
BADLY APPROXIMABLE NUMBERS OVER IMAGINARY QUADRATIC
FIELDS

ROBERT HINES

Abstract. We recall the notion of nearest integer continued fractions over the Euclidean
imaginary quadratic fields K and characterize the “badly approximable” numbers, (z such
that there is a C = C(z) > 0 with |z − p/q| ≥ C/|q|2 for all p/q ∈ K), by boundedness
of the partial quotients in the continued fraction expansion of z. Applying this algorithm
to “tagged” indefinite integral binary Hermitian forms demonstrates the existence of entire
circles in C whose points are badly approximable over K, with effective constants.

By other methods (the Dani correspondence), we prove the existence of circles of badly
approximable numbers over any imaginary quadratic field, with loss of effectivity. Among
these badly approximable numbers are algebraic numbers of every even degree over Q, which
we characterize. All of the examples we consider are associated with cocompact Fuchsian
subgroups of the Bianchi groups SL2(O), where O is the ring of integers in an imaginary
quadratic field.

Introduction

A natural generalization of continued fractions to complex numbers over appropriate dis-

crete subrings O of C, in particular over Z[
√
−1] and Z

[
1+
√
−3

2

]
, was introduced by A.

Hurwitz, [Hur1]. Let K be one of the Euclidean imaginary quadratic fields and O its ring
of integers. We write a complex number uniquely as bze + 〈z〉 with bze ∈ O the nearest
integer to z and 〈z〉 ∈ V , where V is the collection of complex numbers closer to zero than
to any other point of the lattice O (with some choice along the boundary of V ). For z ∈ V
we iterate the map T (z) = 〈1/z〉, T n(z) =: zn, to obtain the continued fraction

z = [a0; a1, a2, . . .] = a0 +
1

a1 + 1
a2+...

, b1/zie = ai+1 ∈ O,

and convergents pn/qn = [a0; a1, . . . , an].
It is known that the convergents pn/qn from the above algorithms all satisfy

|z − pn/qn| ≤ C/|qn|2

for some C > 0. See Proposition 2 below for a proof and Theorem 1 of [La] for the smallest
values of C. This is a simple algorithmic realization of Dirichlet’s theorem that for irrational
z ∈ C, there are infinitely many p/q ∈ K satisfying the above inequality. A number z is
badly approximable if the exponent of two is the best possible, i.e. z is badly approximable
if there exists C ′ > 0 such that for any p/q ∈ K we have

|z − p/q| ≥ C ′/|q|2.
It is well-known that a real number is badly approximable over Q if and only if its partial
quotients an are bounded. We show below (Theorem 1) that this is the case for nearest integer
continued fractions over K as well, relying on the work of Lakein [La] who investigated the
quality of approximation of the nearest integer convergents.
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2 ROBERT HINES

It is a folklore conjecture that the only real algebraic numbers with bounded partial
quotients in their continued fraction expansion are the quadratic irrationals, whose partial
quotients are eventually periodic. However, it is shown in [BG], using methods expanded
upon in this paper, that the analogous conjecture does not hold exactly over Q(

√
−1). There

are examples of algebraic numbers of relative degree greater than two over Q(
√
−1) whose

nearest integer continued fraction expansions have bounded partial quotients. Examples of
this phenomenon were first detailed by Hensely, cf. [Hen] §5.6. While these examples are
not quadratic over Q(

√
−1), they are associated with closed geodesic surfaces in the Bianchi

orbifold SL2(Z[i])\H3 in the same way that real quadratic irrationals are associated to closed
geodesics on the modular surface SL2(Z)\H2 .

The first objective of this paper is to make explicit the connection (implicit in [Hen]
for Q(

√
−1) and explicit in [Da2] for Q(

√
−3)) “badly approximable ⇐⇒ bounded partial

quotients” for nearest integer continued fractions over K, where K is any of the Euclidean
imaginary quadratic fields, and to explore a class of complex numbers with “atypical” be-
havior, namely those lying on K-rational circles or lines, which include examples of algebraic
numbers with bounded partial quotients (extending the results of [BG]). In particular, we
prove the following.

• (Theorem 1) A number z ∈ C is badly approximable over K if and only if its
partial quotients are bounded in norm. Moreover an explicit approximation constant
is given as a function of the bound on the partial quotients.
• (Theorem 2) If z ∈ C lies on a K-rational circle or line, (i.e. (z, 1) is a zero of the

indefinite integral binary Hermitian form form H(z, w) = Azz−Bzw−Bzw+Cwz,
A,C ∈ Z, B ∈ O), then its remainders zn = T n(z) are “atypical” in that they lie on
a finite number of lines and circular arcs (cf. Figures 4, 5).
• (Corollary 1, Corollary 2) Moreover, if the rational circle on which z lies does

not contain any rational points, (i.e. the indefinite integral binary Hermitian form H
is anisotropic), then the remainders zn are bounded away from zero and the partial
quotients an are bounded in norm. We give explicit bounds on an, zn in terms of H
and K.
• (Corollary 3) There are algebraic numbers of every even degree over Q that are

badly approximable over K (with effective approximation constant). We also provide
a characterization of these badly approximable algebraic numbers.

The second objective of this paper is to show that the main results above hold over every
imaginary quadratic field, possibly non-Euclidean, but without effective constants. Instead
of using continued fractions, we employ a version of the Dani correspondence (Theorem 3)
characterizing badly approximable numbers in terms of bounded geodesic trajectories in the
Bianchi orbifolds. In particular we have the following.

• (Theorem 5, Corollary 3) Let K be any imaginary quadratic field. If z ∈ C lies
on a K-rational circle without rational points (i.e. H(z, 1) = 0 for an anisotropic
indefinite binary Hermitian form with coefficients in K) then z is badly approximable
over K. In particular, there are algebraic numbers of every even degree over Q that
are badly approximable over K, which we characterize.

In the mathoverflow post [Di], which inspired this work, the question is raised as to
whether or not the examples of [BG] exhaust the badly approximable algebraic numbers
over Q(

√
−1). Obvious ways to stay out of the cusps of SL2(O)\H3 are to consider closed
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geodesics (anisotropic integral binary quadratic forms, i.e. quadratic irrationals) or compact
geodesic surfaces (anisotropic integral indefinite binary Hermitian forms, giving the examples
we explore in this paper). Whether badly approximable numbers algebraic over K must be
associated to compact geodesic surfaces in the Bianchi orbifolds is an interesting question
(an extension of the folklore conjecture above), although it is not clear to the author why
this should be so.

Acknowledgments. The author would like to thank Katherine Stange for many helpful
conversations and for reading various drafts of this document.

Nearest integer continued fractions over the Euclidean imaginary
quadratic fields

Let K = Kd = Q(
√
−d), d > 0 a square-free integer, be an imaginary quadratic field and

O = Od the ring of integers of K. For d = 1, 2, 3, 7, 11 the Od are Euclidean with respect to
the usual norm |z|2 = zz, noting that the collection of disks {z ∈ C : |z − r| < 1}r∈O cover
the plane, and in fact are the only d for which Od is Euclidean with respect to any function
([Le] §4). Consider the open Voronoi cell for Od ⊆ C, the collection of points closer to zero
than to any other lattice point, along with a choice E of a subset of the boundary, so that
we obtain a strict fundamental domain for the additive action of O on C,

V = Vd = {z ∈ C : |z| < |z − r|, r ∈ O} ∪ E , E ⊆ ∂V.

For the Euclidean values of d, and only for these values, Vd is contained in the open unit
disk. The regions Vd are rectangles for d = 1, 2 and hexagons for d = 3, 7, 11; see Figure 1.
For z ∈ C, we denote by bze ∈ O and 〈z〉 ∈ V the nearest integer and remainder, uniquely
satisfying

z = bze+ 〈z〉 .
We now restrict ourselves to Euclidean K to describe the continued fraction algorithm and
applications, but we will return to arbitray imaginary quadratic K in a later section.

We have an almost everywhere defined map T = Td : Vd → Vd given by T (z) = 〈1/z〉. For
z ∈ C define sequences an ∈ O, zn ∈ V , for n ≥ 0:

a0 = bze , z0 = z − a0 = 〈z〉 , an =

⌊
1

zn−1

⌉
, zn =

〈
1

zn−1

〉
=

1

zn−1
− an = T n(z0).

In this way, we obtain a continued fraction expansion for z ∈ C,

z = a0 +
1

a1 + 1
a2+...

=: [a0; a1, a2, . . .],

where the expansion is finite for z ∈ K. The convergents to z will be denoted by

pn
qn

= [a0; a1, . . . , an],

where pn, qn are defined by(
pn pn−1
qn qn−1

)
=

(
a0 1
1 0

)
· · ·
(
an 1
1 0

)
.
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Here are a few easily verified algebraic properties that will be used below:

qnz − pn = (−1)nz0 · . . . · zn, z =
pn + znpn−1
qn + znqn−1

,

z − pn
qn

=
(−1)n

q2n(z−1n + qn−1/qn)
,

qn
qn−1

= an +
qn−2
qn−1

.

The first equality proves convergence pn/qn → z for irrational z and gives a rate of conver-
gence exponential in n. A useful parameter is ρ = ρd, the radius of the smallest circle around
zero containing Vd,

ρd =

√
1 + d

2
, d = 1, 2, ρd =

1 + d

4
√
d
, d = 3, 7, 11.

We note that |an| ≥ 1/ρd for n ≥ 1, which is easily verified for each d.
Taking the transpose of the matrix expression above, we have the equality

qn
qn−1

= an +
1

an−1 + 1
···+ 1

a1

alg.
= [an; an−1, . . . , a1]

as rational numbers (indicated by the overset “alg.”), but this does not hold at the level
of continued fractions, i.e. the continued fraction expansion of qn−1/qn is not necessarily
[an; an−1, . . . , a1]. See Figure 2 for the distribution of qn−1/qn, for 5000 random numbers and
1 ≤ n ≤ 10, over Q(

√
−1) and Q(

√
−3). The bounds |qn+2/qn| ≥ 3/2 are proved in [Hen]

and [Da1] for d = 1 and 3 respectively.
Monotonicity of the denominators qn was shown by Hurwitz [Hur1] for d = 1, 3, Lunz

[Lu] for d = 2, and stated without proof in [La] for d = 1, 2, 3, 7, 11. As this is a desirable
property to establish, we outline the proof for the cases d = 7, 11 in an appendix. The proofs
are unenlightening and follow the outline for the simpler cases d = 1, 3 in [Hur1].

Proposition 1. For any z ∈ C, the denominators of the convergents pn/qn are strictly
increasing in absolute value, |qn−1| < |qn|.

Proof. See the appendix. �

To conclude this section, we record the following lemma, which is used in the proof of

Theorem 1, applied to the inverse of gn =

(
pn pn−1
qn qn−1

)
, for which gn(∞) = pn/qn and

g−1n (∞) = −qn−1/qn as depicted in Figure 3.

Lemma 1. Let w = g(z) = az+b
cz+d

with a, b, c, d ∈ O, |ad − bc| = 1, and g(p/q) = ∞ (i.e.

p/q = −d/c). Then the disk D = {z ∈ C : |z − p/q| < C/|q|2} gets mapped via g to the
region g(D) = {w ∈ C : |w− a/c| > 1/C}, the exterior of the disk of radius 1/C centered at
g(∞).

Proof. We have

w − a/c =
az + b

cz + d
− a

c
=
− det(g)

c2(z + d/c)
, |w − a/c| = 1

|c|2|z + d/c|
=

1

|q|2|z − p/q|
,

so that

|w − a/c| > 1/C ⇐⇒ 1

|q|2|z − p/q|
> 1/C ⇐⇒ |z − p/q| < C/|q|2.

�
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Figure 1. ∂V and translates (blue), ∂(V −1) (red), and unit circle (black) for
d = 1, 2, 3, 7, 11.

Figure 2. The numbers qn−1/qn, 1 ≤ n ≤ 10, for 5000 randomly chosen z
over Q(

√
−1) and Q(

√
−3).

Some references for nearest integer continued fractions include: [Hur1] (some generalities
and d = 1, 3), [P] §46 (d = 1, 2, 3), [La] (d = 1, 2, 3, 7, 11), [Hen] Chapter 5 (d = 1), and
[Da1] (a general approach including some properties of the cases we consider).
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Badly approximable numbers over the Euclidean imaginary quadratic
fields via nearest integer continued fractions

For each of the Euclidean imaginary quadratic fields K there is a constant C > 0 such
that for any z ∈ C there are infinitely many solutions p/q ∈ K, (p, q) = 1 to

|z − p/q| ≤ C/|q|2,(†)
by a pigeonhole argument for instance (cf. [EGM] Chapter 7, Proposition 2.6). The smallest
such C are 1/

√
3, 1/

√
2, 1/ 4

√
13, 1/ 4

√
8, and 2/

√
5 for d = 1, 2, 3, 7, 11 respectively (for

references, see the Introduction to [V]). We can obtain rational approximations with a
specific C satisfying inequality † using the nearest integer algorithms described above. The
best constants coming from the nearest integer convergents, supz,n{|qn|2|z − pn/qn|}, can be
found in Theorem 1 of [La].

Proposition 2. For z ∈ C \K, the convergents pn/qn satisfy

|z − pn/qn| ≤
1

(1/ρ− 1)|qn|2
,

i.e. we can take p/q = pn/qn and C = ρ
1−ρ in the inequality †.

Proof. Using simple properties of the algorithm and the bounds 1/zn ∈ V −1, |qn−1/qn| ≤ 1,
we have

|z − pn/qn| =
1

|qn|2|z−1n + qn−1/qn|
≤ 1

|qn|2(1/ρ− 1)
.

�

We say z is badly approximable over K there is a C ′ > 0 such that

|z − p/q| ≥ C ′/|q|2

for all p/q ∈ K, i.e. z is badly approximable if the exponent of two on |q| is the best possible
in the inequality †. We will show that the badly approximable numbers are characterized by
the boundedness of the partial quotients in the nearest integer continued fraction expansion,
analogous to the well-known fact for simple continued fractions over the real numbers. First
a lemma showing that the nearest integer convergents compare well with the best rational
approximations.

Lemma 2. There are effective constants α = αd > 0 such that for any irrational z with
convergents pn/qn and rational p/q with |qn−1| < |q| ≤ |qn| we have

|qnz − pn| ≤ α|qz − p|.

Proof. Write p/q in terms of the convergents pn/qn, pn−1/qn−1 for some s, t ∈ O(
p
q

)
=

(
pn pn−1
qn qn−1

)(
s
t

)
=

(
pns+ pn−1t
qns+ qn−1t

)
.

If s = 0, then p/q = pn−1/qn−1, impossible by the assumption |qn−1| < |q|. If t = 0, then
p/q = pn/qn and the result is clear with α = 1. We may therefore assume |s|, |t| ≥ 1. We
have ∣∣∣∣z − p

q

∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣pnqn − p

q

∣∣∣∣− ∣∣∣∣z − pn
qn

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ tqqn
∣∣∣∣− ∣∣∣∣z − pn

qn

∣∣∣∣∣∣∣∣ ,
noting that t = (−1)n(pqn − pnq) by inverting the matrix relating p, q, s, and t.



BADLY APPROXIMABLE NUMBERS OVER IMAGINARY QUADRATIC FIELDS 7

Define δ by |t| = δ|qn|2|z − pn/qn|, so that

1

|δ − |q/qn||
|qz − p| ≥ |qnz − pn|.

If δ > 1, then we have our α. A lower bound for δ is

δ =
|t|

|qn|2|z − pn/qn|
≥ |t| inf

z,n
{(|qn||qnz − pn|)−1}.

The infimum above is calculated in [La], Theorem 1, where it is found to be

inf
z,n
{(|qn||qnz − pn|)−1} =



1 d = 1,√
486−

√
3

786
= 0.78493 . . . d = 2,√

7+
√
21

7
= 1.28633 . . . d = 3,√

2093−9
√
21

2408
= 0.92307 . . . d = 7,

1
5
√
2

√
30− 8

√
5− 5

√
11 + 3

√
55 = 0.59627 . . . d = 11.

The smallest integers of norm greater than one in Od have absolute values of
√

2 (for d =
1, 2, 7) and

√
3 (for d = 3, 11). Multiplying these potential values of |t| by the above constants

gives values of δ greater than one, so that |δ − |q/qn|| ≥ |δ − 1| is bounded away from zero.
Hence we are left to explore those rationals p/q with |t| = 1.

For general t we have

qz − p = q
pn + znpn−1
qn + znqn−1

− p = (qns+ tqn−1)
pn + znpn−1
qn + znqn−1

− (pns+ tpn−1) =
(−1)n(szn − t)
qn + znqn−1

and

qnz − pn =
(−1)nzn

qn + znqn−1
,

and we want α > 0 such that
|qnz − pn| ≤ α|qz − p|.

Substituting the above we have

|qnz − pn| ≤ α|qz − p| ⇐⇒ |zn|
|qn + znqn−1|

≤ α
|zns− t|
|qn + znqn−1|

⇐⇒ 1

|s− t/zn|
≤ α.

If |s− t/zn| < 1/2 and |t| = 1, then s/t = an+1 since s/t ∈ O is the nearest integer to 1/zn.
However (with |qn−1| < |q| ≤ |qn|, q = sqn + tqn−1),∣∣∣∣qn+1

qn

∣∣∣∣ =

∣∣∣∣an+1 +
qn−1
qn

∣∣∣∣ =

∣∣∣∣st +
qn−1
qn

∣∣∣∣ =

∣∣∣∣s+ t
qn−1
qn

∣∣∣∣ =

∣∣∣∣ qqn
∣∣∣∣ ≤ 1,

and we obtain a contradiction if |s − t/zn| < 1/2 and |t| = 1. Hence when |t| = 1 we can
take α = 2.

In summary, we can take

αd =


2.41421 . . . d = 1
9.08592 . . . d = 2

2 d = 3
3.27419 . . . d = 7
30.51490 . . . d = 11

,
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taking the maximum of 2 (covering the case |t| = 1) and the bound on |t|
δ−|q/qn| for |t| > 1. �

No attempt was made to optimize the value of α in the lemma. The above result for
d = 1, 3 and α = 1 is contained in Theorem 2 of [La]. Another proof for d = 1 and α = 5 is
Theorem 5.1 of [Hen], and a proof for d = 3, α = 2 can be found in [Da2]. The purpose of
the above lemma is to establish the following proposition (which for d = 3 is Corollary 1.3
of [Da2]).

Theorem 1. A number z ∈ C \K is badly approximable if and only if its partial quotients
an are bounded (if and only if the remainders zn are bounded away from zero). In particular,
if |an| ≤ β for all n and p/q ∈ K, then |z − p/q| ≥ C ′/|q|2 where

C ′ =
1

α(β + 1)(β + ρ+ 1)
.

Proof. If z is badly approximable, then there is a C ′ > 0 such that for each convergent pn/qn
to z, the disk |w−pn/qn| ≤ C ′/|qn|2 does not contain z. Mapping pn/qn to∞ via g−1n , where

gn =

(
a0 1
1 0

)
. . .

(
an 1
1 0

)
=

(
pn pn−1
qn qn−1

)
,

maps the disk |w − pn/qn| ≤ C ′/|qn|2 to the region |w + qn−1/qn| ≥ 1/C ′, centered at
g−1n (∞) = −qn−1/qn (cf. Lemma 1). Because g−1n (z) is inside the disk of radius 1/C ′

centered at −qn−1/qn and | − qn−1/qn| < 1, we have

an+1 + zn+1 = 1/zn = g−1n (z),

|an+1| ≤ |zn+1|+ |g−1n (z)| ≤ ρ+ 1 + 1/C ′.

Hence an+1 is bounded. See Figure 3 below for an illustration.
By Lemma 2, for z and p/q with |qn−1| < |q| ≤ |qn| we have∣∣∣∣z − pn

qn

∣∣∣∣ ≤ α

∣∣∣∣z − p

q

∣∣∣∣ ∣∣∣∣ qqn
∣∣∣∣ ≤ α

∣∣∣∣z − p

q

∣∣∣∣ |q|2|qn|2
∣∣∣∣ qnqn−1

∣∣∣∣
= α

∣∣∣∣z − p

q

∣∣∣∣ |q|2|qn|2
∣∣∣∣an +

qn−2
qn−1

∣∣∣∣
≤ α

∣∣∣∣z − p

q

∣∣∣∣ |q|2|qn|2 (|an|+ 1),

|qn|2
∣∣∣∣z − pn

qn

∣∣∣∣ ≤ α(|an|+ 1)|q|2
∣∣∣∣z − p

q

∣∣∣∣ .
This shows that if z has bounded partial quotients, then z is badly approximable if and only
if it is badly approximable by its convergents. For approximation by convergents, we have∣∣∣∣z − pn

qn

∣∣∣∣ =
1

|qn|2|1/zn + qn−1/qn|
=

1

|qn|2|an+1 + zn+1 + qn−1/qn|
≥ 1

|qn|2(|an+1|+ ρ+ 1)
,

showing that if the partial quotients of z are bounded, then z is badly approximable by
convergents and therefore badly approximable. For an approximation constant, the above
discussion gives |z − p/q| ≥ C ′/|q|2 for any p/q ∈ K where

C ′ =
1

α(β + 1)(β + ρ+ 1)

and β is an upper bound for the an. �
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pn
qn

−qn−1

qn

Figure 3. Over Q(
√
−1), we have the points pn/qn = gn(∞) and −qn−1/qn =

g−1n (∞), along with the unit circle and its image under gn (black), circles of
radius 1/C ′ and C ′/|qn|2 (red), and the lines defining V and their images under
gn (blue).

The continued fraction expansions of points on K-rational circles

In this section we focus on producing z with bounded partial quotients extending the
results of [BG] to all of the Euclidean imaginary quadratic fields Kd. We will show that there
are many circles in the complex plane all of whose points have bounded partial quotients.

We will consider equivalence classes of indefinite integral binary Hermitian forms. A binary
Hermitian form H(z, w) is a function of the form

H(z, w) = (z, w)

(
A −B
−B C

)(
z
w

)
= Azz −Bzw −Bzw + Cww, A,C ∈ R, B ∈ C.

We denote by ∆(H) the determinant AC − |B|2 of the Hermitian matrix defining H. The
binary Hermitian form H is integral over K if the matrix entries of H are integers, i.e.
A,C ∈ Z and B ∈ O. The form is indefinite (takes on both positive and negative values) if
and only if ∆(H) < 0. The zero set of an indefinite H on the Riemann sphere P 1(C) is a
circle (using homogeneous coordinates [z : w] on the projective line)

Z(H) := {[z : w] ∈ P 1(C) : H(z, w) = 0}

which is either a circle or a line in the chart Cz = {[z : 1] ∈ P 1(C)}

Z(H) ∩ Cz =

{
{z : |z −B/A|2 = −∆/A2} if A 6= 0,
{z : Re(Bz) = C} if A = 0.

We will be interested in equivalence of forms over SL2(O), where g ∈ SL2(O) acts as a linear
change of variable on the left, gH = (g−1)∗Hg−1 (here ∗ denotes the conjugate transpose),
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and also with the Möbius action of SL2(O) on P 1(C),

g · [z : w] = [az + bw : cz + dw], g =

(
a b
c d

)
.

We collect some easily verified facts in the following lemma.

Lemma 3. The following hold for the action gH = (g−1)∗Hg−1, g ∈ SL2(C), on indefinite
binary Hermitian forms.

• The action of SL2(C) is determinant preserving, i.e. ∆(gH) = ∆(H).
• The map H 7→ Z(H) is SL2(C)-equivariant (i.e. g · Z(H) = Z(gH)).

Furthermore, an integral form H is isotropic (i.e. H(z, w) = 0 for some [z : w] ∈ P 1(K)) if
and only if −∆(H) is in the image of the norm map NK

Q : K → Q.

Proof. For g ∈ SL2(C) we have

det(gH) = det((g−1)∗Hg−1) =
det(H)

det(g)det(g)
= det(H).

The second bullet follows from

((z̄ w̄)g∗)(gH)(g(z w)t) = ((z̄ w̄)g∗)((g−1)∗Hg−1)g(z, w)t = H(z, w).

Finally, the factorization (assuming A 6= 0 else −∆ = |B|2 is a norm and H(1, 0) = H(0, 1) =
0)

AH(z, w) = |Az −Bw|2 + ∆|w|2

shows that−∆ is a norm if and only if there are z, w ∈ K not both zero with H(z, w) = 0. �

Suppose H is an indefinite integral binary Hermitian form of determinant ∆ and z =

[a0; a1, . . .] satisfies H(z, 1) = 0. Define Hn = g−1
n H, where

g−1n =

(
0 1
1 −an

)
· · ·
(

0 1
1 −a0

)
, gn =

(
pn pn−1
qn qn−1

)
,

with notation

Hn =

(
An −Bn

−Bn Cn

)
.

In particular, we have

An = H(pn, qn),

Cn = H(pn−1, qn−1) = An−1.

Note that Hn(1, zn) = 0 for all n ≥ 1 because gn(1/zn) = z.
The main observation for us is the following theorem, which is essentially Theorem 4.1 of

[BG] generalized to the other Euclidean K and arbitrary integral binary Hermitian forms.
One could follow the inductive geometric proof of [BG], but we give an algebraic proof
analgous to one demonstrating that real quadratic irrationals have eventually periodic simple
continued fraction expansions, e.g. [Kh], Theorem 28. In fact, we may as well note that
the proof of Theorem 2 below applies mutatis mutandis to integral binary quadratic forms
over K, showing that the continued fraction expansions of quadratic irrationals over K are
eventually periodic as expected.

Theorem 2. If [z : 1] is a zero of an indefinite integral binary Hermitian form H, then the
collection {Hn : n ≥ 0} is finite.
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Proof. In what follows, ∆ = ∆(H) = ∆(Hn). The inequality

|z − pn/qn| ≤
κ

|qn|2

allow us to write

pn = qnz +
γn
qn
, |γn| ≤ κ

where κ = supz,n{|qn||qnz − pn|} < 2 is the best constant from [La] used in the proof of
Lemma 2.

Substituting this into the formula for An above gives

An = H(qnz + γn/qn, qn) = |qn|2H(z, 1) + A

(
qnz

γn
qn

+ qnz
γn
qn

+

∣∣∣∣γnqn
∣∣∣∣2
)
−Bqn

qn
γn −B

qn
qn
γn

= A

(
qnz

γn
qn

+ qnz
γn
qn

+

∣∣∣∣γnqn
∣∣∣∣2
)
−Bqn

qn
γn −B

qn
qn
γn,

and

|An| ≤ |A|κ2 + 2|B|κ+ 2|A||z|κ ≤ |A|κ2 + 4|B|κ+ 2κ
√
−∆

≤ max{|A|, |A|κ2 + 4|B|κ+ 2κ
√
−∆} =: η.

(We take the max above so that the parameter η is useful for bounds on zn, an when n = 0,
cf. Corollary 2 below.) From this it follows that

|Cn| = |An−1| ≤ η,

|Bn| =
√
AnCn −∆ ≤

√
η2 −∆,

so that there are only finitely many possibilities for Hn. �

By requiring H to be anisotropic, we bound the finitely many circles Z(Hn) away from
zero and infinity, obtaining bounded partial quotients.

Corollary 1. If [z : 1] is a zero of an anisotropic indefinite integral binary Hermitian form
H, then z has bounded partial quotients in its nearest integer continued fraction expansion
(and is therefore badly approximable over K).

A quantitative measure of the “hole” around zero (see Figures 4, 5) can be given in terms
of the determinant ∆ = det(H) of the form, which in turn bounds the partial quotients and
controls the approximation constant |z − p/q| ≥ C ′/|q|2.

Corollary 2. If z ∈ Z(H) is a zero of the anisotropic integral indefinite binary Hermitian
form H of determinant ∆, then the remainders zn, n ≥ 0, are bounded below by

|zn| ≥
1

√
−∆ +

√
η2 −∆

,

with partial quotients bounded above by

|an| ≤ ρ+
√
−∆ +

√
η2 −∆,

where η is as in the proof of Theorem 2. From these bounds, one can produce a C ′(H) > 0
such that |z − p/q| ≥ C ′/|q|2 for all p/q ∈ K and [z : 1] ∈ Z(H).
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Proof. We use the notation of Theorem 2. Since 1/zn lies on Z(Hn) ∩ Cz, which has radius√
−∆/|An| and center Bn/An, we have

1

|zn|
≤
∣∣∣∣Bn

An

∣∣∣∣+

√
−∆

|An|
≤
√
η2 −∆ +

√
−∆,

|zn| ≥
1

√
−∆ +

√
η2 −∆

.

We also have

an+1 + zn+1 =
1

zn

so that

|an+1| ≤ |zn+1|+
1

|zn|
≤ ρ+

√
−∆ +

√
η2 −∆.

From Theorem 1, it follows that |z − p/q| ≥ C ′/|q|2 for all p/q ∈ K, where

C ′ =
1

α(β + 1)(β + ρ+ 1)
, β = ρ+

√
−∆ +

√
η2 −∆.

�

Badly approximable circles over arbitrary imaginary quadratic fields via
the Dani correspondence

The fact that all of the points on a K-rational circle without rational points are badly
approximable holds for any imaginary quadratic K, not only those that are Euclidean. We
no longer have continued fractions at our disposal, but we have a characterization of badly
approximable z obtained from consideration of a geodesic trajectory in SL2(O)\H3 “aimed”
at z, a variation of a result of Dani ([Da3]). This is a justification for the intuitive equivalence
of “badly approximable” and “staying out of the cusps” (or “bounded partial quotients” from
continued fractions).

If K has class number h(K), then SL2(O)\H3 has h cusps, i.e. there are h orbits for the
action of SL2(O) on P 1(K) ([EGM] Chapter 7, Theorem 2.4). It therefore makes sense to
discuss approximating a complex number with rationals representing different ideal classes.
However, we will continue to use the notion of badly approximable in the form

there exists C ′ > 0 such that for all p/q ∈ K, |z − p/q| ≥ C ′/|q|2.

We begin with a brief discussion of the homogenous spaces under consideration. The
group SL2(C) acts transitively on three dimensional hyperbolic space H3 (as a subset of the
real quaternions) via fractional linear transformations

H3 = {ζ = z + tj : z ∈ C, 0 < t ∈ R}, g · ζ = (aζ + b)(cζ + d)−1,

The stabilizer of j ∈ H3 is SU2(C), double covering SO3(R) ∼= SU2(C)/{±1}. Using the
basepoint j ∈ H3 (with some arbitrary frame as we will make no use of the framing), we
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make the following identifications:

SL2(C)/SU2(C) H3,

PSL2(C) oriented orthonormal frame bundle of H3,

SL2(O)\SL2(C)/SU2(C) the Bianchi orbifold SL2(O)\H3,

SL2(O)\SL2(C) oriented orthonormal frame bundle of SL2(O)\H3.

For example,

z + etj ↔
(

1 z
0 1

)(
et/2 0
0 e−t/2

)
SU2(C).

The following theorem characterizes badly approximable numbers by the boundedness of a
framed geodesic trajectory.

Theorem 3 (Dani correspondence). For z ∈ C, define

Ωz =

{
SL2(O)

(
1 z
0 1

)(
e−t 0
0 et

)
: t ≥ 0

}
⊆ SL2(O)\SL2(C).

The trajectory Ωz is precompact if and only if z is badly approximable

The Dani correspondence as stated above follows from a version of Mahler’s compactness
criterion.

Theorem 4 (Mahler’s compactness criterion). Let Ω ⊆ SL2(C). The set SL2(O) · Ω ⊆
SL2(O)\SL2(C) is precompact if and only if

inf{‖Xg‖∞ : g ∈ Ω, X = (x1, x2) ∈ O2 \ {(0, 0)}} > 0,

where ‖X‖∞ = max{|x1|, |x2|}.

For completeness, we give a proof of Mahler’s criterion at the end of the section. We now
give a short proof of the Dani correspondence as stated in Theorem 3.

Proof of Dani correspondence. For the proof, note that

O2 · Ωz = {(e−tq, et(p+ qz)) : t ≥ 0, (q, p) ∈ O2}.
Suppose z is badly approximable with |q(qz+p)| ≥ C ′ for all p/q ∈ K. If there exists t ≥ 0

and p/q ∈ K with ‖(e−tq, et(qz + p))‖∞ <
√
C ′, then taking the product of the coordinates

gives

|e−tqet(qz + p)| = |q(qz + p)| < C ′,

a contradiction. Hence inf{‖Xg‖∞ : g ∈ Ωz, X ∈ O2 \ {(0, 0)}} ≥ C ′ and Ωz is precompact
by Mahler’s criterion.

If z is not badly approximable, then for every n > 0 there exists pn/qn ∈ K such that
|qn(qnz + pn)| < 1/n2. If tn is such that e−tn|qn| = 1/n, then |etn(qnz + pn)| < 1/n and
‖(e−tnqn, etn(qnz + pn))‖∞ = 1/n. Therefore Ωz is not contained in any compact set by
Mahler’s criterion. �

One obvious way for the trajectory Ωz to remain bounded is for its image in SL2(O)\H3

to be asymptotic to a compact object, such as a compact geodesic surface. The following
lemma provides a plethora of compact geodesic surfaces in the Bianchi orbifolds SL2(O)\H3.
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Lemma 4 ([MR], §9.6). Let H be an integral indefinite binary Hermitian form. The orien-
tation preserving stabilizer of the zero set Z(H),

Stab+(Z(H)) =

{
g ∈ SL2(O) :

g · Z(H) = Z(H) and
g preserves the components of P 1(C) \ Z(H)

}
,

is a maximal non-elementary Fuchsian subgroup of SL2(O). If H is anisotropic, then
Stab+(Z(H)) is cocompact. In particular, if P (H) ⊆ \H3 is the geodesic plane with boundary
Z(H), then the image of P (H) in SL2(O)H3 is compact for anisotropic H.

Together, Lemma 4 and Theorem 3 imply the following.

Theorem 5. Let K be any imaginary quadratic field and H an anisotropic indefinite K-
rational binary Hermitian form, i.e.

H = Azz̄ −Bz̄w −Bzw̄ + Cww̄, A,C ∈ Q, B ∈ K, 0 < −∆(H) = BB − AC 6∈ NK
Q (K).

If z ∈ C, H(z, 1) = 0, then z is badly approximable over K, i.e. there exists C ′ > 0 such
that for all p/q ∈ K, we have |z − p/q| ≥ C ′/|q|2.

Proof. Let π1, π2 denote the projections

π1 : H3 → SL2(O)\H3, π2 : SL2(O)\SL2(C)→ SL2(O)\H3,

and note that π2 is proper.
The circle Z(H) is the boundary at infinity of a geodesic plane P (H) (a hemisphere

orthogonal to C ⊆ ∂H3). The geodesic ray γz = {z + tj : 0 < t ≤ 1} is asymptotic to P (H)
as they share the point z at infinity. Since π1 does not increase distances and π1(P (H)) is
compact by Lemma 4, π1(γz) is bounded in SL2(O)\H3. Because π2(Ωz) = π1(γz), we know

that π2(Ωz) is bounded in SL2(O)\H3 as well. Finally, we have Ωz ⊆ π−12 (π1(γz)), so that
Ωz is precompact. By Theorem 3, z is badly appoximable. �

We should also note that Theorem 5 has an elementary proof.

Alternate proof. Without loss of generality, assume H is integral. Because H(z, 1) = 0 and
by the mean value theorem, we have

|H(p/q, 1)| = |H(p/q, 1)−H(z, 1)| ≤ C1|z − p/q|

for some positive constant C1 depending on H and z. Multiplying by |q|2 gives

C2 ≤ |A|p|2 −Bp̄q −Bpq̄ + C|q|2| ≤ C1|q|2|z − p/q|

for any 0 < C2 ≤ min{|a| : a ∈ OK}, since H is anisotropic and integral. Therefore z is
badly approximable,

|q(qz − p)| ≥ C2C
−1
1 > 0.

�

We now give a proof of Mahler’s criterion in this setting, reducing it to the following
standard version over Z.

Theorem 6 ([M], Theorem 2). Let Ω ⊆ GLn(R). Then GLn(Z) · Ω ⊆ GLn(Z)\GLn(R) is
precompact if and only if the following two conditions are satisfied:

sup{| det(g)| : g ∈ Ω} <∞, inf{‖Xg‖2 : g ∈ Ω, X ∈ Zn} > 0,
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where ‖X‖2 =
√
x21 + . . .+ x2n for X = (x1, . . . , xn) ∈ Rn. In other words, the lattices

generated by the rows of elements of Ω must have bounded covolume and no arbitrarily short
vectors.

Proof of Mahler’s criterion. Choose an integral basis for O, say 1 and ω = DK+
√
DK

2
for

concreteness, where DK is the field disciminant,

DK =

{
−d, d ≡ 3 mod 4
−4d, d ≡ 1, 2 mod 4

.

We have a homomorphism

φ : C→M2(R), z 7→
(

r s

sDK(1−DK)
4

r + sDK

)
, z = r + sω,

taking a complex number z to the matrix of multiplication by z in the our integral basis.
This extends to a homomorphism

Φ : SL2(C)→ SL4(R),

(
z1 z2
w1 w2

)
7→
(

φ(z1) φ(z2)
φ(w1) φ(w2)

)
,

with Φ(SL2(C)) ∩ SL4(Z) = Φ(SL2(O)). Hence we obtain a closed embedding

Φ̃ : SL2(O)\SL2(C)→ SL4(Z)\SL4(R)

with the property that a subset of SL2(C)/SL2(O) is compact if and only if its image under

Φ̃ is compact. One can easily verify that the bijection

Ψ : C2 → R4, (a+ bω, c+ dω) 7→ (a, b, c, d)

is SL2(C)-equivariant, i.e.

Ψ((a+ bω, c+ dω)g) = (a, b, c, d)Φ(g).

Because the norms ‖ · ‖∞ and ‖Ψ(·)‖2 are equivalent on C2, e.g.

R

2
‖Ψ(X)‖2 ≤ ‖X‖∞ ≤ 2|ω|‖Ψ(X)‖2, R =

(
2

1 + |ω|2 + |1 + ω2|

)1/2

,

where R is the radius of the largest circle a2 + b2 = R2 contained in the ellipse |a+ bω|2 = 1,
we can apply the “standard” version of Mahler’s criterion to obtain the desired result. �

For a generalization of Mahler’s criterion and the Dani correspondence tailored to simul-
taneous approximation over number fields which includes what is presented here, see [EGL].

Examples of badly approximable algebraic numbers over any imaginary
quadratic field

In this section, we emphasize the fact that there are many algebraic numbers satisfying
the hypotheses of Corollary 1 and Theorem 5 and give a characterization of these numbers.

For z such that |z|2 = s/t ∈ Q is not a norm from K, the anisotropic integral form(
t 0
0 −s

)
shows that z is badly approximable. This essentially exhausts all of the examples
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we’ve given as we can translate an integral form by a rational to center it at zero, then clear
denominators to obtain an integral form as described, i.e.

H =

(
A −B
−B C

)
, g =

(
1 −B/A
0 1

)
, A · gH =

(
A2 0
0 AC −BB

)
.

For some specific algebraic examples, consider quadratically scaled roots of unity z =
√
nζ

for |z|2 = n ∈ Q not a norm, or the generalizations of examples from [BG], z = m
√
a +√

m
√
a2 − n for a ∈ Q,

m
√
a2 < n, and n = |z|2 not a norm. See Figures 4, 5 for visualizations

of the orbits of algebraic numbers satisfying |z|2 = n for various n and d = 1, 3.

Figure 4. 20,000 iterates of T for z = 3
√

2 +
√

3
√

4− n over Q(
√
−1) with n = 4, 5, 6, 7.

Figure 5. 10,000 iterates of T for z = 3
√

2 +
√

3
√

4− n over Q(
√
−3) with n = 2, 3, 4, 5.

We would like to characterize the badly approximable algebraic numbers captured above.
One such characterization comes from a parameterization of the algebraic numbers on the
unit circle (taken from the mathoverflow post [KCd]).

Lemma 5 ([KCd]). The algebraic numbers w on the unit circle, ww = 1, are those numbers
of the form

w =
u±
√
u2 − 4

2
where u is a real algebraic number in the interval [−2, 2]. If u 6= ±2, the minimal polynomial
f of w is

f(t) = tmg(t+ 1/t)

where g(t) is the minimal polynomial of u, deg(g) = m. In particular, the degree of f is
even.
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Proof. We know that w,w = 1/w have the same minimal polynomial f(x) ∈ Q[x], say of
degree d. One can deduce that xdf(1/x) = f(x) so that f(x) is palindromic (if f(x) =∑

k fkx
k then fd−k = fk) and since the roots come in reciprocal pairs, d is even. The even

degree palindromic polynomials are of the form f(x) = xd/2g(x+ 1/x) for some polynomial
g

f(x) =
d∑

k=0

fkx
k = xd/2

d/2∑
k=0

fk(x
k + 1/xk) = xd/2

r(x+ 1/x) +

d/2∑
k=0

fk(x+ 1/x)k


= xd/2g(x+ 1/x), g(x) = r(x) +

d/2∑
k=0

fkx
k,

noting that the difference (x+ 1/x)k − (xk + 1/xk) is a polynomial in x+ 1/x by symmetry
of the binomial coefficients. The roots of the even degree palindromic f on the circle double
cover the roots of g in the interval (−2, 2) (via w = eiθ 7→ u = 2 cos θ). Conversely, taking
an irreducible polynomial g(x) ∈ Q[x] of degree d/2 with a root in the interval (−2, 2) gives
a degree d irreducible polynomial f(x) = xd/2g(x+ 1/x) with roots on the unit circle. �

Hence we have the following corollary describing the badly approximable algebraic numbers
coming from Corollary 1 and Theorem 5.

Corollary 3. For any imaginary quadratic field K, there are algebraic numbers of each even
degree over Q that are badly approximable over K. Specifically, for any real algebraic number
u ∈ [−2, 2], any positive n ∈ Q \NK

Q (K), and any t ∈ K, the number

z = t+
√
n · u±

√
u2 − 4

2

is badly approximable.

For instance, the examples in Figures 4 and 5 have t = 0 and u = 24/3/
√
n.

Appendix: Monotonicity of denominators for d = 7, 11

The purpose of this appendix is to prove Proposition 1 for d = 7, 11. Proofs for d = 1, 3
are found in [Hur1] and a proof for d = 2 in [Lu] (§V II, Satz 11). Monotonicity for d = 7, 11
was stated in [La] without proof (for reasons obvious to anyone reading what follows). All
of the proofs follow the same basic outline, with d = 11 being the most tedious.

Proof of Proposition 1. For the purposes of this proof, define kn = qn/qn−1; we will show
|kn| > 1. We will also use the notation Bt(r) for the ball of radius t centered at r ∈ O.
When n = 1 we have |k1| = |a1| ≥ 1/ρ > 1. The recurrence kn = an + 1/kn−1 is immediate
from the definitions. We argue by contradiction following [Hur1]. Suppose n > 1 is the
smallest value for which |kn| ≤ 1 so that |ki| > 1 for 1 ≤ i < n. Then

|an| = |kn − 1/kn−1| < 2.

For small values of ai, those for which (ai + V )∩ V −1 ∩ (C \ V −1) 6= ∅, the values of ai+1 are
restricted (cf. Figure 1). More generally, there are arbitrarily long “forbidden sequences”
stemming from these small values of ai. We will use some of the forbidden sequences that
arise in this fashion to show that the assumption kn < 1 leads to a contradiction.
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• (d = 7) The only allowed values of an for which |an| < 2 are an = ±1±
√
−7

2
. By

symmetry, we suppose an = 1+
√
−7

2
=: ω without loss of generality. It follows that

kn ∈ B1(ω) ∩ B1(0). Subtracting ω = an, we see that 1/kn−1 ∈ B1(0) ∩ B1(−ω).
Applying 1/z then gives kn−1 ∈ B1(ω − 1) \ B1(0). Since kn−1 = an−1 + 1/kn−2, the
only possible values for an−1 are ω, ω− 1, ω− 2, 2ω− 1, and 2ω− 2. One can verify
that the two-term sequences

ai ai+1

ω − 2 ω
ω − 1 ω
ω ω

are forbidden, so that an−1 = 2ω− 1 or 2ω− 2. We now have either kn−1 ∈ B1(2ω−
1) ∩B1(ω − 1) if an−1 = 2ω − 1, or kn−1 ∈ B1(2ω − 2) ∩B1(ω − 1) if an−1 = 2ω − 2.
Subtracting an−1 and applying 1/z shows that an−2 = 2ω−1 or 2ω−2 if an−1 = 2ω−1,
and an−2 = 2ω or 2ω − 1 if an−1 = 2ω − 2.

Continuing shows that for i ≤ n− 1

ki ∈ (B1(2ω − 2) ∪B1(2ω − 1) ∪B1(2ω)) ∩ (B1(ω − 1) ∪B1(ω)) ,

the green region on the left in Figure 6. This is impossible; for instance k1 = a1 ∈ O
but the region above contains no integers.

• (d = 11) The only allowed values of an for which |an| < 2 are ±1±
√
−11

2
. By symmetry,

we suppose an = 1+
√
−11
2

=: ω without loss of generality. Hence kn ∈ B1(0) ∩ B1(ω).

Subtracting an and applying 1/z shows that kn−1 ∈ B1/2(
ω−1
2

)\B1(0) and an−1 = ω−1
or ω. If an−1 = ω − 1, subtracting, applying 1/z and using the three-term forbidden
sequences

ai ai+1 ai+2

ω − 1 ω − 1 ω
ω ω − 1 ω

ω + 1 ω − 1 ω

shows that an−2 = 2ω or 2ω − 1, with kn−2 ∈ B1(2ω) ∩B1(ω) or B1(2ω − 1) ∩B1(ω)
respectively.

If an−1 = ω, subtracting and applying 1/z gives an−2 = ω − 2 or ω − 1 with
kn−2 ∈ B1/2(

ω−2
2

) ∩ B1(ω − 2) or (B1/2(
ω−2
2

) ∩ B1(ω − 1)) \ B1/2(
ω−1
2

) respectively.
If an−2 = ω − 1, subtracting an−2, applying 1/z, and using the three-term forbidden
sequences

ai ai+1 ai+2

ω − 1 ω − 1 ω
ω − 2 ω − 1 ω

shows that an−3 = 2ω−2 or 2ω−1 with kn−3 ∈ B1(2ω−2)∩B1(ω−1) or B1(2ω−1)∩
B1(ω−1) respectively. If an−2 = ω−2, subtracting an−2 and applying 1/z shows that
an−3 = ω or ω+ 1, with kn−3 ∈ (B1(ω)∩B1/2(

ω+1
2

)) \B1(0) or B1(ω+ 1)∩B1/2(
ω+1
2

)
respectively. If an−3 = ω + 1, we loop back into a symmetric version of a case
previously considered (namely kn−4 ∈ B1/2(

ω−2
2

) \B1(0) and an−4 = ω − 1 or ω − 2).
If an−3 = ω, subtracting an−3, applying 1/z, and using the forbidden sequences
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ai ai+1 ai+2 ai+3 ai+4

ω − 1 ω ω − 2
ω ω ω − 2 ω

ω + 1 ω ω − 2 ω ω

shows that an−4 = 2ω or 2ω − 1 with kn−4 ∈ B1(2ω) ∩ B1(ω) or B1(2ω − 1) ∩ B1(ω)
resepectively.

Continuing, we find ki for i ≤ n− 1 restricted to the region depicted on the right
in Figure 6. This region contains no integers, contradicting k1 ∈ O.

1 1

Figure 6. In the proof of Proposition 1, the assumption kn < 1 with an =
1+
√
−7

2
(left) or an = 1+

√
−11
2

(right) leads to restricted potential values for ki
with i < n (green regions).

�
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