section 2.5: Limits Involving Infinity

Lectuwrer: Saral Arpin

‘ Today’s Goal: To describe limits that go to infinity, and limits as » goes to infinity. ‘
Logistics: Check-in 4 will cover continuity, discontinmities, and limits involving infinity.

Choeck-in 5 will cover limits involving inflinity K g —-3
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6.1 Infinite Limits: Vertical Asymptotes ™~~~ (uda,
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We have had some informal discussion about this before. Reeall this example from onr Section 2.2 Notes:
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We discussed lim f{x) and concluded that this limit does not exist (hecause it's not approaching a real
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number as we get closer to 0 from the right), but we can do better than that: We can speeify that the
[unetion values arc approaching positive infinity. We do this by wriling:
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This is an infinite limit. We use £oc and “*DNE” to distingnish hetween different types of vertical asymptotes:
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Lecture 6: Section 2.5: Limits Involving Infinity

6.1.1 Identifying from an cquation

Vertica &aS\ mplotes happen with a variely ol dillerent types ol [unclions:
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6.2 Limits as x approaches £ Infinity

We can also congider limits ag x itself goes to —oc: Think of walking very far to the left or very far to the
right on vour graph.
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II vou don’t have thie graph to look at, you can plug in very large values ol @ to see the limil as @+ > (like
1000, ete.), or very negative munbers to see the limit as @ — —oo (like - l{l[]()
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Definition 6.3 The bine y = L (where L is some constant number) r)j the curve y = fla) if either

6.3 Pre-calc Techniques

Yon have experience findige hollfo:utdl asyrptotes of rational functions! Consider a rational function of the
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where f and g are ])olwnmmalb How do Yol find the horizontal asymptote of such a function?
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Example 6.4 Find the equation for f"’w horizontel asymptote of the function flx) =
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Example 6.5 Fraluate the following limits:
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