02.03 Limit Laws

Monday, August 31, 2020 1:51 PN

Math 1300: Calculus I

Fall 2020

Lecture 4: Section 2.3: Calculating Limits Using the Limit Laws

Lecturer: Sarah Arpin

Today's Goal: Learn more techniques for evaluating limits.

Logistics: First evening quiz is Tuesday night. Make sure you have the proctorio extension in your chrome browser, and that you have a webcam. If either of these are issues, please contact me.

Warm-Up 4.1 True or False: If both the left and right-hand limits of f(x) as x approaches a exist, then lim f(x) always exists. Color Because the left and want limbs

4.1 Limit Laws

• $\lim_{x \to \infty} [f(x) + g(x)] = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x)$ $\sum \bigcup$

• $\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$

• $\lim_{x\to a} cf(x) = c \lim_{x\to a} f(x)$, for any constant c (think: 2, pi, -233, etc.)

• $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$

• $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f(x)}{g(x)}$ as long as $\lim_{x\to a} g(x) \neq 0$.

• $\lim_{x \to a} f(x)^n = (\lim_{x \to a} f(x))^n$

• $\lim c = c$, for any constant c (again, this: $2, \pi, -233$, etc.)

• $\lim_{x \to a} x = a$.

• $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$

Example 4.2 Evaluate the following limits:

(a) $\lim_{x\to -1}\frac{2x^2-3x}{x^2+1}$ check that $\lim_{x\to 2}(x^2+1)\neq 0$. Then we plug in! (b) $\lim_{x\to 2}(3x^3-4x^2+4)$ A polynomial! We can plug in

(c) $\lim_{x\to 0} g(x)$ where $g(x) = \begin{cases} \sin(x) & \text{if } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases}$

(d) $\lim_{x\to 0} |x|$

4-2

4.2 Algebraic Techniques

4.2.1 Factoring Rational Functions

We have seen a lot of polynomial and rational function limits that basically just amount to plugging in the value, after we use limit laws: $(1 + 1) \times (1 +$

 $\lim_{x \to 1} \frac{x^2 - 4}{x^2 + 2x} = \frac{1 - 4}{3}$

But it does not always work: $\lim_{x \to -2} \frac{x^2 - 4}{x^2 + 2x} =$

We would like to find a way for this to work, and factoring can sometimes help.

In pre-calculus, you probably learned about simplifying rational expressions such as:

 $\frac{x^2 - 1}{x^2 + 2x - 3} \to \underbrace{\frac{(x+1)(x-1)}{(x-1)(x+3)}}_{x+3} \to \underbrace{\frac{x+1}{x+3}}_{x+3}$

The last step is only true for values of x that don't make the cancelled factor 0! Basically, you are only allowed to cancel expressions like $\frac{2}{2} = \frac{1}{1}$, but the expression $\frac{0}{0}$ is undefined and cannot be cancelled.

We can get around this issue using limits! Remember that $\lim_{x\to a} f(x)$ never actually uses the value f(a), it's just telling us what's happening as x approaches a. This means that cancelling a factor of x-a from numerator and denominator would be allowed! Let's see an example:

Example 4.3 Evaluate $\lim_{x\to -2} \frac{x^2-4}{x^2+2x}$, writing a small justification for each step you take.

 $\lim_{X \to \infty} \frac{(x+2)(x-2)}{x(x+2)} = \lim_{X \to \infty} \frac{x-2}{x}$

Check: X \$0@-2 \ -2\$0

 $= \frac{-2-2}{-2} = \frac{-4}{-2} = 2$

There are other algebraic techniques, such as combining rational expressions with common denominators and simplifying complex fractions. To summarize, it is best to **simplify an expression** and then evaluate the limit using limit laws.

Example 4.4 Evaluate the following limits:

Example 4.5 Evaluate the following limits:

$$(A) \lim_{x \to 1^{+}} \frac{x^{2} - 1}{|x - 1|} = \lim_{x \to 1^{+}} \frac{x^{2} - 1}{x^{2} - 1}$$

·= lim

(x+1)(x=1)

- lin X+1

= 2

(B)
$$\lim_{x\to 1^{-}} \frac{x^{2}-1}{|x-1|} = \lim_{x\to 1^{-}} \frac{x^{2}-1}{-(x-1)} = \lim_{x\to 1^{-}} \frac{(x+1)(x+1)}{-(x+1)} = \lim_{x\to 1^{-}}$$

lin (x+1)

×41 = -2

 $(C)\lim_{x\to 1}rac{x^2-1}{|x-1|}$ DNE: left and right limits disagree!

(D) Double brackets [[x]] denotes the greatest integer function - it will always round down to the nearest integer. With that in mind, evaluate:

$$\lim_{\substack{x \to 2^{-} \\ \lim_{x \to 2^{+}} [[x]] \\ \lim_{x \to 0^{+}} [[x - 1]]}}$$

(bk 1,9, 1,999, ... will always roud down

lin [[x]] = 2

(plug in 2.1, 2.000), etc.

 $\lim_{x\to 0^+} \left[\left[x - 1 \right] \right] = -1 \quad \text{(plug)}$