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A picture



Summary

Our goal is to generalize features of the preceding picture to some
nearby settings:

H2 H3 (H2)r × (H3)s Hn
P 1(R) P 1(C) P 1(R)r × P 1(C)s Sn−1

SL2(R) SL2(C) SL2(F ⊗ R) SVn−1(R)
SL2(Z) SL2(O) ” SV (O)

ideal right-angled
triangles ideal polyhedra
horoball bounded geodesic ”

neighborhoods trajectories
quad. quad./Herm. ” ”
forms forms

closed geodesics closed surfaces aniso. subgroups ”



Ingredients

Ingredients



Upper half-space models in dimensions two and three

Hyperbolic two-space:

H2 = {z = x+ iy ∈ C : y > 0},
∂H2 = P 1(R),

Isom(H2) = PGL2(R),

g · z =
az + b

cz + d
,
az̄ + b

cz̄ + d
(det g = ±1),

Stab+(i) = SO2(R)/{±1} ∼= SO2(R).

Hyperbolic three-space:

H3 = {ζ = z + jt ∈ H : t > 0, z ∈ C},
∂H3 = P 1(C),

Isom(H3) = PSL2(C) o 〈τ〉,

g · ζ = (aζ + b)(cζ + d)−1, τ(ζ) = z̄ + jt,

Stab+(j) = SU2(C)/{±1} ∼= SO3(R).



Binary quadratic and Hermitian forms

Hyperbolic two- and three-space are the Riemannian symmetric
spaces associated to G = SL2(R), SL2(C). The points can be
identified with roots of binary forms:

SL2(R)/SO2(R)→ {det. 1 pos. def. bin. quadratic forms} → H2

g 7→ ggt = ax2 + bxy + cy2 = Q 7→ −b+
√
b2 − 4ac

2a
=: Z(Q)

SL2(C)/SU2(C)→ {det. 1 pos. def. bin. Hermitian forms} → H3

g 7→ gg∗ = azz̄ + bz̄w + b̄zw̄ + cww̄ = H 7→ −b+ j
√
ac− bb̄

a
=: Z(H)

We have
Z(Qg) = g−1 · Z(Q), Z(Hg) = g−1 · Z(H),

where the actions above are given by linear change of variable g and
Möbius transformations g·.



Binary quadratic and Hermitian forms (cont.)

Indefinite forms parameterize codimension one geodesic subspaces:

Q = ax2 + bxy + cy2 (b2 − 4ac > 0)

∼ Z(Q) =
−b±

√
b2 − 4ac

2a
∼ geodesic between the roots,

H = azz̄ + bz̄w + b̄zw̄ + cww̄ (ac− |b|2 < 0)

∼ Z(H) =

{
z : |z + b/a|2 =

|b|2 − ac
a2

}
∼ geodesic plane with boundary Z(H).

Once again the association is SL2-equivariant:

Z(Qg) = g−1 · Z(Q), Z(Hg) = g−1 · Z(H).



Geodesic and frame flows

We can identify SL2(R) and SL2(C) with spin bundles over H2 and
H3, or PSL2(R) and PSL2(C) with the unit tangent bundle of H2

and the oriented orthonormal frame bundle of H3. Concretely (fixing
base points (i, i) and (j, {1, i, j}) respectively and letting v ∈ C,
η ∈ R + Ri+ Rj be unit tangent vectors), we have the derivative
action

g · (z, v) =

(
a b
c d

)
· (z, v) =

(
az + b

cz + d
,

v

(cz + d)2

)
=

(
g · z, dg

dz
· v
)
,

g · (ζ, η) = (g(ζ), (ζc+ d)−1η(cζ + d)−1).

In this setup, the geodesic flow and frame flow are given by

t 7→ g

(
et/2 0

0 e−t/2

)
.



Some arithmetic quotients

Given a number field F or signature (r, s) we have the R-algbra

F ⊗ R =
Q[x]

(m(x))
⊗ R =

∏
σ

real

R[x]

(x− σ(α))

∏
{σ,σ̄}

complex

R[x]

(x2 − (σ(α) + σ̄(α))x+ σ(α)σ̄(α))

∼= Rr × Cs,

and the ring of integers O is a discrete subring. The group

Γ = SL2(O) ⊆ SL2(F ⊗ R) = G

is a non-uniform lattice (non-cocompact, finite covolume discrete
subgroup), and we will be interested in the symmetric and locally
symmetric spaces

(H2)r × (H3)2 = G/K, Γ\G/K (K ∼= SO2(R)r × SU2(C)s).

For instance, when there is only one Archimedean place, we have the
modular surface and the Bianchi orbifolds:

SL2(Z)\SL2(R)/SO2(R), SL2(O)\SL2(C)/SU2(C)

(where O is the ring of integers in an imaginary quadratic field). One
can ask about approximating elements of F ⊗ R by elements of F .



Mahler’s compactness criterion

Given g ∈ SLn(R), let Λg ⊆ Rn be the Z-span of the rows of g.
(Oriented) change of basis corresponds to the coset SLn(Z)g. The
basic compactness criterion in the space of unimodular lattices
SLn(Z)\SLn(R) is the following.

Mahler’s criterion

X ⊆ SLn(Z)\SLn(R) is precompact iff the lengths of all non-zero
vectors in the corresponding unimodular lattices Λx, x ∈ X are
uniformly bounded below.



Dani correspondence

Badly approximable systems
of linear forms ⇐⇒

Bounded geodesic trajectories
in the space of lattices

For example:

ξ ∈ R is badly approximable, i.e. there exists
C > 0 such that

|ξ − p/q| ≥ C/q2, p/q ∈ Q,

if and only if

SL2(Z)

(
1 ξ
0 1

)(
e−t 0
0 et

)
SO2(R), t ≥ 0,

is bounded.



Compactness of some orthogonal and unitary groups modulo Γ

Example: [G = SL2(R), Γ = SL2(Z).] Let Q be an integral binay
quadratic form and SO(Q,R) ⊆ G the group of g such that gtQg = Q.

If Q(x, y) 6= 0 for all x, y ∈ Z, then SO(Q,Z)\SO(Q,R) is compact in
Γ\G.

This follows from Mahler’s criterion since ‖(x, y)gt‖ cannot be
arbitrarily small for (0, 0) 6= (x, y) ∈ Z2:

1 ≤
∣∣∣∣(x, y)Q

(
x

y

)∣∣∣∣ =

∣∣∣∣(x, y)gtQg

(
x

y

)∣∣∣∣ .
Right-translating such quotients (i.e. changing basepoint) gives
compact totally geodesic subspaces of Γ\G/K (closed geodesics on
the modular surface in the example above).



Vahlen group

Generally speaking, Isom+(Hn) = O(1, n)◦, but we can cram this
information into two-by-two matrices with entries in the definite
Clifford algebra

R[e1, . . . , en−2], e2i = −1, eiej = −ejei.

We identify Rn−1 with the “paravectors” spanR{1, e1, . . . , en−2}. The
orientation preserving isometries can be represented by the group

SVn =

{(
a b
c d

)
: ac∗, bd∗ ∈ Rn−1, ad∗ − bc∗ = 1

}
.

Here ∗ is the “reversal” involution induced by

(ei1 · · · eik)∗ = eik · · · ei1 = (−1)k(k−1)/2ei1 · · · eik .

[When n = 2, 3, we get SL2(R) and SL2(C).]



Prototype

We now present some aspects of simple continued fractions, with an
emphasis on badly approximable numbers (especially quadratic
irrationals).



Simple continued fractions: Definitions 1

The Euclidean algorthim [iterating (a, b) 7→ (b, a mod b)]

a = ba0 + r0, 0 ≤ r0 < b

b = r0a1 + r1, 0 ≤ r1 < r0

r0 = r1a2 + r2, 0 ≤ r2 < r1

. . . ,

or written in matrices(
a
b

)
=

(
a0 1
1 0

)(
b
r0

)
=

(
a0 1
1 0

)(
a1 1
1 0

)(
r0
r1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)(
a2 1
1 0

)(
r1
r2

)
. . . ,

expresses a rational number a/b as a finite continued fraction

a

b
= a0 +

1

a1 + 1
a2+

1

... 1
an

=: [a0; a1, . . . , an].



Simple continued fractions: Definitions 2

Extending this to irrational numbers ξ = bξc+ {ξ} = a0 + ξ0 gives a
dynamical system

T : (0, 1)→ (0, 1), ξ0 7→ {1/ξ0}

and infinite sequences

ξn+1 = {1/ξn} = Tn+1ξ0, an+1 = b1/ξnc =

⌊
1

Tnξ0

⌋
with

ξ = a0 +
1

a1 + 1
a2+...

=: [a0; a1, a2, . . .].

Stopping after n iterations gives rational approximations pn/qn to ξ,
where (

pn pn−1
qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an 1
1 0

)
.



Simple continued fractions: Definitions 3

The branches of T−1 are all surjective and we have bijections

R \Q ∼= Z× NN, Q = {[a0; a1, . . . , an] : n ≥ 0, an 6= 1 if n ≥ 1}.

T is the left shift on these sequences, T ([0; a1, a2, . . .]) = [0; a2, a3, . . .].

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0



Simple continued fractions: Approximation properties

The convergents pn/qn to ξ have the following properties.

Dirichlet bound

|ξ − pn/qn| ≤ 1/q2n

Best approximations

If 0 < q < qn then |qξ − p| > |qnξ − pn|; i.e. the continued fraction
convergents are the best rational approximations to ξ.

We say ξ is badly approximable if there exists C ′ > 0 such that

|ξ − p/q| ≥ C ′/q2 for all p, q ∈ Z,

i.e. the Dirichlet bound is tight (up to a multiplicative constant). This
is an interesting class of real numbers (uncountable, measure zero,
Hausdorff dimension 1, etc.) which is not completely understood.



Characterizing badly approximable numbers: Bounded partial quotients

One characterization of badly approximable numbers is the following.

The number ξ = [a0; a1, a2, . . .] ∈ R \Q is badly approximable if and
only its partial quotients an are bounded.

[If ξ is badly approximable, |ξ − p/q| ≥ C′/q2, then in particular

C′

q2
n

≤ |ξ − pn/qn| =
1

q2
n([an+1; an+2, . . .] + [0; an, . . . , a1])

≤ 1

q2
nan+1

,

an+1 ≤ 1/C′.

Conversely, if the partial quotients are bounded, supn{an} ≤M , then for
any p/q with 0 < q ≤ qn

|ξ − p/q| ≥ |ξ − pn/qn| =
1

q2
n(qn+1/qn + ξn+1)

=
1

q2
n([0; an+2,...] + [an+1; an, . . . , a1])

≥ 1

q2
n (an+1 + 2)

≥ 1

q2
n(M + 2)

,

using the fact that the convergents pn/qn are the best approximations.]



Characterizing badly approximable numbers: Bounded geodesic trajectories

Dani correspondence

The number ξ is badly approximable if and only if the trajectory

Ωξ =

{
SL2(Z)

(
1 ξ
0 1

)(
e−t 0
0 et

)
: t ≥ 0

}
⊆ SL2(Z)\SL2(R)

is bounded (precompact).



Examples of bounded geodesic trajectories

Left is the trajectory aimed at
ξ = 3

√
2− 4 = [0; 4, 8]. The

trajectory is bounded,
asymptotic to the closed
geodesic joining the conjugate
points ξ, ξ̄.

Right is the trajectory aimed at
the transcendental
ξ = [0; 4, 8, 8, 4, 8, 4, 4, 8, . . .]
(digits given by the Thue-Morse
sequence on {4, 8}).



Quadratic irrationals are badly approximable (!!!)

Here are three proofs that real quadratic irrationals

Q(x, y) = ax2 + bxy + cy2 = 0, Q(ξ, 1) = 0,

are badly approximable.

Partial quotients are eventually periodic: If

Qn = Qgn , gn =

(
pn pn−1

qn qn−1

)
, Qn(1, ξn) = 0,

then {Qn}n is finite (Dirichlet bound and discreteness of Z).

Dani correspondence: The geodesic
−→
∞ξ has bounded forward orbit

modulo SL2(Z) since it is asymptotic to a closed geodesic (the

projection of
−→
ξ′ξ).

Liouville: We have

0 <
1

q2
≤ |Q(p/q, 1)| = |Q(ξ, 1)−Q(p/q, 1)| ≤ C|ξ − p/q|

since Q is anisotropic and by the mean value theorem.



Nearest integer continued fractions over the Euclidean imaginiary quadratic fields

Moving up a dimension, let’s consider approximation to z ∈ C over
the Euclidean imaginary quadratic fields.



Nearest integer continued fractions: Definitions 1

Let K = Q(
√
d), d = −1,−2,−3,−7,−11, an imaginary quadratic

field whose maximal order is Euclidean, and let be V the complex
numbers closer to zero than to any other point of OK along with a
choice of half the boundary. Any z ∈ C can be uniquely written as

z = a0 + z0, a0 =: dzc ∈ OK , z0 =: {z} ∈ V.

Define T : V → V by Tz = {1/z}. For z ∈ C, define

zn = Tnz0 = {1/zn−1} , an = d1/zn−1c ,

expressing z as a continued fraction

z = [a0; a1, a2, . . .] = a0 +
1

a1 + 1
a2+...

,

with convergents pn/qn = a0 + 1
a1+

1

...+ 1
an

∈ K

(
pn pn−1
qn qn−1

)
=

(
a0 1
1 0

)
· · ·
(
an 1
1 0

)



Nearest integer continued fractions: Definitions 2

V and its translates in blue, unit circle in black, and ∂(V −1) in red.
[Also a “proof by picture” that OK is norm Euclidean.]



Nearest integer continued fractions: Definitions 3

Partition of V induced by
one iteration of T .

The Hurwitz continued fractions aren’t
as nice as simple continued fractions,
for various reasons.

One reason is that the branches of the
inverse aren’t surjective near the
boundary of V , making the sequence
space [a0; a1, a2, . . .] hard to describe
(e.g. there are arbitrarily long
“forbidden sequences” of digits in
nearest integer continued fractions).

Another is that they don’t always give
the best rational approximations
relative to the norm of the
denominator.



Nearest integer continued fractions: Approximation properties

While the nearest integer convergents pn/qn to z ∈ C are not
necessarily the best rational approximations to z, they aren’t so bad.

Dirichlet bound

There exists C > 0 such that the convergents pn/qn to any z ∈ C
satisfy

|z − pn/qn| ≤ C/|qn|2.

OK approximations

There exists α > 0 such that for any z ∈ C, p, q ∈ OK , |q| ≤ |qn|,

α|qz − p| ≥ |qnz − pn|.

[The second statement is essentially due to R. Lakein, who found

sup
z,n
|qn(qnz − pn)|

for the algorithms considered here. It can also be found implicitly in the

work of D. Hensley and explicitly S. G. Dani over Q(
√
−1) and Q(

√
−3)

respectively.]



Monotonicity of qn

Need to establish

For the algorithms
above, the
convergent
denominators are
increasing in norm:

|qn| < |qn+1|.

for the results of the
last slide. The
fractals indicate the
difficulty of
describing the
natural extension
and the problem
with small partial
quotients, since

qn
qn−1

= [an; an−1, . . . , a1].



Characterizing badly approximable numebrs: Bounded partial quotients

While the nearest integer convergents are not the best approximations
available, they are “good enough” to detect badly approximable
numbers.

The number z ∈ C \K is badly approximable over K if and only if its
partial quotients are bounded.

[The proof follows from the approximation properties described earlier,

with the “OK approximations” allowing us to say that a number is badly

approximable if and only if it is badly approximable by its convergents.

This statement for Q(
√
−3) can also be found in a recent preprint of S. G.

Dani.]



K-rational circles and indefinite integral binary Hermitian forms

The zero set Z(H) of the indefinite binary Hermitian form

H(z, w) = (z̄ w̄)

(
A B
B C

)(
z
w

)
= A|z|2 +Bz̄w +Bzw̄ + C|w|2,

A, C ∈ R, B ∈ C, ∆(H) := det(H) < 0,

is a circle in P 1(C); e.g. if A 6= 0 then

Z(H) ∩ Cz = {z : |z +B/A|2 = −∆/A2}.

GL2(C) acts on a form H by change of variable and on the circle
Z(H) by the usual Möbius action, and the map H → Z(H) is
GL2(C)-equivariant:

Z(g†Hg) = g−1 · Z(H), g ∈ GL2(C).

A form/circle is rational if A,B,C ∈ K and integral if A,B,C ∈ OK .
We can restrict the actions above to GL2(OK) and integral forms.



Continued fraction expansion of points on K-rational circles

For z ∈ C with z = [a0; a1, . . .], define

gn =

(
pn pn−1
qn qn−1

)
=

(
a0 1
1 0

)
· · ·
(
an 1
1 0

)
,

so that Tn(z0) = 1/g−1n z. If H(z, 1) = 0 for an indefinite integral
binary Hermitian form, let Hn = Hgn , so that Hn(1, zn) = 0.

The orbit {Hn}n is finite. [Hence the entire orbit {Tn(z0) : n ≥ 0} lies
on finitely many circles.]

This is analogous to the fact that real irrational quadratic numbers
have eventually periodic simple continued fraction expansions as
discussed earlier.

However, the sequences Hn and zn aren’t periodic (unless z is a
quadratic irrational); there is room to move around on the tagged
circles (zn, Z(Hn)). [This generalizes work of Wieb Bosma and David
Gruenewald over Q(

√
−1).]



Example orbits

Example orbits {zn}n, 0 ≤ n ≤ 10, 000 for zeros z of various integral
forms over Q(

√
−3).

Example orbits {zn}n, 0 ≤ n ≤ 20, 000 for zeros z of various integral
forms over Q(

√
−1).



Compact geodesic surfaces in the Bianchi orbifolds SL2(OK)\H3

[Now K is any imaginary quadratic field.]

A circle Z(H) in the plane determines a
geodesic plane (hemisphere) S(H) in H3

(upper half-space model). In the quotient
π : H3 → SL2(OK)\H3 we get some
geodesic surface π(S(H)).

If H is an anisotropic rational form, then
π(S(H)) is compact. [Equivalently
SU(H,OK)\SU(H,C) is compact.]

H is anisotropic if H(z, w) 6= 0 for
[z : w] ∈ P 1(K). This is equivalent to the
condition

−∆(H) 6∈ NK
Q (K),

i.e. the square of the radius of the

rational circle is not a norm.



Characterizing badly approximable numbers: the Dani correspondence

Dani correspondence

The number z is badly approximable if and only if the trajectory

Ωz =

{
SL2(OK)

(
1 z
0 1

)(
e−t 0
0 et

)
: t ≥ 0

}
⊆ SL2(OK)\SL2(C)

is bounded (precompact).



Badly approximable circles

If z ∈ C satisies H(z, 1) = 0 for some anisotropic integral form H,
then z is badly approximable.

If K is Euclidean, then {Z(Hn)}n is a finite collection of circles
bounded away from zero/infinity so that the partial quotients of
z are bounded (and all approximation constants are effective).

For general K, the trajectory Ωz is asymptotic to the compact
geodesic surface π(S(H)), and is therefore bounded.

[The collection of badly approximable points produced is uncountable
of measure zero, dense in the plane, and of Hausdorff dimension 1.
The collection of all numbers badly approximable over K has
Hausdorff dimension 2.]



Characterizing the algebraic examples

On these anisotropic circles, there are many examples of algebraic
numbers badly approximable over K.

For any real algebraic number u ∈ [−2, 2], any 0 < n ∈ Q \NK
Q (K),

and any t ∈ K, the number

z = t+
√
n · u±

√
u2 − 4

2

is badly approximable. Moreover, this parameterizes all of the
algebraic numbers badly approximable over K coming from rational
circles.

[Examples of algebraic numbers with bounded partial quotients over

Q(
√
−1) were given by Bosma and Gruenewald generalizing examples of

Hensley.]



Yet another picture

For instance, 30,000 iterates of T on the quadratically scaled root of
unity z =

√
23e2πi/5 over Q(

√
−3) and Q(

√
−1) (23 6∈ NK

Q ):



Elementary proof

Suppose H is an anisotropic indefinite integral binary Hermitian form
over an imaginary quadratic field with H(z, 1) = 0. Then
Liouville-style estimates

0 < 1/|q|2 ≤ |H(p/q, 1)| = |H(p/q, 1)−H(z, 1)| ≤ C|z − p/q|,

show the following.

With H and z as above, we have

lim inf
|q|→∞

{|q(qz − p)| : p, q ∈ O,q 6= 0} ≥ µ

2
√
−∆

,

where µ = min{|H(p, q)| : (0, 0) 6= (p, q) ∈ O2
K} and ∆ = det(H).



Badly approximable vectors in F ⊗ R

We can generalize the quadratic/Hermitian examples of badly
approximable numbers above to vectors in F ⊗ R.



Notation

F a number field of signature (r, s)

When pertinent, F/E CM (F/E imaginary quadratic, E totally
real). The importance here is that “complex conjugation” needs
to commute with other automorphisms.

G = SL2(F ⊗ R), Γ = SL2(OF ), K ∼= SO2(R)r × SU2(C)s

(maximal compact), G/K ∼= (H2)r × (H3)s

σ ∈ HomQ(F,C)



A measure of approximation

We will measure the approximation of z = (zσ)σ by p/q ∈ F with

max
σ
{|σ(q)|}max

σ
{|σ(q)zσ − σ(p)|},

the product of the sizes of the (vector-valued) linear forms q and
qz− p.

We say z is badly approximable if there exists C ′ > 0 such that

max
σ
{|σ(q)|}max

σ
{|σ(q)zσ − σ(p)|} ≥ C ′

for all p/q ∈ F .

[If z is badly approximable as defined above, then

max
σ
{|zσ − σ(p/q)|} ≥ C ′/max

σ
{|σ(q)|}2,

and the converse holds for (r, s) = (1, 0), (0, 1), (2, 0), (0, 2).]



Some approximation properties

The measure of approximation introduced above has the following
properties.

Dirichlet-type

There exists C > 0 such that any z 6∈ F has infinitely many rational
approximations p/q with

max
σ
{|σ(q)|}max

σ
{|σ(q)zσ − σ(p)|} ≤ C.

Roth-type

For any algebraic z 6∈ F (each zσ algebraic) and any ε > 0, there
exists C ′ > 0 such that

max
σ
{|σ(q)|}1+ε max

σ
{|σ(q)zσ − σ(p)|} ≥ C ′

for any p/q ∈ F .

The set of badly approximable vectors has measure zero but full
Hausdorff dimension.



Some previous work

*M. Einsiedeler, A. Ghosh, and B. Lyttle: The set of badly approximable vectors
is “winning” (even when restricted to curves) in the setting above.
*D. Kleinbock and T. Ly: The set of badly approximable vectors is “H-absolute
winning” (even when restricted to curves and some fractals) in the setting above.
*T. Hattori: Proved Dirichlet-type theorems for real quadratic and complex
quartic fields - infinitely many solutions to

‖z− p/q‖1 ≤ C/
√
H(q),

and gave examples of badly approximable vectors.
*R. Quême: Proved Dirichlet-type theorems - infinitely many solutions to

‖q‖1′ · ‖qz− p‖1′ ≤ C, N(z− p/q) ≤ C/N(q)

where N(z) is the extension of the absolute value of the field norm.
*E. Burger: Diophantine approximation over S-integers and examples of badly
approximable linear systems using

hS(x,y)N
∏
v∈S
|Avx− y|Mv , x ∈ ONF , ,y ∈ O

M
F , Av ∈MatM×N (Fv).

*W. Schmidt: Dirichlet-type theorem (for
∏
σ σ(K) ⊆ Rr × Cs) and the Subspace

theorem for number fields (from which the above Roth-type theorem can be
deduced).

*S. G. Dani: Characterization of badly approximable systems of linear forms in

terms of bounded trajectories in SLn(Z)\SLn(R).



Dani correspondence

Dani correspondence

The vector z is badly approximable over F if and only if the trajectory

ωz(t) =

{
Γ ·
((

1 zσ
0 1

)(
et 0
0 e−t

))
σ∈S
·K : t ≥ 0

}
is bounded in Γ\G/K

This follows from Mahler’s compactness criterion (tailored here to our
current needs):

Mahler’s criterion

A subset Ω ⊆ SL2(F ⊗ R) is precompact modulo Γ if and only if the
OF -lattices spanned by the rows of elements of ω ∈ Ω have no
arbitrarily short vectors, i.e. there exists ε > 0 such that

inf{‖(p q)ω‖ : (0, 0) 6= (p, q) ∈ O2
F , ω ∈ Ω} ≥ ε.



Easy bounded trajectories

Let J be an F -rational binary quadratic or Hermitian form (need
F/E to be CM to define Hermitian forms). Let Jσ be the form
obtained by applying σ to the coefficients of J .

We say J is totally indefinite if Jσ is indefinite for all σ. For such J ,
we have its zero set

Z(J) =
∏
σ

Z(Jσ) ⊆ (P 1(R))r × (P 1(C))s

and g ∈ SL2(OF ) acts by change of variable on J or by fractional
linear transformations on Z(J) (equivariantly).

If J is anisotropic (no zeros in P 1(F )), then

(Aut(J) ∩ Γ)\Aut(J) ⊆ Γ\G

is compact (follows from Mahler’s criterion), and this compact set is
(almost) the product of lines/planes associated to Z(J).



Examples of badly approximable vectors

Applying the Dani correspondence to geodesic trajectories aimed at
Z(J) (asymptotic to the compact subspaces just described), we get:

Let J be totally indefinite anisotropic F -rational binary quadratic or
Hermitian form and z ∈ Z(J) ⊆ Rr × Cs. Then z is badly
approximable.

[Once again there is also an elementary, Liouville-style proof.]



Actual examples of badly approximable vectors

Example 1 : Q = x2 − (2−
√

2)y2 is anisotropic and totally indefinite
over Q(

√
2), so the four vectors(

±
√

2−
√

2,±
√

2 +
√

2

)
∈ R2

are badly approximable.

Example 2 : H = |z|2 − 3|w|2 is anisotropic and totally indefinite over
Q(
√

5,
√
−1), so every vector in the torus

{(
√

3 cos s+ i
√

3 sin s,
√

3 cos t+ i
√

3 sin t) : s, t ∈ [0, 2π)} ⊆ C2

is badly approximable.



Non-quadratic, algebraic vectors in the CM case

We would like to note that the Z(H) contain many algebraic vectors,
which we can parameterize as follows.

Choose real algebraic numbers uσ ∈ [−2, 2], a totally positive
t ∈ E\NF

E (F ), and any s ∈ F . Then

z = (zσ)σ, zσ = σ(s) +
√
σ(t)

uσ ±
√
u2σ − 4

2
,

are the algebraic badly approximable vectors associated to Hermitian
forms.



Back to Q ⊆ R

Let’s take another look at continued fractions, with a focus on
reflection groups and some of the ergodic theory.

[A slice of π.]



Reflective Continued Fractions

Consider the group Γ = 〈a, b, c〉 ⊆ PGL2(R) ∼= Isom(H2), generated by
reflections in the walls of the ideal hyperbolic triangle with vertices
{0, 1,∞}:

a(x) = −x, b(x) =
x

2x− 1
, c(x) = 2− x.

We have
1→ Γ→ PGL2(Z)→ PGL2(Z/(2))→ 1,

PGL2(Z) = Γ o S3, Γ ∼= Z/(2) ∗ Z/(2) ∗ Z/(2).

Words in these generators index the triangles in the tessellation, and the

words of length n partition the line into 3 · 2n−1 subintervals. The partition

by words of length m > n refines the partition by words of length n.

Irrational x are then uniquely coordinatized by infinite words in the

alphabet {a, b, c}.

abaabcaca bab bac bcabcb cbacbc cab cacaca

a

b

c



Dynamical System on the Line

T (x) =
a(x) = −x x ∈ [−∞, 0]
b(x) = x

2x−1
x ∈ [0, 1]

c(x) = 2− x x ∈ [1,∞]

−3 −2 −1 1 2 3 4

−4

−2

2

4

The expansion of x as an infinite word in
{a, b, c} is produced by a dynamical system
T : P 1(R)→ P 1(R).

There are three neutral fixed points, 0
1 , 1

1 ,
and 1

0 , to which rational points descend in
finitely many steps depending on the parity
of the numerator and denominator
(even/odd, odd/odd, odd/even).

If x is irrational and m ∈ {a, b, c} is defined
by Tnx = m(Tn−1x), then we have three
sequences of rational convergents

lim
n→∞

m1m2 . . .mnx0 = x, x0 = 0, 1,∞,

the vertices of the triangles through which
the geodesic −−→∞x passes.

These approximations can also be
constructed as a sequence of mediants
starting with (1

1 ,
1
0 ,

0
1 ) or ( 1

1 ,
−1
0 ,

0
1 ).



Example

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

Here is a random number

x = 0.4189513796210592 . . .

with expansion

x = bacabcacbcacacababac . . .

The first 20 convergents are

(a, b, c updating positions

1, 2, 3, mediant in red)

(1/1, 1/0, 0/1) :

(1/1, 1/2, 0/1), (1/3, 1/2, 0/1), (1/3, 1/2, 2/5),

(3/7, 1/2, 2/5), (3/7, 5/12, 2/5), (3/7, 5/12, 8/19),

(13/31, 5/12, 8/19), (13/31, 5/12, 18/43), (13/31, 31/74, 18/43),

(13/31, 31/74, 44/105), (75/179, 31/74, 44/105), (75/179, 31/74, 106/253),

(137/327, 31/74, 106/253), (137/327, 31/74, 168/401), (199/475, 31/74, 168/401),

(199/475, 367/876, 168/401), (535/1277, 367/876, 168/401), (535/1277, 703/1678, 168/401),

(871/2079, 703/1678, 168/401), (871/2079, 703/1678, 1574/3757)

= (0.4189514 . . . , 0.4189511 . . . , 0.4189512 . . . ).



Invertible Extension

The invertible extension T̃ of T is defined on the space of geodesics G
that intersect the fundamental triangle, acting on −→yx depending on x:

T̃ (y, x) =

 (a(y), a(x)) x ∈ [−∞, 0]
(b(y), b(x)) x ∈ [0, 1]
(c(y), c(x)) x ∈ [1,∞]

T̃ associates to the geodesic −→yx a bi-infinite word y−1x in {a, b, c},
which we will relate to the geodesic flow in Γ\H2.

y0 x0 y1x1 y2x2

Figure: Two iterations of T̃ , red to green to blue



Invariant Measure

dµ(x) =


dx
−x x < 0,
dx

x(1−x)
0 < x < 1,

dx
x−1

x > 1,

−3 −2 −1 1 2 3 4

2

4

6

8

10

The measure dη(y, x) = (x− y)−2dxdy
is isometry-invariant on the space of
geodesics in the hyperbolic plane.

Since T̃ is a bijection defined piecewise
by isometries, η|G is T̃ -invariant.

Pushing forward to the second
coordinate gives an infinite
T -invariant measure µ. We will see
that (G, T̃ , η|G) is ergodic (hence also
the ergodicity of (P 1(R), T, µ)).



Cross-section of the Geodesic Flow

Begin
End

The word y−1x associated to the geodesic −→yx
records the sequence of collisions with the walls of
the triangle in Γ\H2, and T̃ is the first-return of
the geodesic flow (billiards in the triangle) to the
cross-section defined by points/directions on the
boundary. The return time is integrable with
respect to dη(y, x).

[For instance, a geodesic (y, x) ∈ [−∞, 0]× [1,∞], has
retrun time

r(y, x) =
1

2
log

(
x(1− y)

y(1− x)

)
.

and the integral is

1

2

∫ 0

−∞

∫ ∞
1

log

(
x(1− y)

y(1− x)

)
dxdy

(y − x)2
=
π2

6
.]



I said all that to say this: Right-angled continued fractions



A pair of dynamical systems associated to a two-colorable polyhedron

Let Π be a polyhedron whose faces can be two-colored, i.e. the faces
of Π can be partitioned into two sets S = {si} and T = {tj} such that
no two faces in S share an edge and no two faces in T share an edge.
We consider right-angled hyperbolic Coxeter groups of the form

Γ = 〈s1, . . . , sm, t1, . . . , tn|s2i = t2i = [si, tj ] = 1, si ∼ tj〉,
where si ∼ tj if the faces si and tj share an edge.

The ideal boundaries of the planes defining the faces of Π consist of
oriented circles Z(si), Z(tj) with the property that the interiors of
Z(s), s ∈ S are disjoint, the interiors of Z(t), t ∈ T are disjoint,
together they cover the sphere, and if Z(s) and Z(t) intersect, they do
so at right angles.



A pair of dynamical systems associated to a two-colorable polyhedron (cont.)

Define two dynamical systems on S2 = P 1(C) = C ∪ {∞} as follows

φS(z) =

{
s(z) z ∈ C(s)
t(z) z ∈ P (t)

, φT (w) =

{
s(w) w ∈ P (s)
t(w) w ∈ C(t)

,

where P and C are the polygonal (intersticial) and circular regions
associated to the Coxeter generator. The invertible extensions ΦS and

ΦT are defined on a collection G of geodesics (pairs of distinct points
of P 1(C)):

ΦS(w, z) = (r(w), φS(z)) where φS(z) = r(z), r ∈ S ∪ T,

ΦT (w, z) = (φT (w), q(z)) where φT (w) = q(w), q ∈ S ∪ T.

Moreover (surprisingly?), the extensions ΦS and ΦT are
inverse to one another.



A pair of dynamical systems associated to a two-colorable polyhedron (cont.)

The maps φ and Φ are one- and two-sided subshifts of finite type on the
alphabet S ∪ T . The sequences in question come from the two “obvious”
normal forms for elements of Γ. If we consider φS , then the sequence

(φS(z), φ2
S(z), φ3

S(z), . . .) = (r1(z), r2r1(z), r3r2r1(z), . . .), rn ∈ S ∪ T,

has the following properties.

rn 6= rn+1, i.e. no words of the form s2 or t2 appear (inversions in the
boundary circles of C(s) or P (t) ensure you do not repeat a digit).

If rn and rn+1 commute (i.e. their fixed circles are orthogonal), then
rn ∈ S and rn+1 ∈ T . Geometrically, this comes from the fact that we
are taking C(s) and P (t) in the definition, i.e. we prefer S over T in
the definition.

Similarly, the map φT will produce a sequence

(φT (w), φ2
T (w), φ3

T (w), . . .) = (q1(w), q2q1(w), q3q2q1(w), . . .), qn ∈ S ∪ T,

satisfying the opposite convention for the commutation relations: if qn and
qn+1 commute, then qn ∈ T and qn+1 ∈ S.
Hence, to a point w ∈ C or z ∈ C, we encode the pair (w, z) as

(. . . q3q2q1, r1r2r3 . . .).



A pair of dynamical systems associated to a two-colorable polyhedron (cont.)

We can explicitly compute invariant measures for φS and φT by
integrating the isometry invariant measure

|z − w|−4dxdydudv, z = x+ iy, w = u+ iv, (w, z) ∈ G,

over w or z.

Unfortunately, I
haven’t been able
to show that these
measure preserving
systems are
ergodic.

How ’bout some (interesting) examples? [These are variations on
algorithms of A. L. Schmidt.]



“Super-Apollonian continued fractions,” joint w/ S. Chaubey, E. Fuchs, K. Stange

We will work with the following group of Möbius
transformations, reflections in the sides of the
(finite volume) ideal right-angled octahedron with
vertices {0, 1,∞, i, 1 + i, 1/(1− i)} 0 1

i 1 + i

Γ = 〈s1, s2, s3, s4, s⊥1 , s⊥2 , s⊥3 , s⊥4 〉 ⊆ PSL2(C) o 〈z̄〉 ∼= Isom(H3),

s1 =
(1 + 2i)z̄ − 2

2z̄ − 1 + 2i
, s2 =

z̄

2z̄ − 1
, s3 = −z̄ + 2, s4 = −z̄,

s⊥1 = z̄, s⊥2 = z̄ + 2i, s⊥3 =
z̄

−2iz̄ + 1
, s⊥4 =

(1− 2i)z̄ + 2i

−2iz̄ + 1 + 2i
,

1→ Γ→ PGL2(Z[i]) o 〈z̄〉 → PGL2(Z[i]/(2))→ 1,

[PGL2(Z[i]) o 〈z̄〉 : Γ] = 48, PGL2(Z[i]) o 〈z̄〉 = Γ o Bin. Oct.



Fundamental octahedron

Just in case you didn’t see an octahedron:



Dynamical system(s)

A2

A1

A3A4

A′1

A′2

A′3 A′4

0 1

i 1 + i

B3 B4

B1

B2

B′1

B′2

B′3B′4

0 1

i 1 + i

As discussed earlier, we have two
dynamical systems:

TA(w) =

{
siw w ∈ Ai,
s⊥i w w ∈ A′i.

,

TB(z) =

{
siz z ∈ B′i,
s⊥i z z ∈ Bi,

.

The vertices
{

0, 1,∞, i, 1 + i, 1
1−i

}
are

neutral fixed points to which Gaussian
rationals descend in finite time,
depending on the “parity” of the
numerator and denominator (because
Γ is two-congruence).



Apollonian super-packing

Sequence of partitions associated to TB :



Apollonian super-packing (cont.)

The regions of the nth partition are labeled by the 9 · 5n−1 − 1 normal
form words of length n. Irrational z are uniquely coordinatized by
infinite normal form words in the generators {si, s⊥i }. The expansion
of z in the generators is produced by the dynamical system (TB here).

2 42 32 4 2 3

2 1

2 2

2 1

1 3 1 41 4 1 3

1 2

1 1

1 2

3 3

3 1

3 2

3 44 4

4 1

4 2

4 3

3 1

3 2

3 43 4

4 1

4 2

4 3 4 3

1 1

2 2



Apollonian super-packing (cont.)

Figure: Portion of the sixth partition inside the unit square.



Rational approximation

Recording the sequences mn, nn defined by

TnA(w) = mn(Tn−1
A (w)), TnB(z) = mn(Tn−1

B (z))

produces infinite words in normal form. The initial segments m1 · · ·mn,
n1 · · · nn label the region in the nth partition where w or z lies. We obtain 6
sequences of Gaussian rational approximations for each system such that

lim
n→∞

m1 · · ·mnw0 = w

lim
n→∞

n1 · · · nnz0 = z
w0, z0 ∈

{
0, 1,∞, i, 1 + i,

1

1− i

}
,

the vertices of the octahedra along the path indexed by the normal form
word.

One measure of the quality of approximation is:

If (p, q) = 1 is such that

|z − p/q| < C

|q|2 , C =
1

1 + 1/
√

2
,

then p/q is a convergent to z. Moreover, C is the largest constant possible.



Example

-0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1

z = 0.1761148094996705 . . .+ i0.2463661645805464 . . .

z = s⊥3 s⊥1 s2s
⊥
2 s⊥3 s3s1s3s

⊥
3 s⊥2 s1s4s1s4s

⊥
4 s1s

⊥
1 s⊥2 s3s4 . . .



Invertible extension

The invertible extension T̃ of TB is defined on a space of geodesics
G = ∪i (Bi ×Bi ∪ B′i ×B′i)

T̃ (w, z) =

{
(siw, siz) z ∈ Bi, z = si . . .

(s⊥i w, s
⊥
i z) z ∈ B′i, z = s⊥i . . .

Figure: Regions B′i ×B′i, Bi ×Bi with subdivisions.



Invertible extension (cont.)

An example orbit (100 iterations on random input).



Invertible extension (cont.)

The inverse T̃−1 extends TA
(in the same manner that T̃
extends TB) so that a
geodesic (w, z) corresponds
to a bi-infinite word w−1z,
with w produced by TA and
z produced by TB . Hence
working with one system
automatically involves its
dual. [Pictured is part of

10,000 iterations of T̃ on a
random input (w, z)]



Invariant measure

The measure

dη(w, z) = |z − w|−4dudvdxdy, z = x+ iy, w = u+ iv

is isometry-invariant on the space of geodesics in H3. As T̃ is a
bijection defined piecewise by isometries, η|G is T̃ -invariant. Pushing
forward to the second coordinate gives a TB-invariant measure µB on
P 1(C):

dµB(z) = fB(z)dxdy =

{
dxdy

∫
Bi
|z − w|−4dudv, z ∈ Bi

dxdy
∫
B′

i
|z − w|−4dudv, z ∈ B′i

.

[These integrals are explicitly computable.]



Invariant measure (cont.)

The measure µB is finite, giving a measure of π2/4 for each of the
eight regions.

Figure: The density fB(z) shown from two angles (fA is fB rotated by 90◦).



Another example: Cubeoctahedral continued fractions over Q(
√
−2)

0 1

√
−2 1 +

√
−2



Super-packings



Some details

Inversions in the circles of the previous figure generate a discrete group Γ of
isometires of hyperbolic three-space (of finite covolume), reflections in the
sides of an ideal, right-angled cubeoctahedron. The cubeoctahedral
reflection group Γ is the kernel of the map

PGL2(Z[
√
−2]) o 〈c〉 → PGL2(Z[

√
−2]/(2)),

similar to the Gaussian situation described earlier.

All of the results described earlier have analogues here (dual pair of
dynamical systems, invertible extension and invariant measures, etc.). In
particular (with 12 sequences of approximations corresponding to the
vertices of the cubeoctahedron):

If (p, q) = 1 is such that

|z0 − p/q| <
C

|q|2 , C =
2
√

2

1 +
√

2 +
√

3
,

then p/q is a convergent to z0. Moreover, C is the largest constant possible.



First approximation constants (for funsies)

There is a simple geometric argument for the following facts (first
proved by L. Ford and O. Perron respectively).

Every z ∈ C has infinitely many approximations p/q such that

|z − p/q| ≤ C/|q|2

where C = 1/
√

3 (Q(
√
−1)) or C = 1/

√
2 (Q(

√
−2)). These are the

best constants as witnessed by 1+
√
−3

2 and 1+i√
2

.

(0, 0) (1, 0)

( 1
2 ,
√
3
2 )

0
−1√
−2

√
−2

( −1√−2 ,
1√
2
)



Zeros of Hermitian forms (again)

The number z ∈ C is badly approximable (over Q(
√
−1), Q(

√
−2)) iff

its right-angled orbit is bounded away from the fixed points. Tagged
rational binay Hermitian forms have finite orbit under the
right-angled algorithms. In particular, zeros of anisotropic forms are
badly approximable.

-4 -2 2 4

-4

-2

2

4

-4 -2 2 4

-2

-1

1

2

3

4

5



Other stuff (i.e. chapters 6, 7, and 8)

[Me working on the end of my thesis.]



Ch. 6 example: Z3 ⊂ R3 (I proved some stuff)



Ch. 7 example: Q(
√

2) (I didn’t prove anything)



Ch. 8 - Discrete Markoff spectrum (i.e. stuff people already knew)

bn = b(n+ 1)xc − bnxc, x ∈ [0, 1]\Q,
ξ = [a0; a1, . . .], (bn = 0 7→ 22, bn = 1 7→ 11),

ξ transcendental (stammering continued fraction)

E.g.

ξ =
∞∑
i=0

(−1)i+1

(
3− mi+2

mimi+1

)
,

mi+3 = 3mi+2mi+1 −mi, (m1,m2,m3) = (5, 13, 194).

Sums over Markoff numbers:∑
m∈M

3−
√

9m2 − 4

m
=

7−
√

5−
√

8

2
,

a case of Mcshane’s identity ∑
γ

1

1 + el(γ)
=

1

2
,

(sum over simple closed geodesics on a once-punctured torus).



Finally, the end!


