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Math 1300: Calculus I Fall 2020

Lecture b: Section 2.4: Continuity

Lectuwrer: Saral Arpin

Today’s Goal: Learn the definition of a continuous function, and some important theorems of continmao
Logistics:
Check-in Friday, Written IHomework due Thursday by Gpm
We are starting this section Wednesday (possibly Tuesday?), but we will not finish it until Friday.
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5.1 Definition

Definition 5.2 A function f(r) is continuous at @ velue x = a if
lin fiw) = flu).
TN

There is a lot hidden in this definition!

o limn f{#) exists! We need the left and right limits to agree for this to be true.

i
o f(a) needs to exist! @ needs to be in the domain of the function for this to happen.

o The above two quantities need to be equal.

II' f{x) docs not satisly this delinition ab the value @, we say [f(x) is discontinuous at «, or f(x) has a
discontinuity at «.
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52 Lecture 5: Section 2.4: Conlinuity

5.2 Discontinuities: From a Graph

Where are the following functions continuous? Where are they discontinuous? Can we classify the types of

digcontinuitics these different graphs display? There are three kinds of discontinuity: -. -?
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5.3 Discontinuities: From an Equation

5.3.1 Domain

This will have a similar feel to finding the domain of a function given by an equation. Reeall, von need to

check things like denominators and even radicals (squarc roots, 4th roots, cte.).

Example 5.3 Find the domain of the funclion: :
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5.3.2 Discontinuities

(4 k=) h«s &
Example 5.4 Consider the function: (__}7 @alb(ht‘-aﬁ‘“'ﬁ MQ.L

Lol o # -2 -
hiz)= ¢ ©+8 7 ?_f,r 7 ; ==L
4 Jifa=-2
D,

Where is h(2) discontinnous? Where is h(x) continuous? Use infervel notution to answer.

AT x> -2 x
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Example 5.5 Where is the following function confinuous?
S stodrmass == [N Gant dvidedy O
s n=0 g ()= —00 (A Puginrx--sm, )
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Definition 5.7 We suy that a function is continuwous on the left at a if lim f(x

= fla). We likewise
define being continuous on the right. g
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Example 5.8 Isl%Jaconhnuom on the left and/o-r right at a = 3%
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such that f(c) =u.

Lecture 5: Section 2.4: Continuity é NS \ S m —"5%{2 Co n.l.\m_ouso 55
: wlnkl. A% & eo! il H an
! A A (O M e
Theorem 5.9 The following lypes of funclions are fonﬂumou« al every volue in hedr domain: m/‘_,l.
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o erponentiol funetions

o log functions \of'\({i} d fb\;[\;i\ \/A @J\, 50(—-— ’\‘}

Thearem 5.10 (The Intermediate Value Theorem) Suppose s coptinuous on IAE closed interyal
la ] (of x-values). If w is eny number between fla) and f{b), then there exists an z-value ¢ in (o, b)
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(Image from Kpenghoy / Public domain on the Wikipedin article for Intermediofte Volue Theorem)
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Example 5.11 Use the intermediate value theorem to show that the function f(x) as below has a root </
between x =0 and r = 1:

f@) = Yo+l 0 5 Confauons on [0)\1
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Example 5.12 Use the intermediate value theorem to show that the following equation has a solution in the
interval (1,2).

sin(z) = L —
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