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r-Apollonian Continued Fractions



Continued Fractions on the line

A simple continued fraction

x = [ag; a1, ag, . ..] records the
sequence of triangles through
which the geodesic ot passes,
the digit a; recording the
number of triangles through
which 507 passes before
switching “sides” of the triangle,
and the convergents

5—: = [ag; a1, ..., a,] recording
the sequence of horoball
neighborhoods (red) through
which o7 passes.

Figure: Approximating
Yo = [0:1]

3 =
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Reflective Continued Fractions

Consider the group T' = {(a,b,¢) C PGL2(R) = Isom(H?), generated by
reflections in the walls of the ideal hyperbolic triangle with vertices

{0,1,00}:
T

a(z) = —z, b(z) = w1

(z)=2—u.

We have
1—T — PGLy(Z) — PGL2(Z/(2)) — 1,

PGLy(Z) =T x 83, T =7Z/(2)xZ/(2)*Z/(2).
Words in these generators index the triangles in the tessellation, and the
words of length n partition the line into 3 - 2"~ ! subintervals. The partition
by words of length m > n refines the partition by words of length n.

Irrational = are then uniquely coordinatized by infinite words in the
alphabet {a, b, c}.

aca aca abc aba bab bacbcb bca cbc cba cab cac




Dynamical System on the Line

The expansion of x as an infinite word in
{a,b,c} is produced by a dynamical system
T : PY(R) — PY(R).
T(z) = There are three neutral fixed points, %, %,
a and %, to which rational points descend in
{ b(z) = = z€0,1] finitely many steps dependlng on the parity
of the numerator and denominator
(even/odd, odd/odd, odd/even).

If z is irrational and m € {a, b, ¢} is defined
by T"x = m(T" 1z), then we have three
) sequences of rational convergents

lim mms... m,zog =z, vo0=0,1,00
5 5 1 > 3 A n_>0012 n<L0 5 0 ) Ly )

the vertices of the triangles through which
4 the geodesic 5ot passes.

These approximations can also be
constructed as a sequence of mediants

starting with (%7 %, %) or (%’ %17 %)
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Here is a random number
x = 0.4189513796210592.. . .
with expansion

tr = bacabcacbcacacababac. ..

The first 20 convergents are
(a, b, ¢ updating positions
1, 2, 3, mediant in red)

(1/1,1/0,0/1) :

(1/1,1/2,0/1), (1/3,1/2,0/1), (1/3,1/2,2/5),

(3/7,1/2,2/5), (3/7,5/12,2/5), (3/7,5/12,8/19),

(13/31,5/12,8/19), (13/31,5/12,18/43), (13/31,31/74,18/43),

(13/31,31/74,44/105), (75/179,31/74,44/105), (75/179,31/74,106/253),
(137/327,31/74,106/253), (137/327,31/74,168/401), (199/475,31/74,168/401),

(199/475, 367/876, 168/401), (535/1277,367/876, 168/401), (535/1277,703/1678, 168/401),
(871/2079,703/1678, 168/401), (871/2079, 703/1678, 1574/3757)

= (0.4189514 ...,0.4189511 ...,0.4189512...).
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Invertible Extension

The invertible extension 7' of T is defined on the space of geodesics G
that intersect the fundamental triangle, acting on y# depending on x:

N (a(y), a(x)) @ € [-00,0]

T(y,z) =4 (b(y),b(x)) = €l0,1]
(c(y),e(x)) @ el,o00]

T associates to the geodesic y# a bi-infinite word =1t in {a,b,c},
which we will relate to the geodesic flow in H?/T.

Ty Yo Y2 o

Figure: Two iterations of f7 red to green to blue
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Invariant Measure

dx

= x <0, The measure dn(y,z) = (z — y) " 2dzdy
dﬂ(x) = z(b;m) 0<z<l, is isometry—invariant on the space of

a1 z>1, geodesics in the hyperbolic plane.

Since T is a bijection defined piecewise
by isometries, n|g is T-invariant.

Pushing forward to the second
coordinate gives an infinite
T-invariant measure p. We will see
that (G,T,n|g) is ergodic (hence also
the ergodicity of (P1(R), T, p)).
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Cross-section of the Geodesic Flow

The word y~ !¢ associated to the geodesic gﬁ
records the sequence of collisions with the walls of
the triangle in H?/T', and T is the first-return of
the geodesic flow (billiards in the triangle) to the
cross-section defined by points/directions on the
Ny boundary. The return time is integrable with
respect to dn(y, x).

[For instance, a geodesic (y,x) € [—o0,0] X [1, 00], has

retrun time
1 z(l— y))
r(y,x) = = log <7 .
W) =3 y(

/ and the integral is
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Moving up a dimension...

The system just discussed is the restriction of a pair of dynamical
systems on the plane to the real line, which we now describe.
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Descartes Quadruples

Figure: A Descartes
quadruple and its dual

A Descartes quadruple is a collection
of four mutually tangent circles in the
plane (ordered and oriented so that
the interiors do not overlap), and its
dual quadruple consists of the four
mutually tangent circles passing
orthogonally through its points of
tangency. The curvatures (oriented
inverse radii) of the circles satisfy

2(ci+ca4ca4c3) = (c1+cat+ez+eq)?,

i.e. they are zeros of the quadratic
form

1 -1 -1 -1
1 1 -1 -1 | .
-1 -1 1 -1
-1 -1 -1 1
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Descartes Quadruples (cont.)

We can move between “adjacent” quadruples with four swaps (fix
three circles and replace the fourth by its inversion in the disjoint
dual circle) and four inversions (fix one circle and replace the other
three with their inversions in the fixed circle).

Figure: The four “swaps” Si Figure: The four “inversions” S;-
. 7
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The Super-Apollonian Group

The super-Apollonian group A C Op(7Z) C GL4(7Z) is the group
generated by the swaps and inversions (acting on Descartes
quadruples, circles coordinatized by indefinite binary hermitian forms)

-1 2 2 2 1 0 0 0
0 1 0 0 2 -1 2 2

51 = o 010 "=l 0o 0 10|
0 0 0 1 0 0 0 1
10 0 O 1 0 0 0
01 0 0 01 0 0

Ss=| 95 9 4 9 |"%=|00o1 0o |’
00 0 1 2 2 2 -1

Si =St

A% is a right-angled hyperbolic Coxeter group with presentation

(Si, S, 1<i<4:87 = (5" =1[5,S]=1, i #j).
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Octahedral Reflection Group

We will work with the following group of Md&bius
transformations isomorphic to A%, reflections in
the sides of the (finite volume) ideal
right-angled octahedron with vertices
{0,1,00,4,1+14,1/(1 —4)} (the intersection of two
infinite volume hyper-ideal tetrahedra, boundary 0 U 1
circles in red/blue)

iV N1+

T = (51,59, 53,54,51,55,53,57) C PSLy(C) x (2) = Isom(H?),

(1+2¢)z—2 z _
= — - 5 = = — 2 =7
e e e U e
I z . (1-=-20)z+2:
= = 2 5 = - @ @
SUSH S ST S S o T it
1 — T — PGLy(Z[i]) » (2) — PGLy(Z[i]/(2)) — 1,

[PGLy(Z[i]) % (2) : T] = 48, PGLy(Z[i]) % (z) =T x Bin. Oct.
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Normal Form(s)

Given the commutation relations, there are two “natural” ways of
writing words in the super-Apollonian generators.

We have invert-first normal form (push all si- as far left as possible)
mp---my, - Mg =5; and Mg zst =1=7,

and swap-first normal form (push all s; as far left as possible)
my-oomy, : my =5 and My =5; =4 = J.

These provide two spanning trees for the Cayley graph of I with
respect to the generators {s;,s; }.
For example:

L. L 0 55‘5%51‘51525%‘5354 invert-first
53751 9254 915353 54 = 1.0 Lo ol
59556161635, 6465  swap-first
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Apollonian Super-Packing

Starting with four mutually tangent circles (partitioning the plane into 4
triangles and 4 circles) we can iterate swaps and inversions, producing finer
partitions of the plane into circles and triangles.
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Apollonian Super-Packing (cont.)

The regions of the nth partition are labeled by the 9-5*~1 — 1 normal form words
of length n in the super-Apollonian generators. Irrational z are uniquely
coordinatized by infinite normal form words in the super-Apollonian generators
{5i,5il}. The expansion of z in the super-Apollonian generators is produced by a
dynamical system to be described below. [Regions labeled by words of length two

shown.|
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Dynamical System(s)

We define two dynamical systems
defined with respect to the dual
Descartes quadruples shown:

Ay
s;w wE A;j,

Talw) :{ stw we AL

s;z 2z € B
T — 7 i
5(2) { siz 2 € By,

There are six neutral fixed points
{07 1,000,141, ﬁ} to which
Gaussian rationals descend in finite
5, time, depending on the parity of the
numerator and denominator.

By
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Dynamical Systems (cont.)

Recording the sequences m,,, n,, defined by
Th(w) = m, (T4~ (w)), TE(2) = mu(Th ' (2))

produces infinite words in normal form. The initial segments my - - - m,,,
ny ---ny, label the region in the nth partition where w or z lies. We obtain 6
sequences of Gaussian rational approximations for each system such that

lim my - - muwo = w 1
n—r oo . .
. wo, 20 € 10,1,00,7,1 + 7, ——
lim ny - -tp20 =2 ’ T 11—’
n— oo

the vertices of the octahedra along the path indexed by the normal form
word.
One measure of the quality of approximation is:

If (p,q) = 1 is such that

C o1
lq|?’ 1+1/v2'

then p/q is a convergent to zo. Moreover, C is
the largest constant possible.

|z0 — p/al <




z = 0.1761148094996705 . . . + 10.2463661645805464 . . .

1 1 1 1 1 1 1 1 1
3 — $3 571 252 §3 $3515353 §2 §154515454 §151 $2 354 . ..
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Invertible Extension

The invertible extension T of T is defined on a space of geodesics
Q:UZ(Bl XBlUB; XB;)

(s;w,8,2) 2z € By, 3=-=5;

T ={ @it 185 Ta

2
C
(O

iy F

Figure: Regions B, x B;, B; x B; with subdivisions.

o0
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Invertible Extension (cont.)

An example orbit, nth iteration labeled as (n—,n+).
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Invertible Extension (cont.)
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Invertible Extension (cont.)

The inverse 7" extends Ty
(in the same manner that T’
extends Tg) so that a
geodesic (w, z) corresponds
to a bi-infinite word o3
in the super-Apollonian
generators, with to in
swap-first normal form and
3 in invert-first normal
form. Hence working with
one system automatically
involves its dual.

[Pictured is part of 10,000 iterations
of T on a random input (w, z),

z =0.085432 ... 4 10.185957 ...,
w =0.491241 ... + 40.343341 ... ]




Invariant Measure

The measure dn(w, z) = |z — w| *dudvdxdy, z = x + iy, w = u + iv is
isometry-invariant on the space of geodesics in H 3. AsT is a bijection
defined piecewise by isometries, 7)|g is T-invariant. Pushing forward
to the second coordinate gives a Tp-invariant measure pp on Pl((C)

drdy [, |z — w| *dudv, z € B;
dpp(z) = Fp(2)dedy = guay ') — w|~*dudv, =€ B!
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Invariant measure (cont.)

Computing these integrals gives:

(triangles) (circles)
T !
1(3-ai3)° z€ B, H(z,y) z€hB
T e B/7 H T, 1—- z € B
fe(z,y) =14 4(i-4)° o fe(z,y) = (G( )y) c B2 d
T e Bj "y e
ESE Bj G(l-=,y) =€ B
y
where : 5 2
1 1
2= (mfi) +y-1)7° ds = (x,§) +y’)
and

h(z,y) = arctan(z/y) 1

422 4y
H(z,y) = h(z,y) + h(1 — z,y) + h(z® -z + ¢, y),
G(z,y) = h(z,y® —y+2°) + h(z® —z +y°,y° —y +2°)
+h@® —z+(1-y)?*y" —y+a7).

I
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Invariant Measure (cont.)

The measure pp is finite, giving a measure of 72 /4 for each of the
eight regions.

Figure: The density fp(z) shown from two angles (fa is fg rotated by 90°).
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The Work of A. L.. Schmidt and H. Nakada

Figure: Model circle 7

Figure: Model triangle Z*

aubey, BE. Fu

Asmus Schmidt (1975,1982) developed a pair
of algorithms for continued fractions over
Q(7) and studied their ergodic theory.
Hitoshi Nakada (1988,1990) furthered their
study. Let X =ZUZ" and define T': X — X
by mapping the circular regions V; and C*
onto Z and the triangular regions V;" and C
onto Z* with the inverses of the following
Mobius transformations

1

D :

vy =82V 8™

E1=( 9 ) By =SE{S™ Y, Ey=5%E52

_ 1 14 _ (0 -1
e=( 1, ) mas— (0 1)

T is ergodic with respect to the measure
assigning hyperbolic area to the triangle and
the density H(z, —y) on the upper half-plane.
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The Work of A. L. Schmidt and H. Nakada (cont.)

If T"z = M,;'T" 'z with M,, € {V;, E;, C}, then following the orbits of

0 1 oo under the partial products M - --- - M, gives three sequences
/q("), a = 0,1, 00, of Gaussian rational approximations to z. Inducing

to X\ U; (Vi UVY) gives “faster” convergents p(")/qg’” and a sequence of

exponents e, (1 for E;, C, and the return time k for V}¥).

Some results for these convergents include

@ [Schmidt] If |z — p/q| < m then p/q = p5” /g5 for some n, a
(noted earlier in the reflection group setting).
o [Nakada] If |z — p/q| < ﬁ then p/q = p /g5 for some n, a.

@ [Schmidt] The geometric and arithmetic means of the exponents exist
almost everywhere

N /N | X
nlirnoo (1_[16n> =1.26..., nl;rgloﬁz:e,L = 1.667....

n=1

o [Nakada] The (almost everywhere) exponential rate of convergence is
given by

lim —log|z M Jqm| = 22&
s . w2 (2 + 1)
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Similar systems in Q(1/—2)

There is a GLy(Z[v/—2]) x (Z)-invariant tessellation of H3 by
right-angled cuboctahedra and everything done above over Q(4)
carries over to Q(v/—2) (dual pair of dynamical systems, rational
approximations, invariant measure, 2-congruence, etc.).




Thank you for your attention.




