02.05 Limits Involving Infinity

Tuesday, September 8, 2020 9:36 AM

Lecture 6: Section 2.5: Limits Involving Infinity
Lecturer: Sarah Arpin

Today's Goal: To describe limits that go to infinity, and limits as x goes to infinity.

Logistics: Check-in 4 will cover continuity, discontinuities, and limits involving infinity.
Check-in 5 will cover limits involving infinity
Check out the parent functions pdf in "Weekly work" on Canvas

please end me when you send me a question on Webassign

Warm-Up 6.1 True or False: $f(x)=\frac{x-1}{\sqrt{x^{2}+3}}$ is continuous on $(-\infty, \infty)$.

6.1 Infinite Limits: Vertical Asymptotes ~~~~~~~

We have had some informal discussion about this before. Recall this example from our Section 2.2 Notes:

We discussed $\lim _{x \rightarrow 0^{+}} f(x)$ and concluded that this limit does not exist (because it's not approaching a real number as we get closer to 0 from the right), but we can do better than that: we can specify that the function values are approaching positive infinity. We do this by writing:

$$
\lim _{x \rightarrow 0^{+}} f(x)=\infty
$$

This is an infinite limit. We use $\pm \infty$ and "DNE" to distinguish between different types of vertical asymptotes:

6.1.1 Identifying from an equation

Vertical asymptotes happen with a variety of different types of functions:
Rook up: graphing rational fanions nodes!!:

- rational functions (quotient of a Polynomial)

$$
\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty
$$

- $\stackrel{l}{\text { Some trig functions }}$

$$
\left.\begin{aligned}
& \lim _{x \rightarrow+/ 2^{2}} \tan (x)=+\infty \\
& \lim _{x \rightarrow+12^{+}} \tan (x)=-\infty \\
& \lim _{x \rightarrow+\pi 2^{2}} \tan (x)=D N E
\end{aligned} \right\rvert\, \begin{aligned}
& \cot (x), \sec (x), \\
& \csc (x) \text { also } \\
& \text { all have VAs! }
\end{aligned}
$$

Example 6.2 Evaluate $\lim _{x \rightarrow 0} \ln (\sin (x)) \sim \sim$ DNE, b/ C Left $u s, r$ bht

$$
\lim _{x \rightarrow \infty} \ln (x)=-\infty
$$

$$
\operatorname{liman} \ln (x)=D N E-
$$

$$
\begin{aligned}
& \lim (\sin (x))=0 \quad \text { asses. } \\
& x_{x \rightarrow 0} \\
& \text { Out of domain! } \\
& \text { fix: }\left[\lim _{x \rightarrow 0} \ln (|\sin (x)|)=-\infty\right.
\end{aligned}
$$

6.2 Limits as x approaches \pm Infinity

We can also consider limits as x itself goes to $\pm \infty$: Think of walking very far to the left or very far to the

If you don't have the graph to look at, you can plug in very large values of x to see the limit as $x \rightarrow \infty$ (like 1000 , etc.), or very negative numbers to see the limit as $x \rightarrow-\infty$ (like -1000).
.. as long as you frow what to expect from that typent function.
Definition 6.3 The line $y=L$ (where L is some constant number) of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \text { or }\left[\lim _{x \rightarrow-\infty} f(x)=L\right.
$$

6.3 Pre-calc Techniques

Yon have experience finding horizontal asymptotes of rational functions! Consider a rational function of the form \& hor rational functions sides: $f(x)^{\sim} \sim x^{2}-3 x+4 \ldots$ I KA's napper to boom sides:
where f and g are polynomials. How do you find the horizontal asymptote of such a function?

> and g arc palynomparis. sow te son tu "deg com

- If the degree of $f(x)$ is smaller than the degree of $g(x)$,
- If the degrees of $f(x)$ and $g(x)$ are the same, 2

$$
y=\frac{3-2 x^{2}}{4 x^{2}+2 x+1}>\frac{-2 \cdot \infty^{2}}{4 \cdot \infty^{2}} \text { ms } \frac{-2}{4} \leadsto>\text { goes to }-\frac{1}{2}, 1 \text { H: } y=-\frac{1}{2}
$$

Example 6.5 Evaluate the following limits:

$$
\lim _{x \rightarrow-\infty}\left[\frac{\left(x^{2}-3\right)}{\left(x^{5}+1\right)\left(\frac{1}{x^{5}}\right)}\left(\frac{1}{x^{5}}\right)\right]=\lim _{x \rightarrow-\infty} \frac{x^{2}-3}{} \frac{\frac{1}{x^{2}}-3 \frac{x^{5}}{x^{5}}}{1+\frac{1}{x^{5}}}=\frac{0-0}{1}=0
$$

3. $\lim _{x \rightarrow-\infty} \frac{2}{x^{33}}=\square$
4. $\lim _{\substack{x \rightarrow \infty \\ \text { ll } \\ \infty}} e^{x}$ Mexponatial growth, b/c $e>1$

